珠江三角洲新垦大气核化速率研究

龚有国^{1,2},胡敏²,宋伟伟¹,高健³,刘峰⁴,张远航^{2*}

(1.防化研究院,北京 102205; 2.北京大学环境科学与工程学院,北京 100871; 3.中国环境科学研究院,北京 100021; 4.防化指挥工程学院,北京 102205)

摘要:计算了珠江三角洲新垦地区的大气核化速率,对核化机制及核化速率计算的影响因素进行了分析.基于 PRIDE-PRD2004 观测实验期间新垦站点的气溶胶数浓度谱分布观测数据,计算出 3 nm 粒子的表观形成速率.根据表观形成速率与 核化速率之间的关系式,分析了 1 nm 粒径临界核的大气核化速率.结果表明,新粒子事件期间 3 nm 粒子的表观形成速率为 7.2~9.4 cm⁻³·s⁻¹,1 nm 临界核的大气核化速率为7.65×10²~1.14×10⁵ cm⁻³,与前体物硫酸蒸气浓度比较一致,气态硫酸 应是主要的核化前体物.新垦地区背景气溶胶中积聚模态对碰并汇贡献较大,事件期间气溶胶数浓度变化对核化速率计算结 果影响不大.本研究获取了新垦核化速率信息,有助于进一步了解核化机制.由于成核临界粒径的不确定性对核化速率计算 结果影响很大,确定成核临界粒径对核化速率计算十分重要.

关键词:PRIDE-PRD2004;新粒子形成;表观形成速率;核化速率;临界核

中图分类号:X513 文献标识码:A 文章编号:0250-3301(2011)04-0930-06

Atmospheric Nucleation Rate at Xinken Site in the Pearl River Delta of China

GONG You-guo^{1,2}, HU Min², SONG Wei-wei¹, GAO Jian³, LIU Feng⁴, ZHANG Yuan-hang²

(1. Research Institute of Chemical Defence, Beijing 102205, China; 2. College of Environment Sciences and Engineering, Peking University, Beijing 100871, China; 3. Chinese Research Academy of Environmental Sciences, Beijing 100021, China; 4. Institute of Chemical Defence, Beijing 102205, China)

Abstract: The atmospheric nucleation rates are calculated, the nucleation mechanism and factors affecting the calculation are investigated at Xinken Site in the Pearl River Delta of China. Based on particle size distribution data from Xinken site during PRIDE-PRD2004, the apparent formation rates of 3 nm particles are obtained. Nucleation rates for critical nuclei of 1 nm size are analyzed from particle flux equation of different size in the diameter axis. The results show the 3 nm apparent formation rates during the new particle formation events are 7. 2-9. 4 cm⁻³ · s⁻¹, the atmospheric nucleation rate for 1 nm critical nuclei are 7. 65×10^2 · 1. 14×10^5 cm⁻³. The derived nucleation rates are consistent with the concentrations of precursor vapor sulphuric acid, which are supposed to participate nucleation in most cases. With higher contribution of accumulation mode background aerosol to coagulation sink, the variation in particle number during event period imposes neglectable influence on the calculated nucleation rates. Information on nucleation rates provide further insight into the nucleation mechanism. Since variation in critical nuclei size may lead large uncertainty to nucleation rates, identification of the exact critical nuclei size is important for nucleation rate study.

Key words: PRIDE-PRD2004; new particle formation; apparent formation rate; nucleation rate; critical nuclei

