二氧化钛颗粒的制备及其脱硫吸附性能

罗永刚,李大骥,黄震(东南大学热能工程研究所国家教育部洁净煤发电及燃烧技术重点实验室,南京

210096, E- mail: luoyonggang @seu.edu.cn)

摘要:采用溶胶-凝胶法(Sol-gel)在不同烧结温度(340 ℃,440 ℃,540 ℃,640 ℃)下制备了 4 种多孔 TiO₂ 颗粒,X 射 线衍射法(XRD)测得 4 种样品的晶相均为锐钛矿型.低温 77 K 氮气吸附法计算 4 种样品的比表面积为 79 ~ $124 \text{ m}^2/\text{g}$,平均孔径 56.8 ~ 254.8 Å.电子扫描电镜分析了样品的表面结构为多孔高孔隙率结构.在固定床中对 4 种样品进行动态脱硫试验,试验结果表明烧结温度在 540 ℃时制备的样品品质较好,每 g TiO₂ 颗粒可吸附 38.9 mg 的 SO₂.以 SG 540 样品为例,研究了固定床中吸附温度,气相中 SO₂ 的浓度以及气体流速对其脱硫吸附 性能的影响.与活性炭 沸石物理吸附剂比较,TiO₂ 颗粒具有较高的脱硫吸附能力.FTIR 红外光谱分析法,结合 加热脱附试验的结果,得知 TiO₂ 颗粒吸附剂脱硫的机理主要是物理吸附.

关键词:二氧化钛;溶胶-凝胶法;物理吸附;固定床

中图分类号: X701.3 文献标识码: A 文章编号: 0250-3301 (2003) 01-05-01 47

Preparation of Titanium Dioxide Particles and Properties for Flue Gas Desulfurization

Luo Yonggang, Li Daji, Huang Zhen (Key Laboratory of Educational Ministry on Clean Coal Power Generation and Combustion Technology, Southeast University, Nanjing 210096, China E-mail: luoyonggang@seu.edu.cn)

Abstract : Under different sintering temperatures (340 °C ,440 °C ,640 °C), four TiO₂ particles were prepared. The crystal types of all four samples were found to possess anatase structures by XRD. It was obtained by N₂ experimental adsorption at low temperature (77 K) that their surface areas and average pore size were between 79 and $124 \text{ m}^2/\text{ g}$, 56.8 and 254.8 Å respectively. The pore structure of TiO₂ particles was characterized by scanning electron microscope (SEM). The tests of adsorption dynamics for FGD and the performance of SO₂ removal were investigated in a fixed bed system for different samples. The results show that SG540 sample which made at 540 °C sintering temperature had the most quality among the four samples. It can adsorb SO₂ of 38.9 mg for one gram SG540 sample. Different operating conditions for SG540 such as adsorption temperature, SO₂ concentration in flue gas and the superficial velocity of flue gas were investigated. TiO₂ particles for FGD had more efficiency than other physical sorbents such as active carbon and zeo lite. The mechanism for SO₂ removal was demonstrated by infrared (IR) spectroscopy and desorption test results to be mainly physical adsorption.

Keywords :titaniu m dioxide ; sol-gel ; physical sorption ;fixed bed

TiO₂ 是一种性能优越的光催化材料,在紫 外光(UV)照射下,TiO₂ 表面产生成对的电子 和空穴,形成活性氢氧根离子或过氧离子,从而 氧化表面吸附物质,已有研究者利用它的光化 性能用作空气净化和水净化^[1,2],但用于烟气脱 硫领域还未见报道.本文对TiO₂ 作为一种物理 吸附剂的制备及其脱硫吸附性能进行了研究.

