1996年2月

盐度和压力对沉积物逐级分离样品吸附 毒性有机物的影响*

全 燮 赵雅芝 薛大明 姚志勇 徐宇威

(大连理工大学环境工程研究所,大连 116012)

摘要 用化学逐级分离法对大连近海沉积物中有机组分和无机组分进行分离,考察了盐度和压力对沉积物中有 机组分和无机组分吸附几种毒性有机物的影响。结果表明,有机组分对几种毒性有机物的吸附能力随盐度的升高 线性递增,而无机组分的吸附能力随盐度的升高线性递减。升高压力增加了沉积物中2组分对毒性有机物的吸附 能力。但随压力的升高,吸附能力增加的幅度降低。吸附系数与压力之间的关系可用指数方程描述。 关键调 盐度,压力,近海沉积物,吸附,毒性有机物。

天然沉积物是由多种成分组成的混合物。 沉积物中的各种组分对毒性有机污染物的吸附 能力、吸附规律不尽相同^[1-4]。海洋的水质、水 文等因素对沉积物中各组分的吸附行为必将产 生不同的影响。盐度是海水的特征因素之一。近 海海水的盐度一般在10%-35.5%之间。海水 的盐度不同,沉积物颗粒表面的物理化学性质 也不同。因此,沉积物对污染物的吸附能力也 会发生变化。水压是海洋的另一特征因素。由 于海水深,水柱所产生的压力必然对沉积物的 吸附行为产生影响。

本文通过将大连近海沉积物逐级分离,研 究盐度、压力对沉积物中2组分吸附毒性有机 物行为的影响。

1 实验部分

1.1 实验材料

(1)硝基苯 1,2,4,5-四氯苯,7-666 和 邻苯二甲酸二正丁酯为美国 EPA 标准样品,从 中国环境监测总站购得。溶剂苯为优级纯,北 京化工厂生产。溶剂石油醚(60—90℃沸程)为 分析纯,大连旅顺东风化工厂生产。使用前重 蒸馏。

大连近海沉积物样品,有机质含量2.5%。

样品经逐级分离,备用。

Kester 人工海水^[5]。该人工海水的盐度为 35‰。人工海水用蒸馏水稀释成 10‰, 20‰, 30‰,或蒸发浓缩至 40‰。用 0.45 μm 生物滤 膜过滤,备用。

(2) 主要仪器 HYA 恒温摇瓶机, LG10 2.4A高速离心机, Snyder浓缩器, 日本岛津
 GC-9A 气相色谱仪配 Ni⁶³的 ECD。

1.2 实验方法

(1)盐度影响实验 将1.00g 原级或分级 沉积物样品(原级样品含无机和有机组分,分级 样品为去除有机质后的无机组分)分别加入到各 自系列磨口三角瓶内,向各瓶内加入 30 ml 人 工海水。将该沉积物/水混合体系于 25℃下振荡 2 h,然后加入不同浓度的毒性有机物,加盖磨 口塞。在同样条件下振荡平衡 8 h。将沉积物/ 水体系移入离心管内,高速离心 15 min。准确 移取 10 ml 上清液加入到分液漏斗,用 5 ml 苯-石油醚(1:1)分 2 次萃取有机物。有机相用无 水 Na₂SO4 干燥后,用 Snyder 浓缩器浓缩至 0. 5—1 ml,重新定容,用 GC-ECD 测定浓缩液

* 国家自然科学基金资助项目 收稿日期: 1995-06-12

n

即

即

中有机物浓度,外标法定量。将测定浓度换算 成平衡浓度,用差减法计算出沉积物上的吸附 量。

(2) 压力影响实验 用于本实验的压力容器见图 1。压力容器由不锈钢外壳加内厚壁玻璃容器组成。内体积约 12 dm³。内加 10 L海水和 200 g 原级(或分级)样品。静止平衡 48 h。加入有机物标准溶液,旋紧顶盖,旋开各气体阀门,加压。定时旋开取样阀门,每次取 30 ml水样品。改变压力,重复上述操作。水样处理步骤与盐度影响实验相同。

图 1 压力影响实验装置 1. 钢瓶 2. 缓冲瓶 3. 压力容器 4. 取样口 5. 排气口

2 结果与讨论

2.1 沉积物化学逐级分离相关公式

沉积物经化学逐级分离后,每种组分上的 吸附量用下式计算:

$$G_{1, 2, \dots, n} = a_n G_1 + b_n G_2 + \dots x_n G_n \qquad (1)$$

$$G_{1, 2, \dots, n-1} = a_{n-1} G_1 + b_{n-1} G_2 + \dots + x_{n-1} G_{n-1} \dots \dots$$

$$G_{1, 2} = a_2 G_1 + b_2 G_2$$

$$G_{n-1}^{n-1} = G_{n-1}^{n-1} \dots \dots$$

G[№], *G*_{1,2}, *G*_{1,2}, *…*_{*n*-1}, *G*_{1,2}, *…*, *n*为沉积物各分级 样品和原级样品上的吸附量,通过实验测得。 *G*₁, *G*₂, *…*, *G*_{*n*} 为沉积物中第1,第2和第*n*组 分上的吸附量,该值用(1)式逐项计算得到。本 文中,把沉积物视为无机和有机质2组分组成, 故*n*取2。

2.2 盐度对吸附的影响

不同盐度下,原级样品的吸附量数据 $G_{1.2}$ 、 G_1 和用(1)式计算的4种毒性有机物在有机质 上的吸附量(G的单位均为 μ g/g),与平衡浓度 $c_e(mg/L)$ 一并列于表1。前期工作表明,毒性 有机物在沉积物中无机颗粒上的吸附符合 Langmuir 吸附等温式:

$$G_1 = \frac{L_0 C_e}{A + C_e} \tag{2}$$

而在有机质上的吸附符合线性吸附等温式,

$$G_2 = K_{\rm OC}C_{\rm e} \tag{3}$$

因此,将求得的毒性有机物在无机质上和有机 质上的吸附数据用对应等温式拟合得到如表 2 所示的吸附等温方程。

盐度对吸附量的影响,实际上是通过改变 吸附剂或吸附质的物理化学性质引起的。这种 影响可通过吸附等温方程中具有明确物理含义 的系数反映出来。例如, langmuir 方程中 L₀ 表 示极限吸附量, 该系数可表征吸附剂的吸附能 力。线性方程(3)式中,系数 K_{∞} 表示吸附质在 沉积物与水间的分配比, 表征有机质对吸附质 的亲合力。该2个系数与盐度S‰相关,用来表 示盐度对吸附的影响(见表 2)。从极限吸附量 L_{0} 与盐度 S 和 K_{∞} 与 S 的相关方程可知, 盐度 对毒性有机物在无机组分和有机组分上的吸附 具有不同的影响。对确定的化合物来说,在无 机质上毒性有机物的极限吸附量 L。 随盐度的 增高而减小;在有机质上 K_{∞} 却随盐度的增高 而增大。对所试的4种毒性有机物,盐度在 10‰-40‰内L。变化了-22.5%~-72.8%, K_{cc}变化了 11.7%-84.3%, 说明盐度对毒性 有机物在沉积物上的吸附具有显著影响。

