监测分析

在混酸溶液中用 MnSO4 作催化剂快速测定废水 COD

胡 国 强 梁 杉 垣 (辽阳石油化工支科学校)

杨惠玲

(辽阳石油化学纤维公司)

摘要 本文提出以 MnSO₄ 作催化剂,在 $H_2SO_4-H_3PO_4$ 混絵溶液中快速测定废水 COD 的新方法。正 交实验确定的最佳测定条件是: MnSO₄ 0.2g; $H_2SO_4:H_3PO_4=5$ (体积比); 回流时间1 小时, 通过对废水 COD 的测定,取得与标准法相近的结果。 回流时间缩短至1 小时,试剂费用降低 75%。

采用标准重铬酸钾法测定废水 COD 时, 回流时间长达二小时, 而且每测一个水样 要使用 0.4-1.0 g 贵重的 Ag₂SO, 作催化剂, 其磅用约占 COD 测定全部 试剂费用的 70%[1,2]。 因此寻求一种既能节省耗费的催 化剂,又能满足快速要求的 COD 测定方法 成为必要。Wilson^[3] 提出用 Ag₂SO₄、Al₂。 (SO), 和 MgSO, 代替 Ag2SO, 作催化剂测 定 COD, 取得与标准法具有可比性的实验 结果. 國内有人[4] 用硫酸锰作 COD 测定的 催化剂, 得到满意的结果, 但回流时间仍是二 小时。 Jeris 等[5,6] 提出在硫酸-磷酸混合酸 中可快速测定 COD, 但仍用硫酸银作催化 剂,发金费用没有减少。本文提出以 MnSO4 作催化剂,仍用重铬酸钾氧化法,在硫酸磷酸 混合酸中快速测定废水 COD 的新方法。回 流时间缩短一小时,试剂费用降低75%。

实验部分

一、仪器及主要试剂

1. 仪 靐

- (1) 可调 6 × 1000 W 电热器 (丹东医疗器械厂);
- (2) 标准磨口 250 ml 三角烧瓶, 33 cm 球形冷豪管 COD 回流装置 (北京玻璃仪器厂).
 - 2. 试剂

- (1) 硫酸锰催化剂溶液 称取 6.0 g 分析纯硫酸锰 (MnSO₄·H₂O) 置于烧杯中,加入 500 ml 浓硫酸,加热溶解,再加入 100 ml 浓磷酸,混匀后移入棕色试剂瓶中。该溶液 20 ml 中含硫酸锰 0.2 g;
 - (2) 其他试剂与标准法凹相同配制。
 - 二、实验方法

吸取 10 ml 水样置于 250 ml 三角燒瓶中,加入 10 ml 0.04 mol 重鉛液钾标准溶液,慢慢加入 20 ml 硫酸锰催化剂溶液和几粒玻璃珠,轻轻摇动三角瓶使溶液混匀。接上冷凝管,加热回流一小时,同时用 10 ml 蒸馏水作空白。冷却后用少量蒸馏水冲洗冷凝管 2—3 次。取下三角瓶,加入蒸馏水使体积为140 ml,加入 2 滴邻二氮杂非亚铁盘指示剂,用硫酸亚铁铵标准溶液滴定至溶液由黄色经蓝绿刚变红褐色为止。记录消耗硫酸亚铁铵标准溶液的毫升数,与标准法相同计算测定结果。

结果及讨论

一、最佳测定条件的选择

用 L₂(3⁴) 正交实验确定方法的最佳测定条件。以苯二甲酸氢钾标准 COD 样为测定对象,进行正交实验,实验安排及结果见表1。九组合实验,每组测二次,求二次的平均回收率,回收率越高越好。

表1 L₃(3') 正交实验表

	实 验	计 划		实	验 结	果
安监号	MnSO, 用量 (g) A	H ₂ SO ₄ : H ₃ PO ₄ (体积) B	回流时间 (min) C	COD 真值 (mg/L)	测定的 COD 值 (mg/L)	回收率 (%)
1	1(0.2)	1(5:1)	1(30)	500	494.42	98.88
2	1(0.2)	2(4:1)	2(60)	500	486.84	97.37
3	1(0.2)	3(3:1)	3(90)	500	487.05	94.41
4	2(0.3)	1(5:1)	2(60)	500	488.44	97.91
5	2(0.3)	2(4:1)	3(90)	500	488.04	97.61
6	2(0.3)	3(3:1)	1(30)	500	479.28	95.86
7	3(0.6)	1(5:1)	3(90)	500	483.06	96.61
8	3(0.6)	2(4:1)	1(30)	500	487.21	97.44
9	3(0.6)	3(3:1)	2(60)	500	470.11	94.02
K ₁	293.66	293.18	292.18			
K ₂	291.16	292.42	289.08			
Κ,	288.07	287.29	291.63			
$ar{k}_1$	97.89	97.73	97.39	T = 872.89%		
\tilde{k}_{z}	96.02	97.47	96.39			
k,	97.05	95.76	97.21			
极差R	1.87	1.97	1.00			