- 1 实验部分
- TiO₂ 颗粒吸附剂的制备与表征
 4种试验样品均采用溶胶凝胶法制备而

成,其主要步骤:将浓度为 65 %硝酸溶液在室 温下缓缓滴加到钛酸正丁酯和异丙醇的混合液 中,放在磁力搅拌器上不停地搅拌,制成黄色透 明的胶体.钛酸正丁酯、水和异丙醇混合液的摩 尔比为15:40:10.待胶体凝胶后,室温下老化 5h.然后置入烘箱内 80℃烘烤12h,120℃烘烤

基金项目:国家自然科学基金资助项目(59878012);东南大学 科学基金资助项目

作者简介:罗永刚(1967~),男,江西新余人,博士研究生,副 研究员,研究方向为燃煤污染控制

收稿日期:2001-12-14;修订日期:2002-03-06

24 h,以去除其中的醇.将样品分成 4 份分别在 340℃,440℃,540℃和 640℃下马弗炉中焙烧 0.5 h.取出上述 4 个温度下焙烧的样品,压碎 筛分成1mm 左右的颗粒,分别命名为 SG340, SG440,SG540和 SG640.用 ASAP2000 低温 N₂ 吸附仪在 77 K测试上述样品的比表面积,孔体 积,平均孔径(见表1)及孔径分布(如图1).

表 1 溶胶-凝胶法制备 TiQ 颗粒样品的孔结构参数

Table 1	Characteristics	of sol-gel ab	sorbents
---------	------------------------	---------------	----------

二氧化钛样品	S G3 40	S G440	S G5 40	SG640
孔体积/cm ³ •g ⁻¹	0.312	0.425	0.454	0.298
比表面积/m ² •g ⁻¹	89	118	124	79
平均孔径/ Å	143.5	72.4	56.8	254.8

用 LEO1550 电子扫描电镜对 SG540 样品 $放大 5 \times 10^3
 倍和 5 \times 10^4
 倍得到的表面形貌图$ 可以看出,TiO,粒子由大小较均匀的纳米级粒 子组成,局部有少量的聚集,但总体分散度较 好.且是多孔的珊瑚状结构.图 2 为 ASAP2000 低温 N,吸附仪测得 SG540 样品在 77 K 下的等 温吸附曲线,如图 2 所示该样品的等温吸附线 为第 2 类等温吸附线,即反 S 型吸附等温线,曲 线的前半段上升缓慢,呈向上凸的形状,后半段 发生了急剧的上升,并一直到接近饱和蒸气压 也未呈现出吸附饱和现象,说明它发生了毛细 孔凝聚,其表面发生了多层吸附,表明吸附剂有 50 Å以上的孔^[3].如图 1(曲线 c),样品 SG540 孔径分布曲线也说明了这一点,该吸附剂的平 均孔径为 56.8 Å.吸附回线属 A 类回线,即吸附 分支与脱附分支的分离发生在中等大小的相对 压力处,2个分支都很陡,说明该吸附剂的孔结 构是两端开放的管状毛细孔,有利于吸附质在 吸附剂颗粒中的传质和凝聚.如图1所示.4种 样品的孔径分布曲线各不相同,由此引起的比 表面积,孔容积及平均孔径均不相同(如表1). SG440 和 SG540 的比表面积比较接近,两者均 高于 SG340 和 SG640.孔结构直接影响物理吸 附剂的吸附性能,因此以 SG540 为代表,着重 考察了该吸附剂在固定床中的不同工况条件下 的吸附性能及其影响因素。

1.2 实验装置

如图3所示,脱硫试验在固定床中等温下

进行.试验系统由3部分组成:供气部分,吸附 反应器及气体组份分析部分.含有 SO₂的二元 混合气(SO₂-N₂)流经控制阀及流量计后分2路 进行,一路经固定床吸附反应器后流入气体组 分分析仪,另一路可直接流入气体组分分析仪, 经碱液吸收器吸收后排入大气.固定床反应器 内的温度由埋在吸附剂内的热电偶测定,温度 由温控仪控制,可在50~800℃内调节.

Fig.3 The scheme of experimental setup

气体组分分析部分由 ROSEMOUNT NGA 2000 气体分析仪和装有氢氧化钠吸收液的容器 组成.混合气中的 SO₂ 流经固定床反应器时被吸 附剂吸附,其流经反应器的入口和出口的浓度均 由气体组份分析仪测定,流出残余气中的 SO2 被 吸收器中的碱液吸收后,排入大气,

采用 Nicolet 170sx 富利叶红外光谱仪测定 TiO,固体颗粒烟气脱硫前后的红外光谱图,以 分析研究 TiO2 吸附剂的脱硫机理.

