酸性条件下 Fe^{3+} 氧化 SO_2 的脱硫反应机理^{*}

姚小红 陆永琪 郝吉明 徐 瑾

(清华大学环境科学与工程系,北京 100084 E-mail: x hyao @ 163. n et)

摘要 讨论酸性条件下 Fe³⁺ 液相氧化 SO₂ 的几种可能反应机理,设计了不同的缓冲和非缓冲 Fe³⁺ 溶液脱硫试验.通过对不同 反应体系 SO₂ 吸收特性的测量,得出了反应符合半导体或过渡态金属的催化机理,液相氧化反应的速率受 Fe³⁺ 的老化进程所 控制,从而为低浓度 Fe³⁺ 溶液烟气脱硫和解释雾水酸化现象提供了理论基础.

关键词 Fe³⁺, SO₂, 液相氧化, 反应机理.

Reaction Mechanism of Fe³⁺ Aqueous Oxidation SO₂ in Acid Solution

Yao Xiaohong Lu Yongqi Hao Jiming Xu Jing

(Dept of Environ Science and Eng., Tsinghua Univ., Beijing 100084 E-mail:x hyao @ 163.net)

Abstract The experiment was designed for Fe^{3+} aqueous oxidation SO₂ in buffered or nonbuffered acid solution and given the discussion on the several possible mechanisms of this reaction. With the measurement of the SO₂ absorption in the different reaction systems designed, the reaction was identified as the semi-conductor or transient metal mechanism, and the kinetic rate was controlled by the progress of Fe^{3+} aging. Such result provided the theoretical basis for the use of dilute Fe^{3+} solution in the flue gas desulfurization and the explanation of fog water acidification.

Keywords Fe^{3+} , SO₂, aqueous oxidation, reaction mechanism.

酸性条件下 Fe^{3+} 氧化 SO_2 的机理至今仍 存有争议^[1-3],在不同研究报道中 Fe^{3+} 氧化 SO_2 的液相氧化速度最大可相差 8 个数量 级^[4].近年对酸雾的观测结果进一步证明了 pH 与 S() 和 Fe^{3+} (Fe^{2+})浓度 3 者之间的变化确 实存在着相关性^[5,6],但不同的研究结果多有矛 盾.本文通过实验室脱硫试验研究这一液相反 应,分析并阐明其反应机理.

1 Fe³⁺ 氧化 SO² 的脱硫机理分析

1.1 氧化还原反应机理^[6]

Fe(OH)₃ + 3H⁺ + e — Fe²⁺ + 3H₂O E = 1.083 - 0.1773pH() SO²⁻ + H₂O + 2e — SO²⁻ + 2OH⁻ $E^{0} = 0.93$ () 总反应: 2Fe³⁺ + S() — 2Fe²⁺ + S() 从以上的反应机理推论: 反应是一个 Fe³⁺

浓度递减、Fe²⁺浓度递增的过程,反应速度与 Fe³⁺的浓度正相关.

1.2 自由基反应机理^[4]
 自由其反应机理可表示为 3 部分:

链引发反应:
$$Fe^{3+} + SO_3^{2-}$$
 $re^{2+} + SO_3^{2-}$
链传递反应: $SO_3^{-} + O_2$ $re^{2+} + SO_3^{--}$
 $SO_5^{-} + HSO_3^{--}$ $re^{3-} + SO_3^{--}$
 $re^{2+} + HSO_5^{--}$ $re^{3+} + OH^{-} + SO_4^{--}$

终止反应: Fe²⁺ + SO₃ = Fe³⁺ + SO₃²⁻

如果反应按以上历程进行,则可得到以下 推论: Fe^{3+} 起催化剂作用,反应过程中 Fe^{3+} 浓 度迅速达到稳定, Fe^{3+} / Fe^{2+} 浓度比近似可达到 1, SO₂ 氧化反应速度迅速达到稳定, S()的氧 化量可以远远超过 Fe^{3+} 的浓度.

1.3 半导体催化、过渡态金属催化反应机理^[7]

 $2Fe^{3+} + 3H_2O = - x - Fe^{2}O_3 + 6H^+$

当 pH2—4 时, 形成 α-Fe2O3 的半导体将发 生水合反应, 产物进一步光解产生 OH 自由基

 ^{*} 国家"八五"科技攻关项目(The National Key Science and Technology Project during the Eighth Five-year Plan Period): 85-91-02-02
 姚小红:男, 29岁,博士后 收稿日期: 1997-12-03

或络合反应产生 SO_{5} 等自由基^[8], 具体反应: α -Fe₂O₃+ H₂O \longrightarrow OH α -Fe₂O₃+ O₂ \implies α -Fe₂O₃ · O₂ α -Fe₂O₃ · O₂+ SO_{3}^{2-} \implies α -Fe₂O₃ · O₂ · SO_{3}^{2-} \implies π Fe₂O₃ · O₂+ HSO₅ α -Fe₂O₃ · O₂+ HSO₅ α -Fe₂O₃ · O₂+ SO₃²⁻ \implies π Fe₂O₃ · O₂ · SO₃H

如果按以上历程反应可以得到以下推论: 反应速率受催化剂浓度控制,因此反应速率随 反应过程中催化剂的失活而递减;S()的氧 化量可以超过 Fe^{3+} 的浓度.由于反应产生了 $HSO_5 \ SO_5^{2-}$ 自由基,因此反应过程中 $Fe^{3+} \ Fe^{2+}$ 浓度比较稳定,比例近似= 1.0.以上 Fe^{3+} 氧化 SO_2 的脱硫机理分析表明,相同体系按不 同机理反应时将对应着不同的组分变化规律, 这就为实验设计验证反应机理提供了依据.