通过方差分析和F检验,以及考虑到实际废水较难氧化等因素,选取 A_1 、 B_1 、 C_2 为最佳测定条件,即 MnSO, 0.2g, H_2SO ,: H_3PO = 5:1,回流时间一小时。 以正交实验选取的 B_1 、 C_2 条件,用 500 mg/L 标准 COD 一进一步做了 MnSO4 用量选择实验,结果见 114.

图 1 MnSO。用量选择实验结果

由图 1 可以看出,当 MnSO₄ 用量超过 0.1 g 时,回收率趋于平稳。本实验选用 0.2 g MnSO₄,与正交实验的结果相同。以 A₁B₁C₂ 组合对 500 mg/L 标准 COD 样进行三次平行测定,回收率为 99.57%。

有人^[7]研究了 COD 测定中硫酸银的催化机理,认为有机物中含羟基的化合物在强

酸性介质中,首先被氧化成羧酸,生成的脂肪 酸与硫酸银作用生成脂肪酸银, 使羧基易于 断裂而生成二氧化碳和水, 并进一步生成少 一个碳原子的脂肪酸银,如此循环重复,逐 步使有机物氧化成二氧化碳和水, 文献[8] 指 出,在重铬酸钾的酸性溶液中,正二价锰可被 氧化成正三价锰,生成棕黑色的三氧化二锰, 它是烃类氧化的强催化剂。 在本实验中, 当 MnSO, 加入到重铬酸钾的酸性溶液中后, Mn2+ 可能被氧化成 Mn3+, 但并没有观察 到 Mn₂O。的生成。所以可以认为, Mn³⁺ 作 为中间反应产物而加速了氧化反 应, 并且 Mn³⁺ 也可能象 Ag⁺ 一样, 形成有机脂肪酸 锰游离基, 进而使有机物加速氧化成二氧化 碳和水. 此外,磷酸是比较粘稠的弱酸,能将 有机物吸附在其周围, 使有机物浓度相对提 高,从而加快有机物的氧化。

二、Cl- 干扰的去除

当水样中含有 Cl⁻ 时,消耗重铬酸钾而 使测定结果偏高,所以必须在加入重铬酸钾 前将 Cl⁻ 加以掩蔽。本文仍选用 HgSO,作 Cl⁻ 的掩蔽剂,使用后可回收再用。用加有Cl⁻ 的标准 COD 样做了 HgSO₄ 加入量考察实验。由结果可知,当 HgSO₄ 的加入量(mg)与水样中 Cl⁻ 浓度(mg/L)之比为0.4 时,即可消除 Cl⁻ 的干扰。在测定含有 Cl⁻ 的废水样时,是按这一比例来加入HgSO₄ 的。

三、方法精密度和准确度

对标准 COD 样和实际废水样各做了野次平行测定,结果见表 2. 由表 2 可知,标准 COD 样标准偏差±1.577 mg/L,变异系数 0.322%;废水样标准偏差±0.743 mg/L,变异系数 0.201%.

表 2 精密度实验结果

实验号	准标 COD 样 (mg/L)	废水 COD 样 (mg/L)				
1	487.14	368.97				
2	489.15	369.80				
3	485.13	369.80				
4	489.15	368.97				
5	488.35	368.13				
6	488.35	369.81				
7	489.15	368.13				
8	487.14	368.97				
9	489.95	368.97				
10	490.76	368.13				
11	489.55	370.66				
12	490.35	368.97				
13	491.16	368.97				
14	489.95	368.81				
15	489.55	369.81				
平均值	488.989	369.193				
标准偏差	±1.577mg/L	±0.743mg/L				
变异系数	0.322%	0.201%				

对两种不同浓度的标准 COD 样进行测定,计算回收率,结果见表 3. 由表 3 可知,本方法对两种标准 COD 样的回收率均在97%以上,与标准法¹¹相当.

