顺磁共振法测定气相中 OH 自由基的研究*

潘循哲¹ 陈士明² 严小敏² 董文博¹ 侯惠奇¹

(1. 复旦大学环境科学研究所; 2. 复旦大学分析测试中心, 上海 200433)

摘要 采用电子顺磁共振(EPR) 法测定气相中 OH 自由基的研究表明, 4-POBN 是气相中 OH 自由基的较好自旋捕集剂, 得到 的 4-POBN -OH 加合物稳定性好. 样品避光保存 2d 后, 测得 EPR 谱的峰形和大小不变. 测得 OH 加合物的 EPR 谱中超精细偶 合常数分别为 α_{N} = 1.45mT 和 α_{HdF} 0.22mT. 除去样品溶液中微量的 O_2 将改善 EPR 谱的峰形. 还报道了用这种方法对上海地 区大气中采样实测得到 OH 加合物的 EPR 谱, 它与实验室模拟试验的 EPR 谱相符. 关键词 电子顺磁共振, 自旋捕集, OH 自由基, 气相, 大气污染化学.

Determination of Gas-phase OH Radical Concentrations Using Electron Paramagnetic Resonance

Pan Xunxi¹ Chen Shiming² Yan Xiaomin² Dong Wenbo¹ Hou Huiqi¹

(1. Institute of Environmental Science, Fudan University, Shanghai 200433, China

2. Analysis and Measurement Center, Fudan University, Shanghai 200433, China)

Abstract The paper described the method of detecting gas-phase \cdot OH using Electron Paramagnetic Resonance (EPR). Hydroxyl radical was trapped in a spin trap to form a stable hydroxyl adduct and determined by Electron Paramagnetic Resonance later. 4–POBN was chosen as the spin trap because it showed the higher \cdot OH trapping ability and the higher stability of spin adduct. The EPR spectra of OH-adduct remains unchanged without light for two days. The hyperfine coincidence constants, α_N and $\alpha_{H\beta}$ were 1.45mT and 0.22mT respectively. Also it was showed that the EPR spectra of OH-adduct from atmosphere sampling in Shanghai were in agreement with those obtained from the model experiments.

Keywords EPR, spin trapping, OH radical, gas-phase, atmospheric pollution chemistry.

有研究表明, OH 自由基几乎控制了大气 中各种微量气体的氧化和去除过程^[1]. 对大气 污染化学的研究也表明, OH 自由基参与了许 多污染化学的过程. 由于它在大气中浓度很低 (用数学模式计算, 清洁大气中, OH 自由基的 浓度约为 10⁶ 个/cm³), 且又具高活性, 因此, 测 定方法受到限制. 美国和欧洲一些科学家曾用 激光诱导荧光法(LIF)^[2]和长程光子吸收法 (LPA)^[3]测定了对流层中 OH 自由基的浓度和 日分布曲线^[4], 日本研究者用电子顺磁共振 (Eleetron Paramagnetic Resonance, EPR) 法测 定了高层大气中 OH 自由基的浓度^[5]. 此外, 曾 有人报道用标记化合物¹⁴CO 和 OH 自由基作 用生成¹⁴CO₂, 通过同位素测定的方法来确定 OH 自由基浓度^[6,7].本文报道采用自旋捕集技术的 EPR 法测定气相中 OH 自由基浓度的实验室研究结果,并对上海地区大气中 OH 自由基浓度的实测作了尝试.

1 实验方法

1.1 仪器和试剂

BRUKER ER200D-SRC 型电子顺磁共 振仪; 15W 管状低压汞灯; 抽气泵.

H₂O₂(A.R级, 30%); 苯(A.R级);

α-(4-pyridyl 1-oxide) -N-tert-butylnitrone

 ^{*} 上海市科委和上海市环保局共同资助项目 作者简介:潘循晳(1946~),女,副教授,主要研究方向为 环境化学 收稿日期:1998-12-10

如图1所示.

1.3 OH 自由基的发生

干燥空气经 H2O2 水溶液,以鼓泡方式将 H2O2 带入气流,进入反应池后,在紫外光(主要 波长为 253.7nm) 照射下,产生 OH 自由基.

1.4 自旋捕集

在暗室中将一定浓度的 4-POBN 苯溶液 均匀地滴加在捕集膜上,待溶剂挥发后,即可使 用.实验时,将捕集膜装入捕集器中,当气流中 OH 自由基到达捕集膜时,被膜上的 4-POBN 捕集生成 4-POBN -OH 加合物^[7].

