施用制革污泥土壤中铬的积累、化学形态及其植物有效性

马宏瑞,李桂菊,章川波,丁绍兰,俞从正(西北轻工业学院皮革工程系,陕西咸阳 712081)

摘要:通过对施用制革污泥土壤中铬的含量和形态、作物中铬积累量的测定,结合小麦幼苗培养试验,对 Cr 的化学形态与植物有效性的关系进行了研究.结果表明,施用污染后 2 mol/L HCl 浸提态 Cr 的大幅度增长可能是造成作物 Cr 含量增加的主要原因,当土壤中 Cr 含量为 220 mg/kg 时,小麦植株达到最大吸收量 23.5 mg/kg.高浓度 Cr 投入 2 种不同土壤时,小麦与水稻茎叶中 Cr 含量基本一致,而籽粒中含量则随作物种类有较大变化.

关键词:铬:植物有效性:形态:制革污泥

中图分类号: XI 33.3 文献标识码: A 文章编号:0250-3301(2001)03-04-0070

Accumulation, Chemical Fractions and Phytoavailability of Cr in Tannery Sludge amended Soils

Ma Hongrui, Li Guiju, Zhang Chuanbo, Ding Shaolan, Yu Congzheng(Northwest Institute of Light Industry, Xianyang Shanxi 71 2081)

Abstract: The phytoavailability of various fractions in the tannery sludge a mended soils was investigated employing a sequential extraction procedure as well as seedling culture experiment. The results showed that $2 \, \text{mol/L}$ HCl extractable Cr could be the major fraction of soil Cr available to the plants. When the Cr content in soil was about $220 \, \text{mg/kg}$, the Cr concentration of in plant reached maximum of $23.5 \, \text{mg/kg}$, which was hardly approachable in field condition.

Keywords: Cr; phytoavailability; che mical fractions; tannery sludge

污泥直接施用或堆肥化农用在国内外已有较长的历史,污泥中含有约 5 %的氮且很易释放,同时 70 %以上的有机物含量使其对于土壤理化性质具有明显改善作用[1,2].但制革污泥作为有害固体废弃物在国外即使填埋也受到严格的限制[3],长期以来,我国几乎所有的制革厂因Cr未能得到单独处理,使我国制革污泥中Cr含量(干重)高达 10g/kg~40g/kg,且有 5 %的制革厂的污泥被部分用于农田[4],如此高的Cr含量加入农田后将对土壤、农作物、及地下水产生影响,涉及这方面的报道尚不多见.本文选取有代表性的施用制革污泥的农田,对Cr在土壤及农作物中的积累进行了分析,并结合生物培养试验对Cr在土壤的形态与作物有效性关系进行了探讨

1 材料和方法

1.1 制革污泥基本性质

对不同制革厂污泥组成及主要性质测定结果列于表 1.污泥及土壤中 Cr 含量测定方法参见文献^[5].

1.2 制革污泥农用地 Cr 污染状况调查

陕西省长安县樊川乡岳村土壤为红油土, 自 1977 年起便使用西安 3513 厂制革污泥作堆 肥(污泥中 Cr 含量为 28.5 mg/kg),经历年施用, 受污染面积近 60hm².根据污泥的不同使用情况,将岳村的土壤划分成 6 类(见表 1),每种类 型依面积的不同,用均匀布点随机采样,分别对 土壤中 Cr 含量及其存在形态和小麦中 Cr 含量 及其分布进行了研究,采样时间为 1997-06.江 苏省徐州市殷庄邻近徐州淮海制革厂,其耕种

基金项目:联合国工发组织资助项目(Project No. US/CPR/97/022)

作者简介:马宏瑞(1963~),男,副教授,硕士,山西省太原市人,主要从事轻工行业废水处理及生物固体资源化利用研究。

收稿日期:2000-10-18

土壤为黄褐土,由于部分农田曾用作污泥堆放场,且部分土地用污泥堆肥作基肥,使受污染面积近10hm².堆肥中 Cr 含量(干重)为10.4g/kg,施用量约70t/hm².通过多点采样对该地施污土壤和水稻中 Cr 含量进行了测定,采样时间为1999-10.上述测定中每1样品重复4次.