2 试验研究与结果分析

2.1 试验装置

反应装置如图 1 所示,反应器内装 50ml 吸 收液, SO₂ 混合气来自钢瓶,流量控制为 1L · min^{-1} ,出口 SO₂ 浓度采用 TE-40 型 SO₂ 分析 仪连续监测记录,实验周期为 30m in. SO₂ 混合 气由中国计量科学院提供,实验化学试剂均采 用优级纯.

图 1 脱硫反应试验流程 1.SO₂ 混合气钢瓶 2. 流量计 3. 反应器 4.TE-40型 SO₂ 分析仪 5. 数据记录

2.2 非缓冲体系试验

实验中设计了 6 种不同的反应体系研究 SO₂ 的氧化反应机制, 气体 SO₂ 浓度均保持 973ml · m³, 溶液初始 pH 值由添加稀硫酸调 节. 6 种体系分别为: ①去离子水, 初始 pH = 5. 5,反应终止 pH = 2. 5; ②去离子水, 初始 pH = 2. 5,反应终止 pH= 2. 0; ③1000mg · L⁻¹的 Fe³⁺ 溶液,初始 pH2. 3,反应终止 pH1. 8; ④ 100mg · L⁻¹的 Fe³⁺ 溶液,初始 pH2. 3,反应终 止 pH2. 0; ⑤50mg · L⁻¹的 Fe³⁺ 溶液,初始 pH2. 3,反应终止 pH2. 1;⑥25mg · L⁻¹的 Fe³⁺ 溶液,初始 pH2. 3,反应终止 pH2. 05.

图 2 给出了在各种体系条件下出口 SO² 浓度随时间的变化特性.

图 2 出口 SO₂浓度随时间的变化特性

由图 2 可见, 体系 1 和 2 反应 19min 和 15min 后, 出口 SO₂ 浓度恒定在 973ml \cdot m⁻³, 表明吸收已达饱和. 两者的差别是由初始 pH 差异引起, 这也验证了试验体系的可靠性.

在含 Fe^{3+} 吸收液的体系中, 出口 SO_2 浓度 在 $15 \pm 1min$ 时有折点, 折点位置并不随 Fe^{3+} 浓度的变化而显著变化, 折点出现的时间和体 系 2 达到饱和吸附的时间一致.

 ${
m Fe}^{3+}$ 吸收液体系中, 出口 SO₂ 浓度达到 973ml·m⁻³的时间大于去离子水, 且随 Fe³⁺ 浓 度增加而增加, 在 pH < 2.5 的条件下, Fe³⁺ 与 S ()的络合不重要, 可认为试验中出口 SO₂ 浓 度的不同是由于 Fe³⁺ 氧化 S()引起的.

扣除水的吸收, 认为此时溶液吸收的 SO₂ 是由于 SO₂ 氧化为硫酸引起的, 设定气泡在溶 液中平均停留 3s, 则对于体系 3、4、5 和 6, 反应 15m in 后(此时溶液中 SO₂ 吸收达到饱和) 的氧 化速率分别为 29% \cdot s⁻¹、24% \cdot s⁻¹、19% \cdot s⁻¹、16% \cdot s⁻¹. 不同体系之间 SO₂ 氧化速率随 Fe³⁺ 浓度的减小而递减. 4 种体系氧化速率均 随时间递减, 当出口 SO₂ 浓度和进口接近, SO₂ 氧化速率接近 0. 从反应开始到此时的时间长 度由初始 Fe³⁺ 浓度决定, 这就排除了单纯的自 由基反应机理. 从 SO₂ 在 30min 内的累积吸收量分析,体 系 2 的 SO₂ 累积量为 0. 1551mmol,相当于其 四价硫浓度为 31mmol·L⁻¹,此浓度和 973ml ·m⁻³ SO₂ 在 pH= 2—4 条件下的液相平衡浓 度一致,表明反应体系除溶解氧外无其他强氧 化剂.在体系 6 中, SO₂ 累积量为 0. 6763mmol, 扣除水的吸收,其绝对量与溶液中 Fe³⁺ 的摩尔 比为 23 1,表明 Fe³⁺ 在溶液中起催化作用,这 也就排除了氧化还原反应机理.因此可能的机 理只能是半导体催化、过渡态金属催化反应.