1.3 试验内容

1期

每次试验吸附剂量约 7g,置入反应器中的 高度 7.4cm,试验前先调节温控仪到实际需要 的吸附温度,然后用电炉加热,待温度恒定后 (本温控仪可将温度控制在±0.5℃的精度)打 开控制阀、调节流量计到预定的流量、即可开始 脱硫吸附试验.反应器0~200mm范围内温度 恒定,吸附试验过程被视为等温吸附,

(1) 不同烧结温度下制得的 4 种样品 SG340,SG440,SG540,SG640 脱硫吸附能力的 吸附条件均相同,其中吸附温度为 试验 120 ℃, 气相中 SO, 的浓度为 7100 mg/ Nm³, 气 体流速为 0.22 m/s.

(2) SG540 样品在不同吸附温度 120 ℃, 160 ℃,200 ℃和 240 ℃下的脱硫吸附试验 茸 它吸附条件均相同,其中气相中 SO,浓度为 7100 mg/Nm³, 气体流速为 0.22 m/s.

(3) SG540 样品在不同混合气中 SO, 浓度 7100 mg/Nm³ 和 4845 mg/Nm³ 的脱硫吸附试 其它吸附条件相同,其中吸附温度为 验 120 ℃,气体流速为 0.22 m/s.

(4) SG540 样品在不同气体流速 0.18 m/s, 0.22 m/s,0.38 m/s 下的脱硫吸附试验 其它条 件均相同,其中气相中 SO2 浓度为 7100 mg/ Nm³.吸附温度为120℃.

每次吸附试验开始前,先测试记录下混合 气中 SO, 的初始浓度.吸附开始以后,每隔一定 时间间隔(如每隔 30s 或 1 min 或更长的时间不 等)记录气体成分分析仪上显示的 SO2 出口浓 度值,根据时间与浓度变化的关系曲线可以计 算出在一定时间段内的吸附量.

2 结果与讨论

2.1 TiO, 颗粒吸附剂脱硫的机理分析

4种样品 SG340, SG440, SG540 及 SG640 在相同操作条件下的吸附穿透曲线如图 4 所 示.图中 c_0 为烟气中 SO₂ 未经反应器吸附时的 浓度, c 为烟气中 SO₂ 经反应器吸附后的浓度. 如图 4 所示,在 4 种样品当中, SG540 的脱硫性 能最佳,每gSG540样品可吸附38.9 mg的 SO₂,4种样品吸附量的比较如图 5.

图 4 4 种样品在相同条件下的吸附曲线

Fig.5 Adsorption amount of four sample adsorbents

为进一步研究 TiO2 颗粒脱硫机理,采用 X 射线衍射(XRD)法及富利叶红外光谱仪对上述 样品反应前后进行了分析.X射线衍射法测得4 种样品的晶相结构均为锐钛矿型,但它们的晶 态有所不同.样品 SG540 和 SG440 的101 晶相 面的衍射峰比 SG340 和 SG640 强,表明前二者 的微孔比例要高于后二者,从表1中4种样品 的孔结构据及它们的孔径分布曲线图 1 也可以 看出这一特点.