在人们赖以生存的地球大气中,气溶胶颗粒无 处不在并以多种方式影响人们生活质量,包括降低 能见度^[1]、危害人体健康^[2]和影响地球的气候系 统^[3].深入认识气溶胶的环境影响需要对大气新粒 子的形成与增长过程进行研究^[4-6],其中核化过程 十分关键^[7].虽然目前提出了几种重要的核化机 制^[8-12],但在不同区域与大气环境条件下大气新粒 子的核化机制可能不同^[13].因此,在现有的测量技 术条件下^[14-16],大气新粒子核化速率的信息对气溶 胶核化机制与形成增长机制研究具有重要意义.近 年来我国一些地区气溶胶污染问题相当严重^[17], 2004 年在珠江三角洲开展的 PRIDE-PRD2004 (Program of Regional Integrated Experiments on Air Quality over Pearl River Delta of China 2004)^[18]观测 实验期间,在新垦站点观测到新粒子形成事件^[19,20],但目前对大气新粒子的核化机制仍不清楚.本研究目的是根据表观形成速率与核化速率之间的关系,基于 PRIDE-PRD2004 期间新垦站点的气溶胶数浓度谱分布观测数据,分析该地区的大气新粒子核化速率特征,以期为核化机制和形成增长机制研究提供依据.

1 材料与方法

作为 PRIDE-PRD2004 的一部分, 2004 年 10 月

收稿日期:2010-04-25:修订日期:2010-09-25

基金项目:国家自然科学基金项目(40805052,41005065,40975089)

作者简介: 龚有国(1976~), 男, 博士, 副研究员, 主要研究方向为大 气化学, E-mail: yggong@pku. edu. cn

^{*} 通讯联系人, E-mail:yhzhang@pku.edu.cn

在新垦站点(22.6°N,113.6°E)开展了气溶胶光 学、理化性质与相关气相前体物的观测.新垦位于 珠江口附近的一个人工堤区域,距离广州市南约60 km.2004年10月3日~11月5日开展的干气溶胶 数谱分布测量获得3 nm~10μm 粒子的Stokes 粒径 数浓度谱分布数据^[21],10月23~30日的气溶胶吸 湿特性测量获得22 nm~10μm 粒径范围的气溶胶 吸湿增长因子数据[图1(a)]^[22],关于实验测量见 文献[18,20~22].

由于气溶胶颗粒与大气环境中水汽之间的相互 作用会影响其粒径分布和理化性质,测量的干谱数 据并不能代表实际大气条件下的气溶胶谱分布.在 计算气溶胶碰并汇时,为获得更实际的结果,需要考 虑吸湿增长的影响,应用湿谱数据计算.为获得整 个观测期间实际大气相对湿度环境条件下的气溶胶 湿谱分布数据,在测量吸湿增长因子的8d中,通过 对这8d的干谱粒径乘以相应的吸湿增长因子数据 得到校正的环境湿谱数据,详细的处理方法见文献 [22];在没有测量吸湿增长因子的时间,应用这8d 吸湿增长因子的平均日变化数据[图1(b)]对其它 各天的环境湿谱进行校正,其最大误差不超过 15%.

Fig. 1 Hygroscopic growth factor measurements and the diurnal half hour average during Oct. 23 and 30 at Xinken site

由观测的气溶胶数浓度谱分布数据,按照文献 [5]建议的方法,可以计算新粒子事件期间进入可 探测粒径(3 nm)范围粒子的通量,即 3 nm 粒子的 表观形成速率 J_3 (cm⁻³·s⁻¹),表达式如下^[5]:

 $J_{3} = dN_{nuc}/dt + F_{coag} + F_{growth} + F_{trans}$ (1) 式中,t 与 N_{nuc} 分别为观测时间(s⁻¹)及对应的核模态 粒子数浓度(cm⁻³), F_{growth} 是增长超过核模态粒径范 围的颗粒数, F_{trans} 表示由于大气输送对核模态浓度的 影响, F_{coag} 是核模态的碰并损失,由式(2)计算^[5]:

$$F_{\text{coag}} = \text{CoagS}_{\text{nuc}} \cdot N_{\text{nuc}}$$
(2)

在此 CoagS_{nuc} 为核模态颗粒的碰并汇,参考粒 径为拟合的核模态几何平均直径(D_{pg})^[23]. 对粒径 为 d_i 的 i^{th} 分级气溶胶,其碰并汇根据下式计算^[24]:

$$CoagS_i = \sum_{i} K_{ij}N_j$$
 (3)