2.3 压力对吸附的影响

一般河口、海湾和其他近海海水水深数 10 m, 沉积物表面所受到的压力为 0—10 MPa 之 间。因此, 选择的压力范围为 0.1—0.5 MPa, 代表着约 10—50 m 深处的压力。用沉积物原 级样品和分级样品作为吸附剂, 以 1, 2, 4, 5-四氯苯和 γ-666 为吸附质进行吸附实验。用(1) 式计算出沉积物中无机质和有机质上的吸附

表 1 不同盐度下 4 种毒性有机物在沉积物各组分上的吸附量

盐度	(‰)			硝基苯			盐度	(‰)		1,2	,4,5-四	氯苯	
	C.	0.022	0.043	0.059	0.076	0.094		C.	0.016	0.033	0.054	0.075	0.096
40	G_{12}	0.064	0.129	0.174	0. 226	0.261	40	G_{12}	1.68	3.52	5.58	7.82	9.68
	G_1	0.035	0.065	0.089	0.106	0.131		G_1	1.03	2.06	3.25	4.44	5.55
	G_2	1.21	2.63	3.48	4.92	5.32		G_2	26.9	60.3	96.5	139.5	170.7
	C.	0.021	0.040	0.055	0.074	0.091		Ce	0.017	0.035	0.055	0.075	0.097
35	G_{12}	0.059	0.114	0.149	0.205	0.245	35	G_{12}	1.87	3.86	5.83	7.86	9.40
	G_1	0.034	0.063	0.082	0.110	0.130		G_1	1.15	2.36	3.50	4.63	5.79
	G_2	1.03	2.12	2.78	3. 92	4.73		G_2	29.8	62. 5	96.5	133. 7	172.2
	Ce	0.020	0.038	0.052	0.072	0.088		C.	0.018	0.035	0.056	0.076	0.098
30	G_{12}	0.569	0.110	0.140	0.193	0.231	30	G_{12}	1.94	3.85	5.93	8.10	10.0
	G_1	0.034	0.064	0.086	0.107	0.130		G_1	1.24	2.37	3.63	4.84	5.97
	G_2	0.95	1.89	2.25	3.55	4.18		Gz	29.2	61.8	95.7	135.3	168.5
	C,	0.021	0.039	0.050	0.072	0.090		C_{e}	0.019	0.036	0.058	0.076	0.098
20	G_{12}	0. 05 9	0.108	0.138	0.173	0.242	20	G_{12}	2.42	4.46	7.07	8.83	11.7
	G_1	0.039	0.071	0.088	0.122	0.155		G_1	1.63	3.02	4.68	5.92	7.49
	G_2	0.86	1.55	2.09	2.78	3.62		G_2	33. 2	60.5	100.3	122.5	170.7
	Ce	0.018	0.034	0.050	0.068	0.089		C_{e}	0.020	0.036	0.058	0.078	0.100
10	G_{12}	0.055	0.105	0.143	0.195	0.248	10	G_{12}	2.50	4.49	7.20	9.37	12.2
	G_1	0.041	0.075	0.108	0.148	0.183		G_1	1.79	3.16	4.93	6.37	8.05
	G_2	0.60	1.26	1.53	2.02	2.98		G ₂ .	30.4	56.6	95.7	126.3	157.8
盐度	(‰)			γ-666			盐度	(‰)		邻苯二	「甲酸二」	E丁酯	
	Ce	0.012	0.031	0.053	0.074	0.096		C.	0.006	0.014	0.032	0.054	0.076
40	G_{12}	1.16	2.85	4.76	6.37	8.21	40	G_{12}	128.1	229.8	435.6	684.1	908.5
		0 000		1 10		1 70		0		02 0	05 0	98 7	100 6
	G_1	0.330	0.756	1.10	1.37	1. 58		G_1	65.8	02.9	95.8	50.7	100.0
	G_1 G_2	33.6	0.756 84.5	1.10 147.5	1.37 201.3	267.0		G_1 G_2	65.8 2560	82.9 5958	95.8 13688	23055	32416
	G_1 G_2 C_e	33. 6 0. 014	0.756 84.5 0.033	1.10 147.5 0.056	1.37 201.3 0.075	267.0		G1 G2 Ce	65.8 2560 0.006	5958 0. 015	0. 034	23055 0.056	32416 0.078
35	G1 G2 Ce G12	0. 330 33. 6 0. 014 1. 34	0.756 84.5 0.033 2.94	1. 10 147. 5 0. 056 4. 84	1.37 201.3 0.075 6.44	1. 58 267. 0 0. 099 8. 42	35	G ₁ G ₂ C. G ₁₂	65.8 2560 0.006 191.3	5958 0. 015 309. 7	95.8 13688 0.034 525.2	23055 0. 056 750. 2	32416 0. 078 984. 8
35	G_1 G_2 C_e G_{12} G_1	0. 330 33. 6 0. 014 1. 34 0. 412	0. 756 84. 5 0. 033 2. 94 0. 846	1. 10 147. 5 0. 056 4. 84 1. 26	1. 37 201. 3 0. 075 6. 44 4. 420	1. 58 267. 0 0. 099 8. 42 1. 84	35	$ \begin{array}{c} G_1 \\ G_2 \\ \hline G_1 \\ G_1 \\ \end{array} $	65.8 2560 0.006 191.3 133.0	5958 0. 015 309. 7 160. 9	95.8 13688 0.034 525.2 182.3	23055 0.056 750.2 185.3	32416 0. 078 984. 8 190. 1
35	G_1 G_2 C_e G_{12} G_1 G_2	0. 330 33. 6 0. 014 1. 34 0. 412 37. 7	0. 756 84. 5 0. 033 2. 94 0. 846 85. 8	1. 10 147. 5 0. 056 4. 84 1. 26 144. 6	1. 37 201. 3 0. 075 6. 44 4. 420 202. 4	1. 38 267. 0 0. 099 8. 42 1. 84 265. 2	35	G_1 G_2 C_e G_{12} G_1 G_2	65.8 2560 0.006 191.3 133.0 2464	82.9 5958 0.015 309.7 160.9 6112	95.8 13688 0.034 525.2 182.3 13897	23055 0. 056 750. 2 185. 3 22784	32416 0. 078 984. 8 190. 1 31982
35	$ \begin{array}{c} G_1 \\ G_2 \\ \hline C_e \\ G_{12} \\ G_1 \\ G_2 \\ \hline C_e \\ \hline C_e \end{array} $	0. 330 33. 6 0. 014 1. 34 0. 412 37. 7 0. 014	0. 756 84. 5 0. 033 2. 94 0. 846 85. 8 0. 034	1.10 147.5 0.056 4.84 1.26 144.6 0.057	1. 37 201. 3 0. 075 6. 44 4. 420 202. 4 0. 077	1. 38 267. 0 0. 099 8. 42 1. 84 265. 2 0. 101	35	$ \begin{array}{c} G_1 \\ G_2 \\ \hline C_e \\ G_{12} \\ G_1 \\ G_2 \\ \hline C_e \\ \end{array} $	65. 8 2560 0. 006 191. 3 133. 0 2464 0. 008	82. 9 5958 0. 015 309. 7 160. 9 6112 0. 016	95.8 13688 0.034 525.2 182.3 13897 0.035	23055 0.056 750.2 185.3 22784 0.057	32416 0. 078 984. 8 190. 1 31982 0. 080