表 1 制革污泥主要性状1)

Table 1 The characteristics of tannery sludge from Xuzhou

性状	含量
水分/ %	75 .4
总固体量/ %	25 .6
挥发性固体/ %	69 .7
灰分/ %	30 .3
C(干重)/g•kg ⁻¹	189.0
N(干重)/g•kg ⁻¹	48 .8
$P_2 O_5(\mp \underline{\pm})/g \cdot kg^{-1}$	33 .6
Cr(干重)/g•kg ⁻¹	28 .5
NH ₄ - N(鲜重)/g•kg ⁻¹	1 .4
pН	8 .05
电导率/μ•s•cm ⁻¹	1.5×10^{3}

1)污泥样品采自徐州淮海制革厂

1.3 Cr 的生物有效性的研究

采用实验室内小麦幼苗培养试验法,用溶液态 Cr 确定植物的吸收量与土壤 Cr 含量的关系

供试土壤为红油土,其基本性质为:有机质 18.0g/kg、CEC182.0 mmol/kg、pH8.02、≤0.01 mm 物理性粘粒 20.4%.试验供试小麦品种为小偃6号.在实验室常温条件下将麦种直播于装土0.5kg 的培养盆中,待出苗后定株5株,将盆底浸于用 Cr₂(SO₄)。配制的溶液中,使土壤刚好接触液面,定期更换溶液,使小麦幼苗分别在0、20、40、80、100、140、180、200、250、300、400、500 mg/kg 的稳定 Cr 浓度下生长 30d,每1处理重复4次.培养结束后测定幼苗中的 Cr 含量、土壤 Cr 含量及各种化学形态含量.土壤 Cr 化学形态采用陈英旭等人[6]的顺序提取法,其浸提顺序为:土壤 [12.0] 水溶态 [1 mol/L NH4 Ac(pH7.0)]

1.4 分析方法

土壤样品经风干过 100 目筛,用 HNO,-H₂SO₄-HF混合酸消解^[7];植株样品经风干后,依根、茎叶、籽粒分别粉碎制得样品,灼烧灰化.Cr含量用日立 180-80 型原子吸收分光光度计测定.

2 结果和讨论

2.1 岳村土壤 Cr 污染状况

(1)土壤中 Cr 含量及其分布 依施用污泥 历史,将岳村农田土壤分为6类,不同土层中 Cr 含量测定结果见表 2.

表 2 岳村土壤 Cr 含量/ mg• kg-1

Table 2 The Cr content in the soils from Yuecun

土壤	土壤状况	 不同深度/ cm			
编号	工場小爪	0 ~ 20	20 ~ 40	40 ~ 60	
1	坡地 ,未施污泥	62 .5	67 .1	69 .7	
2	高地 ,未施污泥	81 .5	80.8	91.0	
3	高地 ,1990 ~1995 年 连续施用	189 .5	92 .2	80 .2	
4	高地 ,1996 ~1997 年 连续施用	157 .4	111 .4	91 .9	
5	坡地 ,1977 ~1987 年 断续使用	100.0	102.6	126 .2	
6	水地 ,1977~1987 年 施用	128 .6	126 .4	138 .0	

尽管施用污泥年限差异较大,但施泥表层土壤含 Cr 量均明显高于对照土壤,近期施用含 Cr 污泥 3~5 年内, Cr 量的差异主要表现在表层,向 40cm 以下的深层迁移并不明显;施用时间 10~20 年后, Cr 向 40cm 以下土层的迁移则十分明显.依土壤环境质量标准 GBI 5618-1995中 Cr 含量指标^[8],未施泥土壤达一级标准,所有施泥土壤只能达到二级标准.

(2) 土壤中 Cr 形态与小麦吸收量 由表 3 测定结果可知 ,总 Cr 量与分步测定量总和 ΣCr 较吻合 ,相对误差在 $0.9\% \sim 3.2\%$ 之间 .在各形态测定中未测出六价 Cr .

施泥土壤中各种形态 Cr 所占比例与对照土壤相比,主要表现在酸溶态的差异上,对照土壤沉淀态 Cr 不足总量的 8 %,而施泥土壤达19 %左右,有机结合态比例明显低于对照,这与污泥中 Cr 主要以酸溶态存在有关.同时近年施

泥的土壤 3/4 土样 ,速效态 Cr 浓度略高于 1/2 、 为酸溶态是造成供试小麦中 Cr 量超标的重要 5/6 土样 ,结合作物体内 Cr 含量(表 4) ,可以认 形态 .