式中, N_j 是粒径为 d_j 的 j^{th} 分级气溶胶数浓度, K_{ij} 为 粒径 d_i 和 d_j 气溶胶的碰并系数^[24].取温度 25℃, 颗粒密度 1.7 g/cm^{3[21]},计算不同粒径气溶胶之间 的碰并系数 K_{ij} .由于通常认为新粒子事件期间核化 颗粒不会增长超出 25 nm 粒径,在此核模态数浓度 N_{nuc} 粒径范围设为 3 ~ 25 nm,以此忽略增长项 F_{growth} ^[5].此外,大气稳定条件下忽略输送项 F_{trans} , 从而可按式(4)计算 3 nm 粒子的表观形成速率.

$$J_3 = dN_{\rm nuc}/dt + \rm CoagS_{\rm nuc} \cdot N_{\rm nuc}$$
(4)

Lehtinen 等^[25]提出了把可探测粒径范围粒子的表观形成速率与大气真实核化速率联系起来的关系式.

$$J_{x} = J_{n} \cdot \exp\left(-\gamma \cdot d_{n} \cdot \frac{\text{CoagS}(d_{n})}{\text{GR}}\right) \quad (5)$$

$$\ddagger \psi \gamma = \frac{1}{m+1} \left[\left(\frac{d_{x}}{d_{n}}\right)^{m+1} - 1 \right]$$

在此 J_n (cm⁻³·s⁻¹)为某种核化过程形成的粒 径 d_n 处大气新粒子核化速率, J_x 为更大粒径 d_x 处 出现新粒子的表观核化速率或形成速率. GR 为核 模态凝结增长速率, *m* 为假设的碰并汇粒径指数规 律关系式的指数^[25].

$$m = \frac{\log[\operatorname{CoagS}(d_{x})/\operatorname{CoagS}(d_{n})]}{\log[d_{x}/d_{n}]}$$
(6)

通常认为核化粒径大约为 1 nm^[14],在此选取 $d_n = 1$ nm, $d_x = 3$ nm,从而 J_1 指 1 nm"核化速率", J_3 指 3 nm"形成速率".根据以上关系式,由 3 nm 粒 子的表观形成速率 J_3 及相关参数,可以计算 1 nm 新粒子的核化速率 J_1 .

2 结果与讨论

2.1 新垦大气核化速率 PRIDE-PRD2004 观测实验持续了约1个月.由

32 卷

新垦站点的气溶胶观测数据,分析观测期间各天的 气溶胶数浓度谱分布变化特征,按照新粒子形成事 件的判断标准^[5],区分出新粒子形成事件天(事件 天).由于观测数据的变化特点,并不是所有事件天 的新粒子形成速率 J_3 与核化速率 J_1 都可以计算出 来.根据新垦新粒子事件发生期间的数据表现,选 取4个典型的新粒子形成事件天^[19](10月4日、5 日、7日和21日),对这些天的大气核化速率进行了 计算.

首先由各天观测的气溶胶数谱分布数据计算出 事件期间不同观测时间 t 所对应的核模态数浓度 N_{nue},对核模态数浓度按时间序列变化作 N_{nue}-t 曲线 并对该曲线进行一阶线性拟合(图 2),求得新粒子 的净形成速率 dN_{nue}/dt.

图 2 对核模态数浓度一阶线性拟合求 3 nm 颗粒的净形成速率

图 2 中拟合曲线的斜率即为净的核模态颗粒形 成速率 dN_{nuc}/dt . 由事件期间的核模态颗粒数谱分 布拟合^[23]求几何平均直径 D_{pg} ,根据式(3)计算出 各天对应的核模态碰并汇 CoagS_{nuc},把相关数据代 入关系式(4),求得各天事件发生期内平均 3 nm 颗 粒形成速率 J_3 ,相关参数与计算结果列在表 1 中. 结果表明新垦地区新粒子表观形成速率 J_3 为 7.2 ~ 9.4 cm⁻³·s⁻¹,与 Melpitz 乡村地区观测结果相 当^[26].

