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Abstract In order to provide basis for evaluating the effects of air pollutant such as O, on crops yield and food security the effects of
ambient air CK 100 nL- L' T, 150 nL- L' T,

Triticum aestivum L. Yang Mai 13  in different growing period were conducted via open-top chamber technique in

0, fumigation on chlorophyll a fluorescence and gas exchange of a field-grown
winter-wheat
conjunction with Diving-PAM fluorometer and LC pro + photosynthesis system. Results indicated that ¥ /F  caused by T, was higher
than 0.8 while the P, P 1 -qP /NPQ and ¥ NO the NPQ and ¥ NPQ were increased by
13.5% -29.0% and 13.3% -22.7% respectively due to O, stress. Under nature light rapid light curve RLC and after dark
adaptation the Yield of T, was decreased by 4. 6% -7. 6% and 11.3% -19. 3% respectively with

8.0% -9.8% and 11.0% -23. 1% reductions in P, and G  compared to CK respectively. In heading stage and blooming stage the L,

were similar to those of CK
induction curve in steady-state IC

of T, was greater than CK but in filling stage and mature stage it became lower compared to CK. The F /F  was slightly lower than
0.8 under T, treatment with the ¥ NO 1 —gqP /NPQ and ¢; were increased by 37.9% -75. 6% 157. 1% -325.8% and 3.4% -
18. 1% relative to CK. Under RLC and IC condition the Yield of T, was respectively decreased by 10.2% -13.6% and 21.4% -
29.1% and the P, L, qP P, NPQ and ¥ NPQ were decreased by 28.1%-39.9% 5.2% -21.3% 15.8%-30.4% 27.6% -
45.6% 3.3% -52.9% and 5.7% -17.9% in comparison respectively. Obviously the enhanced O, causes a significant decrease in
the capacity of photosynthesis of winter wheat and the influence mechanism presents a series of dynamic changes according to growing
seasons. The reduction of F /F  under T, treatment is a response of PSII reaction center to the increase of NPQ and the decrease in

P, and Yield is a consequence of protective adjustment by this approach the antioxidant system and energy dissipation mechanism can
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thus prevent light damage to the PSII reaction center of winter wheat. Under T, treatment the CO, assimilation and @, re-oxidizing
during actinic illumination are restricted the energy dissipation mechanism was destroyed and the reduction of photosynthesis was
mainly due to damage in photosystem caused by O, and excess light. The critical loads for O, of PSII reaction center is between 100

nL- L* and 150 nL- L close to 100 nL- L*. While the F /F, value is not an effective index for assessing O, influence on winter-

wheat. Although the winter-wheat can have certain adapted ability to O, stress the growing enhancement of surface O, is still a great

threat to agricultural production in China.

Key words ozone winter-wheat photosynthesis chlorophyll a fluorescence photosystem II  PSII

gas exchange
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