35	$ \begin{array}{c} G_1 \\ G_2 \\ \hline C_e \\ G_{12} \\ G_1 \\ G_2 \\ \hline C_e \\ G_{12} \end{array} $	0. 330 33. 6 0. 014 1. 34 0. 412 37. 7 0. 014 1. 32	0. 756 84. 5 0. 033 2. 94 0. 846 85. 8 0. 034 3. 12	1.10 147.5 0.056 4.84 1.26 144.6 0.057 4.86	1. 37 201. 3 0. 075 6. 44 4. 420 202. 4 0. 077 7. 74	1. 58 267. 0 0. 099 8. 42 1. 84 265. 2 0. 101 8. 24	35	$ \begin{array}{c} G_1 \\ G_2 \\ \hline C_e \\ G_{12} \\ G_1 \\ G_2 \\ \hline C_e \\ G_{12} \end{array} $	65.8 2560 0.006 191.3 133.0 2464 0.008 256.8	5958 0.015 309.7 160.9 6112 0.016 348.3	95. 8 13688 0. 034 525. 2 182. 3 13897 0. 035 549. 8	23055 0. 056 750. 2 185. 3 22784 0. 057 761. 2	32416 0. 078 984. 8 190. 1 31982 0. 080 987. 3
35	G_1 G_2 C_e G_{12} G_1 G_2 C_e G_{12} G_1 G_2	0. 330 33. 6 0. 014 1. 34 0. 412 37. 7 0. 014 1. 32 0. 451	0. 756 84. 5 0. 033 2. 94 0. 846 85. 8 0. 034 3. 12 0. 928	1.10 147.5 0.056 4.84 1.26 144.6 0.057 4.86 1.38	1. 37 201. 3 0. 075 6. 44 4. 420 202. 4 0. 077 7. 74 1. 59	1. 58 267. 0 0. 099 8. 42 1. 84 265. 2 0. 101 8. 24 1. 90	35	G_1 G_2 C_e G_{12} G_1 G_2 C_e G_{12} C_e G_{12} G_1	65. 8 2560 0. 006 191. 3 133. 0 2464 0. 008 256. 8 184. 0	5958 0.015 309.7 160.9 6112 0.016 348.3 200.4	95.8 13688 0.034 525.2 182.3 13897 0.035 549.8 218.1	23055 0.056 750.2 185.3 22784 0.057 761.2 220.6	32416 0. 078 984. 8 190. 1 31982 0. 080 987. 3 223. 1
35	$\begin{array}{c} G_{1} \\ G_{2} \\ \hline \\ C_{e} \\ G_{12} \\ \hline \\ G_{1} \\ \hline \\ G_{2} \\ \hline \\ C_{e} \\ \hline \\ G_{12} \\ \hline \\ G_{1} \\ \hline \\ G_{2} \end{array}$	0. 330 33. 6 0. 014 1. 34 0. 412 37. 7 0. 014 1. 32 0. 451 35. 1	0.756 84.5 0.033 2.94 0.846 85.8 0.034 3.12 0.928 88.8	1.10 147.5 0.056 4.84 1.26 144.6 0.057 4.86 1.38 144.4	1. 37 201. 3 0. 075 6. 44 4. 420 202. 4 0. 077 7. 74 1. 59 199. 8	1. 38 267. 0 0. 099 8. 42 1. 84 265. 2 0. 101 8. 24 1. 90 255. 7	35	$ \begin{array}{c} G_1 \\ G_2 \\ C_{\bullet} \\ G_{12} \\ G_1 \\ G_2 \\ C_{\bullet} \\ G_{12} \\ C_{\bullet} \\ G_{12} \\ G_1 \\ G_2 \end{array} $	65.8 2560 0.006 191.3 133.0 2464 0.008 256.8 184.0 3098	5958 0.015 309.7 160.9 6112 0.016 348.3 200.4 6115	95. 8 13688 0. 034 525. 2 182. 3 13897 0. 035 549. 8 218. 1 13488	23055 0. 056 750. 2 185. 3 22784 0. 057 761. 2 220. 6 21488	32416 0. 078 984. 8 190. 1 31982 0. 080 987. 3 223. 1 30793
35	$ \begin{array}{c} G_{1} \\ G_{2} \\ \hline C_{e} \\ G_{12} \\ G_{1} \\ G_{2} \\ \hline C_{e} \\ G_{12} \\ G_{1} \\ G_{2} \\ \hline C_{e} \\ \end{array} $	0. 330 33. 6 0. 014 1. 34 0. 412 37. 7 0. 014 1. 32 0. 451 35. 1 0. 015	0.756 84.5 0.033 2.94 0.846 85.8 0.034 3.12 0.928 88.8 0.034	1.10 147.5 0.056 4.84 1.26 144.6 0.057 4.86 1.38 144.4 0.058	1. 37 201. 3 0. 075 6. 44 4. 420 202. 4 0. 077 7. 74 1. 59 199. 8 0. 078	1. 58 267. 0 0. 099 8. 42 1. 84 265. 2 0. 101 8. 24 1. 90 255. 7 0. 102	35	G_1 G_2 G_1 G_1 G_2 G_1 G_2 G_1 G_2 G_1 G_2 G_1 G_2 G_1 G_2 G_1 G_2 G_1 G_2 G_1 G_2 G_1 G_2 G_1 G_2 G_2 G_1 G_2 G_2 G_1 G_2 G_3	65. 8 2560 0. 006 191. 3 133. 0 2464 0. 008 256. 8 184. 0 3098 0. 008	5958 0.015 309.7 160.9 6112 0.016 348.3 200.4 6115 0.017	95.8 13688 0.034 525.2 182.3 13897 0.035 549.8 218.1 13488 0.035	23055 0.056 750.2 185.3 22784 0.057 761.2 220.6 21488 0.058	32416 0.078 984.8 190.1 31982 0.080 987.3 223.1 30793 0.081
35 30 20	$\begin{array}{c} G_{1} \\ G_{2} \\ \hline \\ C_{e} \\ G_{12} \\ \hline \\ G_{1} \\ G_{2} \\ \hline \\ C_{e} \\ \hline \\ G_{1} \\ G_{2} \\ \hline \\ C_{e} \\ \hline \\ G_{12} \\ \hline \end{array}$	$\begin{array}{c} 0.330\\ \hline 33.6\\ \hline 0.014\\ \hline 1.34\\ \hline 0.412\\ \hline 37.7\\ \hline 0.014\\ \hline 1.32\\ \hline 0.451\\ \hline 35.1\\ \hline 0.015\\ \hline 1.39\\ \end{array}$	0.756 84.5 0.033 2.94 0.846 85.8 0.034 3.12 0.928 88.8 0.034 2.97	1.10 147.5 0.056 4.84 1.26 144.6 0.057 4.86 1.38 144.4 0.058 4.85	1. 37 201. 3 0. 075 6. 44 4. 420 202. 4 0. 077 7. 74 1. 59 199. 8 0. 078 6. 21	1. 38 267. 0 0. 099 8. 42 1. 84 265. 2 0. 101 8. 24 1. 90 255. 7 0. 102 8. 09	35 30 20	$ \begin{array}{c} G_1 \\ G_2 \\ \hline G_1 \\ G_1 \\ G_1 \\ G_2 \\ \hline G_1 \\ G_2 \\ \hline G_1 \\ G_1 \\ G_2 \\ \hline G_1 \\ G_1 \\ G_2 \\ \hline G_1 \\ G_2 \\ \hline G_1 \\ G_1 \\ G_2 \\ \hline G_1 \\ G_1 \\ G_2 \\ \hline G_1 \\ G_1 \\ G_1 \\ G_2 \\ \hline G_1 \\ G_1 \\ G_1 \\ G_2 \\ \hline G_1 \\ G_1 \\ G_1 \\ G_2 \\ \hline G_1 \\ G_1 \\ G_1 \\ G_2 \\ \hline G_1 \\ G_$	65.8 2560 0.006 191.3 133.0 2464 0.008 256.8 184.0 3098 0.008 327.3	5958 0.015 309.7 160.9 6112 0.016 348.3 200.4 6115 0.017 430.5	95.8 13688 0.034 525.2 182.3 13897 0.035 549.8 218.1 13488 0.035 613.4	23055 0. 056 750. 2 185. 3 22784 0. 057 761. 2 220. 6 21488 0. 058 824. 6	32416 0.078 984.8 190.1 31982 0.080 987.3 223.1 30793 0.081 1042.5