计算出了 3 nm 颗粒的表观形成速率 J₃ 后,由 气溶胶谱分布数据根据式(3)计算各天新粒子形成 事件期内 1 nm 和 3 nm 颗粒平均碰并汇 CoagS₁ 和 CoagS₄,代入(6)式计算各天事件期间的平均碰并汇 粒径指数规律关系式的指数 m,并根据式(5)计算 中间变量γ值.把以上结果与这4个事件天里核模 态增长速率 GR (1.89 × 10⁻³ ~ 3.83 × 10⁻³ nm·s⁻¹)^[19]及相关数据代入式(5),计算出各天的 新粒子核化速率 J₁(见表1). 由于当前的几种主要 核化理论均认为气态硫酸是核化的主要前体物之 一.虽然硝酸与一些非挥发性有机物蒸气对增长贡 献较大,但认为它们主要参与新粒子核化的后续增 长. 最近的一些新粒子组成观测结论也支持以上观 点^[29,30].为此把这4d新垦地区的前体物硫酸蒸气 浓度 c_{SA} 及总的可凝结蒸气浓度 $c^{[19]}$ 也列在表 1 中, 与核化速率加以对比分析.

项目	10月4日	10月5日	10月7日	10月21日	_
$dN_{ m nuc}/dt/ m cm^{-3}\cdot s^{-1}$	3.2	2.7	3.6	3.8	
$D_{\rm pg}/\rm nm$	10.9	11.4	10.8	10.2	
$N_{ m nuc}$ / cm $^{-3}$	1.08×10^{4}	1.77×10^{4}	1.07×10^{4}	9. 05×10^3	
$\rm CoagS_{nuc}/s^{-1}$	4. 02 \times 10 ⁻⁴	3. 81 \times 10 $^{-4}$	4. 78 \times 10 ⁻⁴	3. 74 \times 10 ⁻⁴	
J_3 / cm $^{-3} \cdot s^{-1}$	7.6	9.4	8.7	7.2	
$CoagS_1 / s^{-1}$	2. 14×10^{-2}	2. 27 × 10 $^{-2}$	2. 38 $\times 10^{-2}$	2. 32 × 10 $^{-2}$	
$CoagS_3 / s^{-1}$	3. 41 \times 10 ⁻³	3. 67 \times 10 ⁻³	3. 75 \times 10 ⁻³	3. 63 \times 10 ⁻³	
m	- 1. 671	- 1. 661	- 1. 683	- 1. 688	
γ	0.777	0.781	0.773	0.771	
GR/nm · s ⁻¹	2. 86 \times 10 ⁻³	1.89 $\times 10^{-3}$	3. 08 \times 10 ⁻³	3. 83 \times 10 $^{-3}$	
J_1 / cm $^{-3} \cdot s^{-1}$	2. 54 $\times 10^{3}$	1.14×10^{5}	3.41×10^{3}	7.65×10^2	
$c_{\rm SA}/{ m cm}^{-3}$	8. 12×10^7	8.60 × 10^7	7.37×10^{7}	3.48×10^{7}	
c/cm^{-3}	2. 50 $\times 10^{8}$	1.32×10^{8}	2. 59 $\times 10^{8}$	2.80 × 10 ⁸	

表 1 PRIDE-PRD2004 期间新垦大气核化速率及相关计算参数

Table 1 Atmospheric nucleation rates and related parameters at Xinken during PRIDE-PRD2004

由表1可见,4个事件天里新粒子平均核化速率在7.65×10²~1.14×10⁵ cm⁻³之间.相比芬兰北部森林地区^[28],新垦地区新粒子核化速率较高,与新垦地区前体物硫酸蒸气浓度较高的结果比较一

致.由于新垦的碰并汇相对较高,对新粒子清除能力强,而增长速率并不是很高^[27],也只有一个相对 高的核化速率才能保证新粒子事件发生,而这个高 的核化速率正是由于较高的前体物硫酸蒸气浓度所 决定.其中10月4日、5日与21日核化速率大小与 前体硫酸蒸气浓度 c_{sa}(表1)比较一致,因此气态硫 酸参与核化的可能性较大.10月7日硫酸蒸气浓度 与10月4日相比要低(表1),但核化速率却更高, 由于这一天总可凝结蒸气浓度 c 相对较高,可能其 它蒸气参与了核化.