富利叶红外光谱法是研究气固催化剂表面 反应机理的有力工具,它已广泛用于研究各种 金属氧化物表面 SO, 的吸附机理^[4~6].图 6(曲 线 a) 为 SG540 样品在吸附 SO, 前室温下的红 外光谱图.图 6(曲线 b)是该样品在固定床中反 应器温度为 120 ℃ 时进行脱硫吸附后,再经 400 ℃加热脱附,冷却到室温后,测试的红外光 谱图.比较图 6(曲线 a 和 b)发现,经过吸附再 脱附后的SG540样品的红外光谱图在波段

Fig.4

图 6 SG540 样品在脱硫前后的红外光谱图

Fig.6 Infrared spectra of SG540 at room temperature

1100cm⁻¹附近有明显的 SO^[7,8]振动吸收峰存 在,但强度不大,而吸附前 SG540 样品的红外 光谱图 1100 cm⁻¹附近则没有振动吸收峰.由此 说明经脱硫解吸后的二氧化钛颗粒中存在 SOa 组分 ,而 s o, 只有通过化学吸附才能生成 .物理 吸附是由于气相中 SO2 分子与 TiO2 颗粒表面 分子间存在的范德华力所引起的,而化学吸附 是由 SO, 分子与 TiO, 颗粒表面的分子发生化 学反应而引起的[4].物理过程是一个可逆过 程,当固体表面上的分子受热或降低系统压力 时,被吸附的气体组分从固体表面逸出,即发生 脱附现象,而化学吸附一般是不可逆的,吸附比 较稳定,被吸附的气体不易脱附.由图 7 可知, 在 400 ℃下对吸附后的 TiO, 颗粒进行加热脱附 试验,在较短的时间内(0.5h), SO2 的脱附率就 接近 98 % ,若继续对该样品加热 ,并未发现有 更多的 SO2 逸出 .加热脱附后的吸附剂中存在 微量的 SO,,说明化学吸附的份额很少,该吸附 过程主要是物理吸附.

2.2 固定床中 SG540 样品的脱硫吸附特性及 其影响因素

吸附开始之前,TiO2颗粒吸附剂内部所有 有效的吸附空穴都是闲置的.吸附初期颗粒表 面的扩散速率大于颗粒表面的吸附速率,此时 气体中的 SO2分子能全部被固体颗粒表面所吸 附,随着吸附过程的进行,与气体接触的颗粒表 面空穴很快被填充,而颗粒表面的扩散速率开 始减慢,伴随着脱附与反扩散过程,由此发生穿 透现象,吸附效率开始下降^[7].当脱附(反扩散) 和吸附达到动态平衡时,穿透曲线的穿透率接 近100%.最终,当颗粒所有可吸附空穴全被 SO₂ 分子填满时,流出固定床的气体中 SO₂ 浓 度将达到吸附前的初始浓度.

Fig.7 Adsorption/ desorption amount of SO2 SG540

物理吸附过程一般是放热过程,温度越高 越不利于物理吸附的进行.如图 8 所示,随着吸 附温度的升高,穿透越快.吸附温度为 120 ℃, 160 ℃,200 ℃,240 ℃吸平衡时的每 g 吸附剂吸 附 SO2 的量分别为 39.8 mg,29.5 mg,19.7 mg, 10.34 mg.表明在相同工况条件下,温度越低, 吸附剂的脱硫吸附能力越强.但考虑到实际工 业烟气温度一般在 120 ℃以上,以及避免酸露 点问题,实验选取 120 ℃为吸附温度的下限.

图 8 吸附温度对穿透曲线的影响

Fig.8 Effect of adsorption temperature on breakthrough curve

从实验结果可以看出,进入固定床的混合 气体中 SO₂ 浓度越高,其相应的穿透曲线越凸, 斜率越大,表明浓度越高穿透则越快,如图 9 所 示.浓度为 7100 mg/ Nm³ 和 4845 mg/ Nm³ 吸附 附平衡时每 g Ti O₂ 颗粒吸附 SO₂ 的量分别为: 39.8 mg 和 39.5 mg.虽然浓度对穿透曲线的影 响明显,但对吸附剂总的吸附能力影响不大.