35 30 20	$\begin{array}{c} G_{1} \\ G_{2} \\ \hline \\ C_{e} \\ G_{12} \\ \hline \\ G_{1} \\ G_{2} \\ \hline \\ C_{e} \\ G_{12} \\ \hline \\ G_{1} \\ \hline \\ G_{2} \\ \hline \\ C_{e} \\ \hline \\ G_{1} \\ \hline \\ G$	$\begin{array}{c} 0.330\\ \hline 33.6\\ \hline 0.014\\ \hline 1.34\\ \hline 0.412\\ \hline 37.7\\ \hline 0.014\\ \hline 1.32\\ \hline 0.451\\ \hline 35.1\\ \hline 0.015\\ \hline 1.39\\ \hline 0.513\\ \end{array}$	0.756 84.5 0.033 2.94 0.846 85.8 0.034 3.12 0.928 88.8 0.034 2.97 0.990	$\begin{array}{c} 1.10\\ 147.5\\ 0.056\\ 4.84\\ 1.26\\ 144.6\\ 0.057\\ 4.86\\ 1.38\\ 144.4\\ 0.058\\ 4.85\\ 1.48\\ \end{array}$	1. 37 201. 3 0. 075 6. 44 4. 420 202. 4 0. 077 7. 74 1. 59 199. 8 0. 078 6. 21 1. 74	1. 38 267. 0 0. 099 8. 42 1. 84 265. 2 0. 101 8. 24 1. 90 255. 7 0. 102 8. 09 2. 08	35 30 20	$ \begin{array}{c} G_1 \\ G_2 \\ \hline G_4 \\ G_{12} \\ G_1 \\ G_2 \\ \hline G_4 \\ G_{12} \\ G_1 \\ G_2 \\ \hline G_1 \\ G_2 \\ \hline G_1 \\ G_2 \\ \hline G_1 \\ G_1 \\ \hline G_1 \\ G_1 \\ \hline G_1 \\ $	65.8 2560 0.006 191.3 133.0 2464 0.008 256.8 184.0 3098 0.008 327.3 259.5	82.9 5958 0.015 309.7 160.9 6112 0.016 348.3 200.4 6115 0.017 430.5 282.8	95.8 13688 0.034 525.2 182.3 13897 0.035 549.8 218.1 13488 0.035 613.4 300.3	23055 0. 056 750. 2 185. 3 22784 0. 057 761. 2 220. 6 21488 0. 058 824. 6 304. 6	32416 0.078 984.8 190.1 31982 0.080 987.3 223.1 30793 0.081 1042.5 310.4
35	$\begin{array}{c} G_{1} \\ G_{2} \\ \hline \\ C_{e} \\ G_{12} \\ \hline \\ G_{1} \\ G_{2} \\ \hline \\ C_{e} \\ G_{12} \\ \hline \\ G_{1} \\ G_{2} \\ \hline \\ G_{1} \\ G_{1} \\ G_{2} \end{array}$	0. 330 33. 6 0. 014 1. 34 0. 412 37. 7 0. 014 1. 32 0. 451 35. 1 0. 015 1. 39 0. 513 35. 5	0.756 84.5 0.033 2.94 0.846 85.8 0.034 3.12 0.928 88.8 0.034 2.97 0.990 80.1	$\begin{array}{c} 1.10\\ 147.5\\ 0.056\\ 4.84\\ 1.26\\ 144.6\\ 0.057\\ 4.86\\ 1.38\\ 144.4\\ 0.058\\ 4.85\\ 1.48\\ 136.2 \end{array}$	1. 37 201. 3 0. 075 6. 44 4. 420 202. 4 0. 077 7. 74 1. 59 199. 8 0. 078 6. 21 1. 74 180. 5	1. 38 267. 0 0. 099 8. 42 1. 84 265. 2 0. 101 8. 24 1. 90 255. 7 0. 102 8. 09 2. 08 242. 6	35 30 20	$ \begin{array}{c} G_1 \\ G_2 \\ \hline G_4 \\ G_{12} \\ G_1 \\ G_2 \\ \hline G_2 \\ \hline G_1 \\ G_2 \\ \hline G_1 \\ \hline G_2 \\ \hline G_2 \\ \hline G_1 \\ \hline G_2 \\ \hline G_2 \\ \hline G_2 \\ \hline G_1 \\ \hline G_2 \\ \hline G_2 \\ \hline G_2 \\ \hline G_1 \\ \hline G_2 \\ \hline G_2 \\ \hline G_1 \\ \hline G_2 \\ \hline G_2 \\ \hline G_1 \\ \hline G_2 \\ \hline G_2 \\ \hline G_1 \\ \hline G_2 \\ \hline G_2 \\ \hline G_1 \\ \hline G_2 \\ \hline G_2 \\ \hline G_1 \\ \hline G_2 \\ \hline G_2 \\ \hline G_1 \\ \hline G_2 \\ \hline G_1 \\ \hline G_2 \\ \hline G_2 \\ \hline G_1 \\ \hline G_2 \\ \hline G_2 \\ \hline G_1 \\ \hline G_2 \\ \hline G_2 \\ \hline G_2 \\ \hline G_1 \\ \hline G_2 \\ \hline G_2 \\ \hline G_1 \\ \hline G_2 \\ \hline G_2 \\ \hline G_2 \\ \hline G_1 \\ \hline G_2 \\ \hline G$	65.8 2560 0.006 191.3 133.0 2464 0.008 256.8 184.0 3098 0.008 327.3 259.5 2967	5958 0.015 309.7 160.9 6112 0.016 348.3 200.4 6115 0.017 430.5 282.8 6192	95.8 13688 0.034 525.2 182.3 13897 0.035 549.8 218.1 13488 0.035 613.4 300.3 12824	23055 0. 056 750. 2 185. 3 22784 0. 057 761. 2 220. 6 21488 0. 058 824. 6 304. 6 21114	32416 0.078 984.8 190.1 31982 0.080 987.3 223.1 30793 0.081 1042.5 310.4 29597
35 	$\begin{array}{c} G_{1} \\ G_{2} \\ \hline \\ C_{e} \\ G_{12} \\ \hline \\ G_{1} \\ G_{2} \\ \hline \\ C_{e} \\ \hline \\ G_{12} \\ \hline \\ G_{1} \\ \hline \\ G_{2} \\ \hline \\ G_{1} \\ \hline \\ G_{2} \\ \hline \\ C_{e} \\ \hline \end{array}$	$\begin{array}{c} 0.330\\ 33.6\\ 0.014\\ 1.34\\ 0.412\\ 37.7\\ 0.014\\ 1.32\\ 0.451\\ 35.1\\ 0.015\\ 1.39\\ 0.513\\ 35.5\\ 0.015\\ \end{array}$	0. 756 84. 5 0. 033 2. 94 0. 846 85. 8 0. 034 3. 12 0. 928 88. 8 0. 034 2. 97 0. 990 80. 1 0. 036	$\begin{array}{c} 1.10\\ 147.5\\ 0.056\\ 4.84\\ 1.26\\ 144.6\\ 0.057\\ 4.86\\ 1.38\\ 144.4\\ 0.058\\ 4.85\\ 1.48\\ 136.2\\ 0.059\end{array}$	1. 37 201. 3 0. 075 6. 44 4. 420 202. 4 0. 077 7. 74 1. 59 199. 8 0. 078 6. 21 1. 74 180. 5 0. 078	1. 38 267. 0 0. 099 8. 42 1. 84 265. 2 0. 101 8. 24 1. 90 255. 7 0. 102 8. 09 2. 08 242. 6 0. 105	35 30 20	$ \begin{array}{c} G_{1} \\ G_{2} \\ \hline G_{2} \\ \hline G_{4} \\ G_{12} \\ G_{1} \\ G_{2} \\ \hline G_{2} \\ \hline C_{e} \\ \hline C$	65.8 2560 0.006 191.3 133.0 2464 0.008 256.8 184.0 3098 0.008 327.3 259.5 2967 0.010	82.9 5958 0.015 309.7 160.9 6112 0.016 348.3 200.4 6115 0.017 430.5 282.8 6192 0.018	95.8 13688 0.034 525.2 182.3 13897 0.035 549.8 218.1 13488 0.035 613.4 300.3 12824 0.036	23055 0. 056 750. 2 185. 3 22784 0. 057 761. 2 220. 6 21488 0. 058 824. 6 304. 6 21114 0. 060	32416 0.078 984.8 190.1 31982 0.080 987.3 223.1 30793 0.081 1042.5 310.4 29597 0.084