2.3 含缓冲液的 Fe^{3+} 体系实验

实验中采用 6 组不同的缓冲液反应体系研 究 SO₂ 的氧化机制,所用缓冲液为盐酸--甘氨酸 溶液,反应时进口 SO₂ 浓度保持 1000ml · m⁻³.6种体系分别为:①Fe³⁺ c初始10mg · L⁻¹, pH2.2, Fe²⁺ c终止5.33mg · L⁻¹;②Fe³⁺ c初始0mg · L⁻¹, pH2.2;③Fe³⁺ c初始10mg · L⁻¹, pH2.6, Fe²⁺ c终止4.61mg · L⁻¹;④Fe³⁺ c初始0mg · L⁻¹, pH2.6;⑤Fe³⁺ c初始10mg · L⁻¹, pH3.0, Fe²⁺ c终止3.4mg · L⁻¹;⑥ Fe³⁺ c初始 0mg · L⁻¹, pH3.0.

图 3 出口 SO₂浓度随时间变化曲线

由图 3 的实验结果可得, 体系 2、4 和 6 分 别在 15m in、20m in 和 31m in 达吸收饱和, 30m in 后体系 1、3 和 5 氧化速率分别为 5.6% $\cdot s^{-1}$ 、7.4% $\cdot s^{-1}$, 和 11.8% $\cdot s^{-1}$, SO2 氧化 速率的大小与 pH 值呈正相关, 随 pH 值的升高 SO2 的溶解度增加是原因之一.氧化速率随时 间的变化特性和 2.2节实验相同, 但随 pH 值 的升高达到缓慢氧化阶段的时间要长. 由反应 30m in 后 Fe²⁺ 浓度的测试结果可见, 总 Fe 和 Fe²⁺ 浓度之比变化范围在 2—3 之间, 随 pH 值 的升高, Fe²⁺ 浓度下降. 这是因为 pH 值在 2—3 时,随初始 pH 值的升高 Fe^{3+} 通过快速水合反 应生成不可溶的活性产物 α - Fe^{2O_3} 的比例增 加,造成可溶性铁离子减小.不可溶的活性产物 α - Fe^{2O_3} 的比例增加也是 SO_2 氧化速率随 pH 值增大的另一原因.这进一步肯定了反应符合 半导体催化、过渡态催化机理.由这一试验可以 提出: pH 值在 2—3 内的变化不改变反应机理, 仅改变 SO_2 的溶解度和活性产物 α - Fe^{2O_3} 的浓 度,从而影响到反应速度的大小.

3 结论

(1) Fe^{3+} 氧化 SO_2 的液相反应符合半导体 催化或过渡态金属催化机理. Fe^{3+} 氧化 SO_2 存 在一个快速氧化反应阶段. 在快速氧化过程中, SO_2 氧化速率大小以及快速氧化反应阶段的时 间长度与 Fe^{3+} 浓度成正相关. 进一步的机理分 析表明, SO_2 氧化速率大小受 Fe^{3+} 老化产生的 活性产物浓度控制, 随 Fe^{3+} 老化产物的耗净 SO_2 氧化速率逐渐减小至接近于 0.

(2) pH 值在 2—3 范围内的变化不改变反应机理, 仅仅改变系统 SO² 的溶解度, 活性产物 α-Fe2O₃ 的浓度, 从而影响反应速度的大小.

- 参考文献
- Faust B C et al. . Sunlight-Initiated Partial Inhibition of the Dissolved Iron()-Catalyzed Oxidation of S() Species by Molecular Oxygen in Aqueous Solution. Atmos. Environ., 1994, 28(4): 745_ 748
- 2 Martin B L et al. . Catalyzed Oxidation of Sulfur Dioxide in Solution: the Iron-Managnese Synergism. Atmos. Environ., 1991, 25(10): 2395_ 2399
- Conklin M H et al. Metal Ion-Sulfur () Chemistry. 3 Thermodynamics and Kinetics of Transient Iron()-Sulfur() Complexes. Environ. Sci. Technol., 1988, 22(8): 899_ 907
- 4 Brandt C et al.. Transition M etal-Catalyzed Oxidation of Sulfur() Oxides Atmospheric-Revevant Processes and Mechanisms. Chem. Rev., 1995, 95(1):119_190
- 5 Behra P et al. Evidence for Redox Cycling of Iron in Atmospheric Water Drops.Nature, 1990, 344(29): 419_ 420
- 6 Zhuang G et al. Link Between Iron and Sulphur Cycles Suggested by Detection of Fe () in Remote Marine Aerosols. Nature, 1992, 355(6):537_539
- 7 Erel Y et al. . Redox Chemistry of Iron in Fog and Stratus Clouds. J. Geophy. Res. , 1993, **98**(D10): 18423_18434
- 8 Faust B C et al. . Photocatalytic Oxidation of Sulfur Diox ide In Aqueous Suspension of α -Fe₂O₃. J. Phys. Chem., 1989, **93**(17): 6471_ 6387