1.5 EPR 谱的测定

在暗室中用苯溶液多次浸取捕集膜,得到 4-POBN-OH 加合物的苯溶液,经浓缩至一定 体积后,移入 EPR 样品管,再经 N² 气鼓泡除 O² 后测其 EPR 谱. EPR 的测定参数:微波功率 和频率分别为 20W 和 9.81GHz; 调制频率和 幅度分别为 12.5kHz 和 0.08mT.

2 研究结果与讨论

2.1 自旋捕集技术和捕集剂

本实验选择 4-POBN 作为自旋捕集剂. 4-POBN 与 OH 自由基的反应如下:

实验中将捕集·OH 后的捕集膜或浸取后的 4-POBN-OH 加合物溶液避光保存 48h 后, EPR 谱的测定结果基本不变,这与文献[7]结 果一致.表1列出测定结果.

表 1 4-POBN-OH 加合物的 EPR 谱峰高/ cm

编号	第 1d	第 2d
1	3.3	3.0
2	3.7	3.8
3	4.9	4.9

表1结果说明4-POBN-OH 加合物的稳定 性好,这使现场采样后带回实验室测定的方法 有了保证.

2.2 膜的选择

选择几种玻璃纤维膜和普通定性、定量滤 纸作为捕集膜进行实验,得到的 EPR 谱如图 2 所示. 从图 2 可见,定量滤纸作为捕集膜时,得 到的加合物 EPR 谱有清晰的峰形,定性滤纸和 玻璃纤维膜则可能存在某种杂质而使加合物的 EPR 谱明显掺杂异峰,这将影响测定结果,因 此采用定量滤纸为捕集膜较合适.

2.3 O2的影响

样品溶液中若含有 O² 气,顺磁共振谱峰 将变宽.用 N² 气鼓泡的方法除去样品溶液中 O² 气,将改善峰形,提高测量的灵敏度.未经除 O² 和除 O² 后的 EPR 谱见图 3.

2.4 EPR 谱的特征参数

实验室中用 H₂O₂ 光照产生 OH 自由基所 测得 4-POBN -OH 加合物的 EPR 谱见图 4. 加 合物中未成对电子与¹⁴N 核发生超精细相互作 用,产生三重峰,其超精细 偶合常数 $\alpha_{H\beta}$ = 1.45mT,由¹H 引起的超精细偶合常数 $\alpha_{H\beta}$ = 0.22mT.

这一结果与文献[7]的数据相符.表2列出 不同实验室测得 EPR 谱的 & 和 @+# 值.其中除 了 Janzen 等^[9]的 & 值偏高, @+# 值较低外,其它 实验室测得 & 均在 1.44~1.45mT, @+# 为 0.20 ± 0.02mT.这是由于采用不同溶剂引起的. Janzen 测的是 4-POBN-OH 加合物的水溶液,

B 定性滤纸

C 玻璃纤维膜

图 2 各种材质捕集膜得到的 EPR 谱

A 未经除 0₂的样品

B 除 O₂ 后的样品

图 4 4-POBN-OH 加合物的 EPR 谱

表 2 4-POBN-OH 加合物 EPR 谱的 αN 和 αHβ值/mT

实验者	OH 自由基来源	溶剂	α _N α _{Hβ}
Watanabe 等[5]	对流层大气	苯(先用	1 45 0 10
	$(6_{km}, 10_{km})$	苯浸取)	1.45 0.19
Watanabe 等 ^[5]	O3+ H2O OH	(同上)	1.44 0.18
Stokes 等 ^{7]}	$\mathrm{H}_{2}\mathrm{O}_{2} 2\mathrm{O}\mathrm{H}$	甲苯	1.445 0.20
本文	H_2O_2 20 H	苯	1.45 0.22
Janzen 等 ^[9]	pH 值为 7 的水 溶液	水	1.497 0.168

3 实测例

用 EPR 法对上海市区 3 个点采样实测时, 将直径为 9cm 的载有 4-POBN 的捕集膜安装 在空气采样器的采样头上,并附上一个具 120 ° 弯角的黑色套筒,以避免捕集膜被阳光直射,以 100L/min ~ 110L/min 的流速采样.采样后的 捕集膜带回实验室,在暗室中剪成小块,用苯多 次浸取得 4-POBN-OH 加合物苯溶液,除 O₂ 后 测得的 EPR 谱如图 5 所示.超精细偶合常数 ck 和 cm/值与实验室模拟试验所得的结果相符.

图 5 实测样品的 EPR 谱

用已知自旋数的 DPPH 作标准样品,用比 较法确定被测样品的自旋数.即被测样品的自 旋数 N_x可以通过与标准样品的自旋数 N_s比 较而定.可由式(1)计算:

$$N_{\rm x} = N_{\rm s} (A_{\rm x}/A_{\rm s}) \tag{1}$$

式中, Ax、As 分别为被测样品和标准样品的

EPR 峰面积.