2.2 背景气溶胶影响

在核化速率计算中,碰并汇关系指数 m 是一个 关键变量,该值可根据实验数据由碰并汇的计算得 出.图3给出了实验观测期间珠江三角洲新垦站点 m值的分布情况,可以明显看出,对不同计算粒径区 间及不同背景气溶胶,m值具有较大差异.

Fig. 3 Distribution of power-law-exponent *m* describing the dependence of the coagulation sink on nuclei diameter for Xinken aerosols

芬兰北部森林地区研究结果表明^[25],在事件天 m 值通常要比非新粒子形成事件天(非事件天)的 高.这是由于森林地区埃根核与积聚模态对碰并汇 的贡献较大^[25],事件发生后埃根核模态浓度增加, 增加了对碰并汇的贡献和影响,导致森林地区计算 的 m 值在不同天会有所区别.但在新垦地区事件天 与非事件天 m 值没有明显差异.分析这4 d 数浓度 与1 nm 碰并汇的平均小时日变化结果显示(图4), 新垦地区积聚模态数浓度无论是绝对值及相对值相 比森林地区均要高[图4(a)],因此其对碰并汇的 贡献也均很大[图4(b)],相比较而言事件期间核 模态与埃根核模态数浓度增加对汇值影响不大,因 而新垦地区事件天与非事件天 m 值差异不明显.

Fig. 4 Mean diurnal hourly number concentrations and coagulation sinks with contribution of each mode for four event days at Xinken

在新垦站点实验观测 m 值在 -1.79 ~ -1.61 之间,对于每次核化事件笔者都给出了一个固定的 m 优化值加以计算.图 5 给出了随 m 值变化对计算 的核化速率 J₁ 的影响.结果表明,m 值的变化导致 的核化速率 J₁ 的计算误差不超过 0.5%.这显示以 前的研究中假设 m 值为常数 - 2^[28] 也是有一定道 理的,对结果影响不大.

2.3 成核临界粒径的影响

通过对气溶胶数浓度谱分布观测数据的分析, 获取了新垦地区的核化速率信息,有助于进一步了 解核化机制.由于测量仪器无法探测临界核的粒径 及新粒子核化速率,前面假设大气新核化生成临界 核的粒径为1 nm,对4 d 新粒子事件期间核化速率

32 卷

进行计算.实际上由于核化机制和理论的差异,核 化粒径可能不会正好是1 nm,因而假设1 nm 新核 粒径计算的核化速率可能会有一定误差,以下分析 成核临界粒径对计算结果的影响.图6显示不同的 成核临界粒径假设对指数项 m 会产生影响.

根据前面的理论,假设核化粒径发生变化,计算 了这4个事件天里不同临界核的核化速率.结果表 明随着成核临界粒径增加,计算的核化速率呈指数 下降(图7).

由于单纯的核化速率大小并不能决定是否发生 新粒子事件,还包括成核的临界粒径、凝结增长与清 除之间的竞争关系,它们共同决定新粒子形成事件 是否被观测到及观测的表观新粒子形成速率.通过 分析新垦地区背景气溶胶环境条件对新核增长过程 中的清除,可以更明确成核临界粒径对核化速率的 影响.设置碰并汇依赖性关系指数 *m* 值为新垦观测 期内平均 – 1.718,则有 $\gamma \approx 0.76$.新垦地区核模态 增长速率与 1 nm 碰并汇的典型值各自分别为 2.92 ×10⁻³ nm·s⁻¹与 2.55 × 10⁻² s⁻¹. 从而有:

 $J_3 = J_1 \cdot \exp(-6.6) \approx 0.001 \ 3 \cdot J_1$

因此如果核化成核临界粒径为1 nm,则新垦地 区通常情况下只有 0.13% 的新形成核会增长到仪 器探测范围内,其余的在从 1~3 nm 的增长过程中 都清除到大的背景粒子上或相互碰并减少了.如果 核化发生的粒径 d₁为 1.5 或 2 nm,则分别只有 2.8%和15.3%的新核会增长到 3 nm.实际上,对 应核化粒径 1.5 nm,对应事件天里的核化速率分别 为179、1572、221和90 cm⁻³·s⁻¹;若核化粒径为 2 nm,对应事件天里的核化速率分别为40、141、48和 27 cm⁻³·s⁻¹.由于成核临界粒径变化对核化速率计 算结果影响很大,因此确定成核临界粒径对于核化速 率研究十分重要,有助于减少核化速率计算误差.

3 结论

(1)珠江三角洲新垦地区新粒子形成事件期间 3 nm 粒子的表观形成速率为 7.2~9.4 cm⁻³,1 nm 大气核化速率为 7.65×10²~1.14×10⁵ cm⁻³.在多 数情况下核化速率大小与硫酸蒸气浓度高低一致, 气态硫酸应是重要的核化前体物.

(2)新垦背景气溶胶中积聚模态颗粒对碰并汇 的贡献较大,新粒子形成事件期间气溶胶数浓度变 化对碰并汇影响很小,碰并汇关系指数 m 值在事件 天与非事件天差异不明显,选取一个固定优化的碰 并汇关系指数 m 值对核化速率计算结果影响不大.

(3)计算获取了新垦地区的核化速率信息,有助于进一步了解核化机制.由于成核临界粒径变化 对核化速率计算结果影响很大,因此确定成核临界 粒径对于核化速率研究十分重要,可大大减少核化 速率计算误差.

致谢:感谢所有参加 PRIDE-PRD2004 的工作人员,特别感谢气溶胶数据观测处理人员的辛勤劳动.

- [1] Jung C H, Kim Y P. Numerical estimation of the effects of condensation and coagulation on visibility using the moment method[J]. Journal of Aerosol Science, 2006, 37: 143-161.
- Peters A, Wichmann H E, Tuch T, et al. Respiratory effects are associated with the number of ultrafine particles [J]. American Journal of Respiratory and Critical Care Medicine, 1997, 155 (4): 1376-1383.
- [3] Anderson T L, Charlson R J, Schwartz S E, et al. Climate forcing by aerosols-a hazy picture [J]. Science, 2003, 300: 1103-1104.
- [4] Kulmala M, Vehkamäki H, Petäjä T, et al. Formation and growth rates of ultrafine atmospheric particles: a review of observations[J]. Journal of Aerosol Science, 2004, 35: 143-176.

- [5] Dal Maso M, Kulmala M, Riipinen I, et al. Formation and growth of fresh atmospheric aerosols: eight years of aerosol size distribution data from SMEAR II, Hyytiala, Finland [J]. Boreal Environment Research, 2005, 10(5): 323-336.
- [6] Kulmala M. How particle nucleate and grow [J]. Science, 2003, 302: 1000-1001.
- [7] Pirjola L, Lehtinen K E J, Hansson H C, et al. How important is nucleation in regional/global modelling? [J]. Geophysical Research Letters, 2004, 31 (12): L12109.
- [8] Seinfeld J H, Pandis S N. Atmospheric Chemistry and Physics: From air pollution to climate change [M]. New York: John Wiley & Sons, 1998. 545-595.
- [9] Korhonen P, Kulmala M, Laaksonen A, et al. Ternary nucleation of H₂SO₄, NH₃, and H₂O in the atmosphere [J]. Journal of Geophysical Research, 1999, **104** (D21): 26349-26353.
- [10] Yu F, Turco R P. Ultrafine aerosol formation via ion-mediated nucleation[J]. Geophysical Research Letters, 2000, 27: 883-886.
- [11] O'Dowd C D, Jimenez J L, Bahreini R, et al. Marine aerosol formation from biogenic iodine emissions [J]. Nature, 2002, 417: 632-636.
- [12] Zhang R, Suh I, Zhao J, et al. Atmospheric new particle formation enhanced by organic acids [J]. Science, 2004, 304: 1487-1490.
- Holmes N S. A review of particle formation events and growth in the atmosphere in the various environments and discussion of mechanistic implications [J]. Atmospheric Environment, 2007, 41: 2183-2201.
- [14] Kulmala M, Pirjola L, Mäkelä J M. Stable sulphate clusters as a source of new atmospheric particles [J]. Nature, 2000, 404: 66-69.
- [15] McMurry P H. A review of atmospheric aerosol measurements
 [J]. Atmospheric Environment, 2000, 34: 1959-1999.
- [16] Kulmala M, Riipinen I, Sipilä M, et al. Toward direct measurement of atmospheric nucleation [J]. Science, 2007, 318: 89-92.
- [17] Zhang Y H, Zhu X L, Slanina S, et al. Aerosol pollution in some Chinese cities (IUPAC Technical Report) [J]. Pure and Applied Chemistry, 2004, 76(6): 1227-1239.
- [18] Zhang Y H, Hu M, Zhong L J, et al. Regional integrated experiments on air quality over Pearl River Delta 2004 (PRIDE-PRD2004): overview[J]. Atmospheric Environment, 2008, 42 (25): 6157-6173.
- [19] Gong Y G, Su H, Cheng Y F, et al. Analysis on concentration and source rate of precursor vapors participating in particle