35 30 20 10	$\begin{array}{c} G_{1} \\ G_{2} \\ \hline \\ C_{e} \\ G_{12} \\ G_{1} \\ G_{2} \\ \hline \\ C_{e} \\ G_{12} \\ G_{1} \\ G_{2} \\ \hline \\ C_{e} \\ G_{12} \\ \hline \\ G_{1} \\ G_{2} \\ \hline \\ C_{e} \\ G_{12} \\ \hline \\ G_{1} \\ G_{2} \\ \hline \\ G_{1} \\ \hline \\ G_{2} \\ \hline \\ G_{1} \\ \hline \\ G_{1} \\ \hline \\ G_{2} \\ \hline \\ G_{1} \\ \hline \\ G_{2} \\ \hline \\ G_{1} \\ \hline \\$	$\begin{array}{c} 0.330\\ \hline 33.6\\ \hline 0.014\\ \hline 1.34\\ \hline 0.412\\ \hline 37.7\\ \hline 0.014\\ \hline 1.32\\ \hline 0.451\\ \hline 35.1\\ \hline 0.015\\ \hline 1.39\\ \hline 0.513\\ \hline 35.5\\ \hline 0.015\\ \hline 1.36\\ \end{array}$	0.756 84.5 0.033 2.94 0.846 85.8 0.034 3.12 0.928 88.8 0.034 2.97 0.990 80.1 0.036 3.03	$\begin{array}{c} 1.10\\ 147.5\\ 0.056\\ 4.84\\ 1.26\\ 144.6\\ 0.057\\ 4.86\\ 1.38\\ 144.4\\ 0.058\\ 4.85\\ 1.48\\ 136.2\\ 0.059\\ 4.83 \end{array}$	$\begin{array}{c} 1. \ 37 \\ 201. \ 3 \\ 0. \ 075 \\ 6. \ 44 \\ 4. \ 420 \\ 202. \ 4 \\ 0. \ 077 \\ 7. \ 74 \\ 1. \ 59 \\ 199. \ 8 \\ 0. \ 078 \\ 6. \ 21 \\ 1. \ 74 \\ 180. \ 5 \\ 0. \ 078 \\ 5. \ 87 \end{array}$	1. 38 267. 0 0. 099 8. 42 1. 84 265. 2 0. 101 8. 24 1. 90 255. 7 0. 102 8. 09 2. 08 242. 6 0. 105 8. 15	35 30 20 10	$ \begin{array}{c} G_{1} \\ G_{2} \\ \hline G_{1} \\ G_{1} \\ G_{2} \\ \hline C_{e} \\ G_{1} \\ \hline G_{2} \\ \hline C_{e} \\ \hline G_{1} \\ \hline G_{2} \\ \hline C_{e} \\ \hline G_{1} \\ \hline G_{2} \\ \hline C_{e} \\ \hline G_{1} \\ \hline C_{e} \\ \hline $	65. 8 2560 0. 006 191. 3 133. 0 2464 0. 008 256. 8 184. 0 3098 0. 008 327. 3 259. 5 2967 0. 010 407. 8	82.9 5958 0.015 309.7 160.9 6112 0.016 348.3 200.4 6115 0.017 430.5 282.8 6192 0.018 492.9	95.8 13688 0.034 525.2 182.3 13897 0.035 549.8 218.1 13488 0.035 613.4 300.3 12824 0.036 667.7	23055 0. 056 750. 2 185. 3 22784 0. 057 761. 2 220. 6 21488 0. 058 824. 6 304. 6 21114 0. 060 878. 9	32416 0.078 984.8 190.1 31982 0.080 987.3 223.1 30793 0.081 1042.5 310.4 29597 0.084 1091.4
35 30 20 10	$\begin{array}{c} G_{1} \\ G_{2} \\ \hline \\ C_{e} \\ G_{12} \\ G_{1} \\ G_{2} \\ \hline \\ G_{1} \\ G_{2} \\ G_{1} \\ G_{1} \\ G_{1} \\ G_{2} \\ G_{1} \\ G_$	$\begin{array}{c} 0.330\\ \hline 33.6\\ \hline 0.014\\ \hline 1.34\\ \hline 0.412\\ \hline 37.7\\ \hline 0.014\\ \hline 1.32\\ \hline 0.451\\ \hline 35.1\\ \hline 0.015\\ \hline 1.39\\ \hline 0.513\\ \hline 35.5\\ \hline 0.015\\ \hline 1.36\\ \hline 0.550\\ \end{array}$	0.756 84.5 0.033 2.94 0.846 85.8 0.034 3.12 0.928 88.8 0.034 2.97 0.990 80.1 0.036 3.03 1.14	$\begin{array}{c} 1.10\\ 147.5\\ 0.056\\ 4.84\\ 1.26\\ 144.6\\ 0.057\\ 4.86\\ 1.38\\ 144.4\\ 0.058\\ 4.85\\ 1.48\\ 136.2\\ 0.059\\ 4.83\\ 1.54 \end{array}$	1. 37 201. 3 0. 075 6. 44 4. 420 202. 4 0. 077 7. 74 1. 59 199. 8 0. 078 6. 21 1. 74 180. 5 0. 078 5. 87 1. 86	1. 38 267. 0 0. 099 8. 42 1. 84 265. 2 0. 101 8. 24 1. 90 255. 7 0. 102 8. 09 2. 08 242. 6 0. 105 8. 15 2. 35	35 30 20 10	$ \begin{array}{c} G_{1} \\ G_{2} \\ G_{1} \\ G_{1} \\ G_{2} \\ G_{1} \\ G_{2} \\ G_{1} \\ G_{1} \\ G_{2} \\ G_{1} \\ G_{2} \\ G_{1} \\ G_{1} \\ G_{2} \\ G_{1} \\ G_{1} \\ G_{2} $	65. 8 2560 0. 006 191. 3 133. 0 2464 0. 008 256. 8 184. 0 3098 0. 008 327. 3 259. 5 2967 0. 010 407. 8 329. 6	82.9 5958 0.015 309.7 160.9 6112 0.016 348.3 200.4 6115 0.017 430.5 282.8 6192 0.018 492.9 348.5	95.8 13688 0.034 525.2 182.3 13897 0.035 549.8 218.1 13488 0.035 613.4 300.3 12824 0.036 667.7 369.8	23055 0. 056 750. 2 185. 3 22784 0. 057 761. 2 220. 6 21488 0. 058 824. 6 304. 6 21114 0. 060 878. 9 373. 3	32416 0.078 984.8 190.1 31982 0.080 987.3 223.1 30793 0.081 1042.5 310.4 29597 0.084 1091.4 382.1