若实验采用不同的仪器放大倍数 *G*,则(1) 式应为:

 $N_x = N_s[(A_x \bullet G_s)/(A_s \bullet G_s)]$ (2) 式中, G_x 、 G_s 分别为被测样品和标准样品测定 时仪器的放大倍数.

得到的自旋数 N x 即为 OH 自由基数目 N oH, 再由采样体积、温度、大气压、捕集和萃取 效率可计算 OH 自由基浓度.

1997-07 ~ 10 间, 对上海市的东北、西北和 西南城乡交界处 3 个采样点实测, 在阳光强, 天 气闷热的中午测得 OH 自由基浓度分别为 3.2 × 10⁷ cm⁻³、4.2 × 10⁷ cm⁻³和 6.1 × 10⁷ cm⁻³, 而 阴天则未测得. 测量值的相对误差约 35%.

由于大气中 OH 自由基浓度极低,又非常 活泼,极易与其它污染物反应,因此它的浓度涨 落很大.此外本方法在各操作步骤,如捕集、浸 取、浓缩等,也产生不可避免的误差.目前国外 用该法测定的相对误差一般均在 30% 以上^[5]. 即使采用目前国际上公认的较好的激光诱导荧 光法(LIF),在短时间内测得的数据中·OH 浓 度也在 1.15×10^7 cm⁻³~ 1.5×10^6 cm⁻³范围 内^[4] 涨落.本实验的相对误差也主要来源于这 一点.

本文的实测结果比文献[4]和[5]的数据要高,可能的原因为:①文献[4]测定的是德国东部乡村上空大气,文献[5]测定的是日本高空6km~10km的大气,本文测定的是上海城乡交界处近地面的大气.而城乡交界处 O3 浓度往往比城市中心和乡村的要高,这有可能引起 ·OH浓度增大;②·OH浓度的涨落很大,本测定的数据不多,因此可能具有一定的偶然性; ③在用 EPR 法定量测定时,本文暂采用 DPPH 作标准,这是一个通用标准,它的谱峰结构与 4-POBN-OH 加合物的谱峰有差异,若能改用 谱峰结构与之相近的物质(例如, 2, 2, 6, 6trimethylpiperidine-1-oxy1-4-01 或 3-carbamoy1-2, 2, 5, 5-tertramethyl pyrrolidin-1yloxyl) 作为标准样品,则将增加测定结果的准确度.

4 小结

气相 OH 自由基浓度可用电子顺磁共振法 测定. 以 4-POBN 作自旋捕集剂捕集 OH 自由 基形成较稳定的加合物, 测定加合物的 EPR 谱 并确定 OH 自由基浓度. 4-POBN-OH 加合物 稳定性优于其它捕集剂, 避光保存 2d 内测定结 果不变. 表明 4-POBN 是气相 OH 自由基很有 效的捕集剂. 该方法采样方便, 有利于带回实验 室测定. 本文实测结果仅是初步尝试, 有待进一 步的工作.

参考文献

- 唐孝炎主编.大气环境化学.北京:高等教育出版社, 1990.21~24
- 2 Hard T M et al. Tropospheric free radical determination by FAGE. Env. Sci. Technol., 1984, 18(10): 768 ~ 770
- 3 Perner D et al. Measurements of Tropospheric OH Concentrations: A Comparison of Field Data with Model Predictions. J. Atmos. Chem., 1987, 5(2): 185 ~ 216
- 4 Pamela Zurer: Techniques Accurately Measure OH Levels. Chem. & Eng. News., 1996, 9:9
- 5 Tokuko Watanabe et al. Spin Trapping of Hydroxyl Radical in the Troposphere for Determination by Electron Spin Resonance and Gas Chromatography/Mass Spectrometry. Anal. Chem., 1982, 54(14): 2470 ~ 2474
- 6 Cambell M J et al. Radiocarbon Tracer M easurements of Atmospheric Hydroxyl Radcal Concentrations. J. Atmos. Chem., 1986, 4(4):413~427
- 7 Stokes N J et al. The Determination of Hydroxyl Radical Concentrations in Environmental Chambers Using Electron Spin Resonance. Chemosphere, 1994, 28(5): 999 ~ 1008
- 8 张建中等编著. 自旋标记 ESR 波谱的基本理论和应用. 北 京: 科学出版社, 1987. 488~491
- 9 Janzen E G et al. Spin Trapping with α-Pyridyl 1-Oxide N-tert-Butyl Nitrones in Aqueous Solutions. J. Am. Chem. Soc., 1978, 100(9): 2923 ~ 2925