固定床吸附是一个传质传热的过程,内阻 和外阻是影响扩散与反扩散的重要因素,气体 流速影响吸附过程的外阻,因此选择合适的气 体流速对固定床吸附过程也很重要^[8].由图10

图 9 SO₂ 初始浓度对吸附性能的影响

Fig.9 Effect of SO₂ concentration in flue gas on breakthrough first, 气体流速为 0.18 m/s 时,吸附时间长,穿透慢,而流速增大时,越透加快.气体流速为 0.18 m/s, 0.22 m/s 和 0.38 m/s 时,吸附平衡时 每 g Ti O₂ 颗粒吸附 SO₂ 的量依次为 39.8 mg, 22.8 mg, 17.4 mg.因此流速越低,吸附效果越好.实验中选取气体流速的原则是在克服沿程 阻力和床层阻力时,流速越低,吸附剂在吸附平衡时的吸附量就越大.

Fig.10 Effect of surface velocity on breakthrough curve

2.3 不同物理吸附剂吸附能力的比较

对于物理吸附剂的吸附率与时间的关系可 用线性力驱动模型来描述^[4]:

$$m_t/m_{\infty} = 1 - \exp(-kt)$$

其中, m_{∞} 为平衡时的吸附总量, m_t 为某t时刻的吸附量.

3 种物理吸附剂活性炭,沸石及 TiO₂ 在固 定床中的吸附率与时间的关系如图 11 所示,其 中沸石和活性炭的吸附速率常数 k 分别为 7.26×10⁻³s^{-1[4]}和 2.06×10⁻³s^{-1[3]}.每 g 沸 石,活性炭平衡时吸附 SO₂ 的量 m_{∞} 分别为 24.5 mg和12.6 mg.通过计算得知 TiO₂ 吸附速率 常数 k为1.02×10⁻³s⁻¹,与实验结果比较吻合, 每 g TiO₂ 吸附剂平衡时吸附 SO₂ 的量 m_{∞} 分别 为:39.8 mg.相对上述2种物理吸附剂, TiO2颗粒 吸附剂具有较好的脱硫吸附能力.

图 11 3 种物理吸附剂吸附量的比较

Fig.11 Sorption curves for SO₂ on three physical absorbents

3 结论 (1)以钛酸正丁酯为原料,采用溶胶凝胶

(1) 以私設正了頭刀原科, 未用冶胶 旗胶法(sol-gel) 制备了锐钛矿型的 TiO₂ 颗粒. 焙烧 温度为 540 ℃时,得到的 TiO₂ 颗粒品质更佳.

(2) 红外光谱分析法及加热再生试验表明,Ti O₂ 颗粒烟气脱硫机理主要是物理吸附,再生效率可达 98 %.

(3)吸附温度越低,穿透越慢,吸附剂在吸 附平衡时的吸附量越大;气体流速在足以克服 沿程阻力和固定床床层阻力时,选择较低的流 速有利于提高吸附剂在吸附平衡时的吸附量; 而 SO₂ 的浓度越高,穿透越快,但对吸附剂平衡 时总的吸附量影响不明显.

(4) 与活性炭,沸石等物理吸附剂相比, TiO₂ 颗粒吸附剂具有较佳的脱硫吸附能力.

参考文献:

- Chiovetta M G et al. Modeling of a fluidized bed photocatalytic reactor for water pollution abate ment. Chemical Engineering Science. 2001, 56: 1631 ~ 1638.
- 2 Natarajan C, Nogami G. Cathodic Electrode position of Nanocrystalline Titanium Dioxide Thin Films. Journal of the Electrochemical Society. 1996, 143 (5): 1547~1550.
- 3 严继民,张启元,高敬琮.吸附与凝聚.北京:科学出版社 出版,1986,46~47.
- 5 Yang R T, Li W B, Chen N. Reversible chemisorption of nitric oxide in the presence of oxygen on titania and titania modified with surface sulfate. Applied Catalysis A: General. 1998, 169: 215 ~ 225.
- 6 Lin Y S, Deng S G. Analysis of Liquid Chromatography with nonuniform crystallite particles. AIChE, J. 1990, 36 (10): 1569~1576.
- 7 杨 R T.吸附法气体分离.北京:化学工业出版社,1991. 86~90.
- 8 Lin Y S, Deng S G. Removal of trace sulfur dioxide from gas stream by regenerative sorption processes. Separation and Purification Technology, 1998, 13: 65 ~ 77.