量,所得到的 G₁、G₂ 和 G_{1,2}值列于表 3。与 2.2 中讨论的同样原因,2 种毒性有机物在无机质 上的吸附用 langmuir 等温式拟合;在有机质上 的吸附用线性等温式表示。各吸附等温方程列 于表 4。从表 3 和表 4 可知,随着压力的升高,2 种毒性有机物在 2 种沉积物组分上的吸附量随 之升高,但升高的幅度逐渐降低。这种规律可 用指数方程描述。将极限吸附量 L。和沉积物-

表 2 4 种毒性有机物在不同盐度下的吸附等温线与 L。和 Koc-S 相关方程

沉积	盐度	과 밤 분		N 666	邻苯二甲酸二正丁酯	
物	(‰)	帕基本	1,2,4,5-四飘本	7-000		
	40	$G_{40} = 0.75C_{e}/(0.452+C_{e})$	$G_{40} = 41.7C_e/(0.629 + C_e)$	$G_{40} = 3.52C_e/(0.114 + C_e)$	$G_{40} = 105C_{e}/(3.62 \times 10^{-3} + C_{e})$	
无	35	$G_{35} = 0.82C_{e}/(0.484 + C_{e})$	$G_{35} = 42.6C_e/(0.612 + C_e)$	$G_{35} = 3.82C_e/(0.116 + C_e)$	$G_{35} = 196C_{e}/(2.84 \times 10^{-3} + C_{e})$	
	30	$G_{30} = 0.93C_{e}/(0.514+C_{e})$	$G_{30} = 45.4C_e/(0.636 + C_e)$	$G_{30} = 3.84C_e/(0.106 + C_e)$	$G_{30} = 228C_{e}/(2.02 \times 10^{-3} + C_{e})$	
机	20	$G_{20} = 1.21C_{e}/(0.629 + C_{e})$	$G_{20} = 52.6C_{e}/(0.59 + C_{e})$	$G_{20} = 4.17C_e/(0.107+C_e)$	$G_{20} = 315C_{e}/(1.83 \times 10^{-3} + C_{e})$	
	10	$G_{10} = 1.51C_{e}/(0.654 + C_{e})$	$G_{10} = 58.8C_e/(0.64 + C_e)$	$G_{10} = 4.54C_{e}/(0.11+C_{e})$	$G_{10} = 387C_e/(1.86 \times 10^{-3} + C_e)$	
质	L0-8	$L_0 = 1.744 - 0.026S$	$L_0 = 64.6 - 0.615$ S	$L_0 = 4.84 - 0.032S$	$L_0 = 486.7 - 8.91S$	
	<i>, r</i>	-0.9945	- 0. 9869	-0.9880	-0. 986 0	
	40	$G_{40} = 59.9C_e$	$G_{40} = 1.81 \times 10^3 C_e$	$G_{40} = 2.75 \times 10^3 C_e$	$G_{40} = 4.26 \times 10^5 C_e$	
有	35	$G_{35} = 52.3C_e$	$G_{35} = 1.77 \times 10^{3}C_{e}$	$G_{35} = 2.66 \times 10^3 C_e$	$G_{35} = 4.08 \times 10^5 C_e$	
	30	$G_{30} = 48.5C_e$	$G_{30} = 1.74 \times 10^3 C_e$	$G_{30} = 2.57 \times 10^3 C_e$	G ₃₀ =3.84×10 ⁵ C _e	
机	20	$G_{20} = 39.8C_{e}$	$G_{20} = 1.70 \times 10^3 C_e$	$G_{20} = 2.35 \times 10^3 C_e$	$G_{20} = 3.65 \times 10^5 C_e$	
	10	$G_{10} = 32.5C_e$	$G_{10} = 1.62 \times 10^{3} C_{e}$	$G_{10} = 2.19 \times 10^3 C_e$	$G_{10} = 3.42 \times 10^5 C_{e}$	
质	Koc-S	$K_{OC} = 22.8 \pm 0.88S$	$K_{OC} = 1.56 \times 10^3 + 5.9S$	$Koc = 1.99 \times 10^3 + 19.0S$	$K_{OC} = 3.11 \times 10^5 + 2.73 + 10^3 S$	
	<i>r</i>	0.9924	0. 9924	0. 9985	0. 9854	