表 3 岳村土壤 Cr 形态及其含量/ mg· kg-1

Table 3 The distribution of Cr among chemical fractions of the soils in Yuecun

土壤编号	Crg	速效态1)	酸溶态	有机结合态	残渣态	Σ_{Cr}	Cr≝ - ΣCr
1	62 .5	1 .58	4 .31	24 .4	32 .7	63 .0	- 0.6
		(2.5%)	(6.8%)	(38.7%)	(51.9%)	(100 %)	(0.9%)
2	81 .5	1 .69	5 .75	27 .5	44 .2	79 .1	+ 2 .4
		(2.1%)	(7.3%)	(34.8%)	(55.9%)	(100 %)	(2.9%)
3	189.5	2.85	35 .67	41 .2	106.4	186 .1	+ 3 .4
		(1.5%)	(19.2%)	(22.2%)	(57.2%)	(100 %)	(1.8%)
4	157.4	3 .24	29 .17	36 .3	91 .0	159.7	- 2.3
		(2.0%)	(18.3%)	(22.7%)	(57.0%)	(100 %)	(1.5%)
5	100.0	1 .61	18.81	20 .5	56.2	97 .1	+ 2 .8
		(1.7%)	(19.3%)	(21 .1 %)	(57.9%)	(100 %)	(2.8%)
6	128.6	2 .73	25 .97	29 .4	74 .6	132.7	- 4.1
		(2.1%)	(19.6%)	(22.2%)	(56.2%)	(100 %)	(3.2%)
污泥	28500	401	23712	3602	1203	28918	- 418
		(1.4%)	(82.0%)	(12.4%)	(4.2%)	(100 %)	(1.4%)

1) 速效态为水溶态和交换态之和

表 4 小麦不同部位 Cr 含量/ mg* kg-1

Table 4 The Cr concentrations in root, stem and seed of wheat grown from Yuecun

土壤编号	籽 粒	茎叶	根系
1	0.10	0 .13	0.20
2	0.28	2 .73	5 .58
3	1 .22	17.08	22 .04
4	1 .15	12.22	13.91
5	0.35	2 .43	4 .48
6	0.53	5 .91	8 .01

从小麦籽粒中 Cr 含量测定结果显示出植株中 Cr 含量与土壤总 Cr 量成正相关,其中各处理籽粒中 Cr 含量分别约为其茎叶 Cr 含量的 1/10.3、4 土样中较高的总 Cr 量及有效 Cr 含量,使小麦籽粒中 Cr 含量超标达 2 倍多,5 .6 籽粒中 Cr 量也略高于对照.施含 Cr 污泥时间越短,土壤中 Cr 的有效性越大,被植物吸收的量也越多. 岳村土壤所用污泥中 Cr 含量达28.5 mg/kg,说明高 Cr 污泥直接农用有明显不良的环境和食物风险.

2.2 徐州殷庄稻田土壤及水稻中 Cr 分布

表 5 显示, Cr 在水稻中的积累量次序与小麦一致,依次为:根系>茎叶>籽粒;在水稻生长的不同时期,随着水稻生长,根系、茎叶部 Cr 含量呈上升趋势,土壤中的 Cr 含量略有减少;在此施泥量下,水稻根部 Cr 含量是空白的 7 倍

左右,茎叶部 Cr 含量是对照的 14~20 倍,籽粒 Cr 含量是对照的 3 倍左右,相应土壤中 Cr 含量是空白的 5 倍左右.由此可见,在水稻吸收 Cr 过程中主要在茎叶部积累,而籽粒中 Cr 含量为 0.18 mg/kg,已经达标.

表 5 Cr 在水稻各部位的分布/ mg• kg-1

Table 5 The Cr concentrations in root, stem and seed of rice grown from Xuzhou

采样时间	样点	米子粉	基 叶	#127	土壤
/年-月-日	作品	不丁不立	소비	根系	上堪
1999-06-21	对照田		0 .98	2 .85	70 .95
	施泥田		13 .45	21 .30	394 .62
1999-08-17	对照田		0 .92	3 .08	71 .92
	施泥田		14.31	23 .12	386 .79
1999-10-10	对照田	0.06	0.87	3 .59	65 .82
	施泥田	0 .18	17 .48	24 .49	346 .96

比较小麦测定结果可以发现, Cr 在根系、茎叶中的积累差异不大,但在籽粒中则差异明显,小麦籽粒比水稻更易积累 Cr,且茎叶中 Cr 含量相当时,稻田土壤中 Cr 含量是麦田土壤的 2 倍,虽然严格地说,这 2 种土壤不能直接比较,但从这也可间接地指出旱地与水田土壤环境标准的差异.

2.3 小麦幼苗中 Cr 与土壤 Cr 浓度的关系

由表 6 可以看出, Cr 溶液浓度在 0 ~ 200 mg/kg内,土壤及幼苗中 Cr 含量随浸液浓度

递增,大于 200 mg/kg 时土壤吸附稳定在 215~217 mg/kg 之间,幼苗达到最大吸收量,其值为23.5 mg/kg.因该试验中土壤吸附 Cr 稳定性可能较田间土壤低,为此在提取交换态 Cr 后,用DTPA 对较强吸附态的 Cr 进一步进行浸提,得到可给态 Cr 含量^[9].由表 7显示,在 Cr 液浓度在 200 mg/kg 时,可供植物吸收的总 Cr 为18.4 mg/kg,进一步升高浓度,可供吸收的总 Cr 稳定在 23.9 mg/kg,与表 6 数据非常吻合,同时也说明,土壤吸附的 Cr 大多以难解吸态存在,所以在试验浓度范围内,小麦生长未受影响(表6).