formation and growth at Xinken in the Pearl River Delta of China [J]. Advances in Atmospheric Sciences, 2008, **25**(3): 427-436.

- [20] Liu S, Hu M, Wu Z J, et al. Aerosol number size distribution and new particle formation at a rural/coastal site in Pearl River Delta (PRD) of China[J]. Atmospheric Environment, 2008, 42 (25): 6275-6283.
- [21] Cheng Y F, Eichler H, Wiedensohler A, et al. Mixing state of elemental carbon and non-light-absorbing aerosol components derived from in situ particle optical properties at Xinken in Pearl River Delta of China [J]. Journal of Geophysical Research, 2006, 111 (D20): D20204.
- [22] Eichler H, Cheng Y F, Birmili W, et al. Hygroscopic properties and extinction of aerosol particles at ambient relative humidity in South-Eastern China [J]. Atmospheric Environment, 2008, 42: 6321-6334.
- [23] Hussein T, Dal Maso M, Petäjä T, et al. Evaluation of an automatic algorithm for fitting the particle number size distributions[J]. Boreal Environment Research, 2005, 10: 337-355.
- [24] Kulmala M, Dal Maso M, Mäkelä J M, et al. On the formation, growth and composition of nucleation mode particles [J]. Tellus, 2001, 53B(4): 479-490.
- [25] Lehtinen K E J, Dal Maso M, Kulmala M, et al. Estimating nucleation rates from apparent particle formation rates and vice versa: revised formulation of the Kerminen-Kulmala equation [J]. Journal of Aerosol Science, 2007, 38: 988-994.
- [26] Birmili W, Wiedensohler A. New particle formation in the continental boundary layer: Meteorological and gas phase parameter influence [J]. Geophysical Research Letters, 2000, 27: 3325-3328.
- [27] Kulmala M, Toivonen A, Makela J M, et al. Analysis of the growth of nucleation mode particles observed in Boreal forest[J]. Tellus, 1998, 50B: 449-462.
- [28] Kerminen V M, Kulmala M. Analytical formulae connecting the "real" and the "apparent" nucleation rate and the nuclei number concentration for atmospheric nucleation events [J]. Journal of Aerosol Science, 2002, 33: 609-622.
- [29] Smith J N, Moore K F, Eisele F L, et al. Chemical composition of atmospheric nanoparticles during nucleation events in Atlanta [J]. Journal of Geophysical Research, 2005, 110: D22S03.
- [30] Smith J N, Moore K F, McMurry P H, et al. Atmospheric measurements of Sub-20 nm diameter particle chemical composition by thermal desorption chemical ionization mass spectrometry[J]. Aerosol Science and Technology, 2004, 38: 100-110.