压力(MPa)		1,2,4,5-四氯苯					压力(MPa)			γ-666			
	Ce	0.034	0.056	0.078	0.094	0,112		С.	0.015	0.033	0.054	0.068	0. 086
0.1	G_{12}	3.44	6.42	7.49	9.48	10.05	0.1	G_{12}	2.29	4.91	7:49	9.69	11.68
	G_1	2.36	4.52	5.04	6.26	6.43		G_1	1.54	3.08	4.95	5.81	7.12
	G_2	45.7	80.6	102.59	135.2	151.2		G₂	31.4	76.3	106.5	161.0	189.2
	C_{e}	0.032	0.053	0.072	0.089	0.106		C,	0.013	0.032	0.052	0.064	0.085
0.2	G_{12}	3.86	6.35	8.10	10.46	12.08	0.2	G_{12}	2.99	7.49	9.91	13.44	16.00
	G_1	2.68	4.29	5.53	6.72	8.24		G_1	2.16	5.26	6.34	8.92	10.2
	G_2	50.1	86.6	108.3	154.2	161.8		G_2	35.6	94.4	149.4	189.8	242.2
	Ce	0.028	0.050	0.068	0.083	0.099		C_{e}	0.011	0.029	0.051	0.062	0.079
0.3	G_{12}	4.18	6.98	9.71	11.10	13.97	0.3	G_{12}	4.51	8.72	12.81	16.59	20. 33
	G_1	2.84	4.82	6.45	7.58	8.96		G_1	2.56	5.95	8.57	10.9	13.2
	G_2	56.3	108.6	136.9	146.5	209.3		G_2	39.2	116.8	178.4	238.5	298.6
	C.	0.028	0.048	0.066	0.082	0.094		C.	0.009	0.024	0.044	0.058	0.072
0.4	G_{12}	4.42	7.70	10.04	12.71	13.74	0.4	G_{12}	3.81	9.58	14.94	20.46	21.91
	G_1	2.96	4.94	6.48	8.00	8.73		G_1	2.64	6.31	9.32	12.4	12.8
	G_2	61.5	115.4	148.8	196.5	209.0		G_2	49.4	137.2	234.3	334.7	379.7
	C.	0.026	0.046	0.065	0.080	0.093		C.	0.008	0.021	0.039	0.053	0.068
0.5	G_{12}	4.28	7.77	10.30	12.82	14.35	0.5	G_{12}	3.53	9.29	14.67	19.35	22.6
	G_1	2.85	4.94	6.65	8.10	8.96		G_1	2.59	6.17	9.98	12.20	13.9
	G2	60.3	118.2	152.7	202.8	224.6		G2	40.4	131.3	197.6	298.1	362. 0

水分配系数 K_{∞} 与压力 P 相关,得到如下方程: 或

无机组分上 $L_0 = ap^n$ (4)

有机组分上
$$K_{\infty} = bp^m$$
 (5)

对2式取对数,得到:

$$\lg L_0 = \lg a + n \lg P \tag{6}$$

$$\lg K_{\infty} = \lg b + m \lg P \tag{7}$$

(4) 其中 a 和 b 表示压力为 1 时的 L₀ 或 K_∞; n 和 m
(5) 表示压力对 2 个吸附系数 L₀ 和 K_∞的影响程度 的参数,可称压力系数。 用(6)和(7)的截距和 斜率可确定 a、n 和 b、m。2 种毒性有机物的 L₀
(6) 和 K_∞与压力 P 的相关方程列于表 4。

沉积物	压力(MPa)	γ~666	1,2,4,5-四氯苯					
无机物	0.1	$G_1 = 28.7C_e/(0.265+C_e)$	r=0.9927	$G_1 = 45. \ 4C_{\rm e}/(0.596 + C_{\rm e})$	r=0.9658			
	0.2	$G_2 = 31.0C_e/(0.161 + C_e)$	r = 0.9867	$G_2 = 49.8C_e/(0.565 + C_e)$	r = 0.9815			
	0.3	$G_3 = 35. 2C_e / (0.141 + C_e)$	r=0.9829	$G_3 = 55.7C_e/(0.524 + C_e)$	r = 0.9926			
	0.4	$G_4 = 36.2C_e/(0.118 + C_e)$	r=0.9565	$G_4 = 57.3C_e/(0.511 + C_e)$	r=0.9736			
	0.5	$G_5 = 37.0C_e/(0.102 + C_e)$	r = 0.9920	$G_5 = 58.8C_e/(0.505 + C_e)$	r = 0.9627			
	L_0-P	$L_0 = 41.97 P^{0.169}$	r = 0.9797	$L_0 = 66.7 P^{0.169}$	r=0.9881			
	0.1	$G_1 = 2.25 \times 10^3 C_e$	r=0.9520	$G_1 = 1.40 \times 10^3 C_e$	r=0.9546			
	0.2	$G_2 = 2.92 \times 10^3 C_e$	r=0.9521	$G_2 = 1.60 \times 10^3 C_e$	r = 0.9455			
右机物	0.3	$G_3 = 3.82 \times 10^3 C_e$	r=0.9694	$G_3 = 1.97 \times 10^3 C_e$	r=0.9900			
11 10.100	0.4	$G_4 = 5.37 \times 10^3 C_e$	r = 0.9970	$G_4 = 2.33 \times 10^3 C_e$	r = 0.9650			
	0.5	$G_5 = 5.30 \times 10^3 C_e$	r=0.9611	$G_5 = 2.46 \times 10^3 C_e$	r = 0.9650			
	Koc-P	$K_{\rm OC} = 8.12 \times 10^3 P^{0.502}$	r=0.9744	$K_{\rm OC} = 3.15 \times 10^3 P^{0.371}$	r=0.9767			

表 4 2 种毒性有机物在不同压力下的吸附等温线与 L_a和 K_{oc}-P 相关方程

从以上结果可知, 压力对吸附行为具有明显的影响。2种毒性有机物的 L_0 和 K_{∞} 在0.1— 0.5 MPa 内增大 28.9%—130%。可见, 具有相同组成的沉积物在深的海域比在浅的海域具有 更高的吸附容量。因此, 对海域有机物的污染研究时, 压力对吸附的影响不容忽略。

3 结论

(1)在10%一40%盐度变化范围内,随着盐度的升高,沉积物中无机组分对4种毒性有机物的吸附能力呈线性降低;有机组分的吸附能力呈线性降低;有机组分的吸附能力呈线性增高。其变化范围为11.7%—84.3%。

(2)在0.1—0.5 MPa的压力变化范围内, 随着压力的升高,沉积物中无机组分和有机组 分对2种毒性有机物的吸附能力增高。但随着 压力的增大,吸附能力增加幅度减小。这种规 律可用指数方程描述。