比较岳村小麦及徐州水稻中铬含量测定结果可以发现,施泥量较大时茎叶中铬含量在 11~18 mg/kg 均未超出 23.9 mg/kg,表明该培养试验结果可说明所测样点作物的吸 Cr 特征,污泥施入土壤后,尽管土壤中铬绝对量可以很高(如稻田土壤中达到近 400 mg/kg),但其有效范围应在 220 mg/kg 左右.

表 6 土壤和幼苗中 Cr 含量与浸液浓度的关系/ mg·kg⁻¹
Table 6 The influence of soluble Cr concentrations on
the contents in soil and wheat

浸液浓度	土壤中含量	幼苗中含量	单株产量(干重)/g
0	73 .4	0.2	0 .08
20	88 .9	2.9	0.09
40	92 .9	6.3	0.06
80	153.2	7 .9	0.07
100	196 .1	12.7	0.08
140	209 .3	16.3	0.07
180	211 .3	16.3	0.08
200	213.6	17.6	0.08
250	215.2	23 .5	0.07
300	215.3	21 .3	0.08
400	217.1	23 .1	0.08
500	215.9	22 .5	0.08

从 2 个大田调查结果来看,旱地土壤中施Cr浓度达一级土壤标准时,小麦籽粒中Cr可达标.水田在二级标准时,水稻果实中Cr可达标.据此可以初步认为,碱性土壤旱作时施用污泥堆肥应控制Cr含量加入土壤后在100 mg/kg以内,此时,作物茎叶中Cr含量可控制在<10 mg/kg(小麦幼苗试验显示相应结果);水田土壤应控制Cr含量加入土壤后为350 mg/kg以内.

表 7 被土壤吸附后 Cr 的有效形态/ mg• kg-1

Table 7 The influence of soluble Cr concentration on phytoavailible Cr in tested soil

 浸液浓度					
皮似 似反	水溶态	交换态	可给态	Σ	
40	1 .5	6.9	6.2	14.6	
100	1 .2	7.4	4.2	14.8	
200	1 .7	12.2	4 .5	18.4	
300	1 .3	11 .5	10.8	23 .6	
500	2.1	10.6	11 .2	23 .9	

小结

田间调查研究表明,制革污泥施用于土壤后,2 mol/L 盐酸溶解态可能是造成农作物 Cr 积累的主要来源,施泥时间越近,其生物有效性也越高.施污泥后 3~5a 内 Cr 主要积累于土壤表层,10~20a 后 40cm 以下土层中有较多积累.室内幼苗法试验结果显示,以溶液态加入的 Cr 在土壤中迅速固定,于 220 mg/kg 时小麦中 Cr 吸收达最大值 23.5 mg/kg,大田作物根系、茎叶中 Cr 含量一般也在此范围内变化,而籽粒中含量是否超标随作物种类有较大差异.对于碱性土壤,要使籽粒中 Cr 含量达标,建议旱作小麦时土壤Cr 含量应控制在 100 mg/kg 以内;种植水稻时,土壤 Cr 含量控制在 350 mg/kg 以内.在目前制革污泥未能大幅度降低 Cr 含量,使其达到农用标准之前,应慎重使用.

参考文献:

- Sommers L E. Che mical composition of sewage sludge and analysis of their potential use as fertilizers. J. Environ. Qual., 1977, 6 (2):225 ~ 230.
- 2 Hird C, Bamforth I. Selection of sites suitable for application of biosolid products. In: D J Oshorne et al. Bioslids Research in NSW. Richmond: NSW Agriculture, Organic Waste Recycling Unit.1996.9 ~ 17.
- 3 Skrypsk- Mantele S, Bridle T R. Environmentally sound disposal of tannery slugde. Wat. Res., 1995, 29(4):1033~1039.
- 4 丁绍兰等.制革污泥处理及综合利用的途径.中国皮革, 1998,**27**(8):18~20.
- 5 丁绍兰等.制革污泥及施含铬污泥土壤中铬含量测定方法的研究.中国皮革,2000,29(3):22~24.
- 6 陈英旭等.土壤中铬的形态及其转化.环境科学,1994,15 (3):53~56.
- 7 A L·佩奇, R H·米勒. 土壤分析法.北京:中国农业出版 社,1991.234~240.
- 8 中国标准出版社第一编辑室. GBI 5618-1995.环境质量与 污染物排放国家标准汇编.北京:中国标准出版社,1998. 67~68.
- 9 Calvet R et al. Some experiments on extraction of heavy metals present in soil .Intern .J Environ . Anal . Che m . ,1990 ,39(1):31 ~ 45 .