(3)各种因素对沉积物中各组分吸附毒性 有机物的影响,可用化学逐级分离法分别描述。

参考文献

- Gu B, Schmitt J, Chen Z, et al., Adsorption and Desorption of Natural Organic Matter on Irom Oxide: Mechanisms and Models. Environ. Sci. Technol., 1994, 28:38-46
- 2 Maaret K, Leif K, and Bjarne H. Stadies on the Partition Behavior of three Organic Hydropobic Pollutants in Natural Humic Water. Chemosphere., 1992, 24: 919-925
- 3 Oepen B, Kordel W and Klein W. Sorption of Nonpolar and Polar Compounds to Soils: Processes, Measurements and Experience with the Applicability of the Modified OECD-Guideline 106. Chemosphere., 1991, 22: 285-304
- 4 薛大明,全燮等。沉积物的逐级分离与硝基苯的吸附。环境 化学。1994,13(2):107-112
- 5 薛文山,曾北危编。环境监测分析手册。太原:山西科学教 育出版社,1988:321-324

·环境信息·

欢迎购阅《白洋淀污染调查与污染控制专题文集》

《白洋淀污染调查与污染控制专题文集》 (《环境科学》增刊)于1995年12月出版。《文集》 精选了关于白洋淀污染现状调查、污染控制措施、治理对策和作为白洋淀主要污染源之一的 棉浆废水、糠醛废水、粘胶人造丝含锌废水等 的处理技术的论文35篇。论文简炼明晰,实用 性较强,可供其他平原浅水湖的污染防治和类 似废水的处理借鉴。

《文集》约13万字,定价8元/册(含邮资)。 欲购者请将书款汇到北京2871信息《环境科学》 编辑部,邮编100085。请在汇款单上写清所购 书名和数量。联系电话:2545511-2138,联系 人:万维纲。

HUANJING KEXUE

Abstracts

A Study on the Biodegradation of Organic Substances by ATP Test. Sun Lixin et al. (Dept. of Environ. Eng., Tsinghua Univ., Beijing 100084): Chin. J. Environ. Sci., 17(1), 1996, pp. 1-4

In this paper, the aerobic biodegradation of organic substances is characterized by the determination of the energy change, ATP content in microbial cells during the biodegradation. A satisfactory result was obtained under the following conditions: the initial concentration of the tested substance is 100 mg/L (as DOC), the amount of the inoculum in the biological medium is 500 mg/L (as MLSS), and the duration of test time is 14 days. The evaluating system (peak time, peak height index and IA index) is proposed to assess the biodegradability of 40 organic substances and 7 wastewater.

Key words: biodegradation, ATP, ATP test, IA index.

Effect of Salinity and Water Pressure on Adsorption of Toxic Organic Chemicals on Separated Submarine Sediment. Quan Xie et al. (Dalian Univ. of Technology, Dalian 116012): Chin. J. Environ. Sci., 17(1), 1996, pp. 5-9

The organic and inorganic components of the submarine sediment from Dalian Bay were separated with a sequential chemical separation procedure. The adsorption of several toxic organic chemicals (TOCs) on the separated sediment samples and the effect of salinity and water pressure on the adsorptions were investigated. The conclusions were made as follows: (1) The adsorption capacity of organic components on the sediment increased as the salinity of water increased, but reduced for inorganic components. The relationships could be described with linear equations. (2) The adsorption capacity of both organic and inorganic components increased as the water pressure increased. The relationships could be described with exponential equations.

Key words: salinity, water pressure, submarine sediment, toxic organic chemicals.

The Influence of Diffusive Processes on Overlying Waters at the Sediment-water Interface of Lake Lugu. Wu Fengchang and Wan Guojiang (State Key Lab. of Environ. Geochem., Chinese Academy of Sciences, Guiyang 550002); Chin. J. Environ. Sci., 17(1), 1996, pp. 10 -12

Through the study on Ca^{2+} , K^+ , Na^+ , HCO_3^- and pH profiles of water column and porewater of Lake Lugu, Yunnan, a half-close and deep lake, it was found that Ca^{2+} , K^+ , Na^+ and HCO_3^- in the sediments could diffuse to overlying water and their diffusive flux and their influence extent on overlying water could be quantitatively estimated. At also indicates that the interreactions between sediment and water play a significant role in controlling basic chemical composition of some lakes.

Key words: diffusive processes, sediment-water interface, Lake Lugu.

The Experimental Study on Decolorization of Dye Wastewater with Pulse Corona Discharge. Li Shengli et

al. (Environment Center of Science and Technology, HUST 430074): Chin. J. Environ. Sci., 17(1), 1996, pp. 13-15

A new method to decolor dye wastewater with pulse corona discharge has been developed. Nonequilibrium plasma produced by high voltage pulse discharge contacts with dye wastewater and decolorization of dye wastewater can be achieved quickly. The results showed that the decolorization rate can be reached more than 95% by treating wastewater for 40 s at pulse peak voltage of 38 kV and there is influence, of pH value on decolorization rate. When pulse peak voltage is lower, the influences of pH value on decolorization rate are appeared. The decolorization rate of neutral dye wastewater is only reached about 40% - 50% after treating for 40 s. However, the decolorization rate can be reached more than 80% at pH ${<}4$ or >7. The experimental results of adding NaCl or Na₂SO₄ into dye wastewater have showed that Cl- is able to decrease decolorization and SO₄²⁻ just opposite.

Key words: dye wastewater, decolorization, pulse corona discharge, pulse peak voltage.

Study on the Leaching Experiments of Minor and Trace Elements in Coal and Its Burnt Products. Wang Yunquan et al. (Beijing Graduate School, China Univer. of Mining and Technology, Beijing 100083): Chin. J. Environ. Sci., 17(1), 1996, pp. 16–18

The comparative leaching experiments of coal (C), ashing ash (AA), fly ash (FA) and bottom ash (BA) have been carried out under different pH conditions. The leaching behaviour of As, Zn, Pb, Ni and Sr have been investigated in detail. The results have shown that the pH values of solution, leaching time, and particularly, the properties and species of the elements existed have heavily influenced on the leaching behaviour of elements. Among the 5 elements analysed, the leaching ability of Sr is strong, Pb and As strong to middle, Ni middle and Zn weak.

Key words: coal and its burnt products, minor and trace elements, leaching experiments.

A Study on Adsorption, Desorption and Biodegradation of Pentachlorophenol by Anaerobic Granular Sludge. Shen Dongsheng et al. (Dept. of Environ. Science, Zhejiang Agricultural Univ., Hangzhou, 310029); Chin. J. Environ. Sci., **17**(1), 1996, pp. 20–23

PCP degrading anaerobic sludge granules may be developed in upflow anaerobic digestion reactors (UAD) seeded with sludges acclimated to chlorophenols, the reactors are able to remove more than 99.5% of PCP in a synthetic wastewater at the concentration of 170 to 180 mg/L, volumetric loading rate up to 200 to 220 mg/(L \cdot d), and hydraulic retention time of 20 to 22 hours. Biosorption and desorption isotherms of pentachlorophenol were determined, and the data were fitted to Freundlich equation. However, it was found that the biosorption of PCP was partly irreversible, and the Freundlich models with empirical constants determined from this study can quite well describe the partition behavior of pentachlorophenol in anaerobic upflow digestion reactor. It was demonstrated