四、本方法与标准法的比较

1. 测定石油化工废水 COD 结果比较 取辽阳石油化纤公司有代表性的废水样 12个,用本方法和标准法同时测定,结果见表 4. 由表 4结果可知,本方法与标准法的测定结果基本一致,因此本方法是可行的。

表 3 方法国收率

苯二甲酸	氢钾标准	COD 样	葡萄糖标准 COD 样		
COD 真值 (mg/L)	本法测 定值 (mg/L)	回收率 (%)	COD 吳值 (mg/L)	本法测 定值 (mg/L)	回收率(%)
250	248.51 247.67 247.65	99.40 99.07 99.07	300	293.51 294.81 294.96	97.84 98.28 98.32
平均	247.65	99.18	平均	294.43	98.15
500	497.86 497.86 497.86	99.57 99.57 99.57	400	39 6.77 396.77 397.61	99.19 99.19 99.40
平均	497.86	99.57	平均	397.05	99.26
750	741.31 740.86 741.56	98.84 98.78 98.87	600	589.68 591.36 594.10	98.28 98.56 99.06
平均	741.24	98.83	平均	591.71	98.62

表 4 实际废水 COD 测定结果比较

z K名称		标准法测定的 COD 值 (mg/L) B	相对误差 A-B B 100%
化工二厂醇酮废水	730.36	741.89	-1.5
化工二厂含油废水1#	943.48	887.89	+6.5
化工二厂含油废水 2#	634.33	638.12	-0.6
化工二厂有机废水	675.61	646.54	+4.3
化工三厂含油废水	560.20	577.04	-2.9
化工实验厂废水	662.97	682.34	-2.8
纤维厂废水	178.59	172.00	+3.8
供排水厂混合废水	2585.34	2695.26	-4.1
供排水厂出水	96.03	92.88	+3.4
供排水厂均质池水	2633.34	2704.11	-2.6
供排水厂贮存池水	727.84	756.16	-3.8
供排水厂二沉池水	106.57	102.19	+0.4

2. 试剂费用比较

由于本方法所用硫酸锰比硫酸银便宜许多,测定一个水样试剂费用只有 0.16 元,而标准法要用 0.68 元,试剂费用减少 75%,回流时间也由二小时缩短至一小时(表 5)。

表 5 本方法与标准法试剂费用比较

本之	方法	标准法		
用量	费用× 100 (元)	用量	费用× 100(元)	
0.12	0.42	0.12	0.42	
0.40	2.40	0.40	2.40	
0.75	0.52	0.75	0.52	
16.50	8.42	30	15.30	
3.50	3.93	0	0	
0	0	0.40	49.12	
0.20	0.30	0	0	
15.99		67.76		
60		120		
	用量 0.12 0.40 0.75 16.50 3.50 0 0.20	用盤 100 (元) 0.12 0.42 0.40 2.40 0.75 0.52 16.50 8.42 3.50 3.93 0 0 0.20 0.30	用量	

^{*} 按平均消耗 0.1 N 硫酸亚铁铵 18 ml计算.

结 论

本实验结果说明, 硫酸锰对重铬酸钾氧

化还原性物质有较强的催化作用,用硫酸锰代替硫酸银作催化剂,在硫酸磷酸混合溶液中,可快速测定废水 COD. 测定精度和准确度较高,回流时间由标准法的二小时缩短至一小时,试剂费用比标准法降低 75%.

参 考 文 献

- [1] 环境监测分析方法编写组,环境监测分析方法,153 -155页,中国环境科学出版社,北京1986年.
- 「2] 胡国强,环境科技,8(3),85(1988).
- [3] Wilson, R. F., C.A., 88, 41460k (1978).
- [4] 杨丽娟等,上海环境科学,7(1),25(1988).
- [5] Jeris, J.S., Water Wastes Engineering, 4(5), 89(1967).
- [6.] Wells, W.N., Water and Sewage Works, 117, 123(1970).
- [7] 尹洧等,上海环境科学,4(7),32(1985).
- [8] 孙年禧,给水排水,(5),30(1982).

(收稿日期: 1988年9月5日)

离子交换分离偶氮氯膦 III 钡光度法 快速测定地表水中的硫酸根

丘星初 刘国平 朱盈权 (江西省赣州地区环境科学研究所)

摘要 本文报告一个测定硫酸根的快速光度法,方法基于在酸性乙醇介质中 SO²⁻ 与 CPAIII-Ba²⁺ 的反应. 在 15 毫升显色液中,SO²⁻ 浓度介于 20—120 微克遵守比尔定律,表观摩尔吸光系数 8′=6.3×10³ 升·摩尔⁻¹· 厘米⁻¹. 显色体系至少能稳定 24 小时,阳离子的干扰用强酸型阳离子交换树脂分离. 水样测定的相对标准偏差为 1.85--3.10%.

水质中硫酸根的测定,常用硫酸钡比浊 法和铬酸钡间接光度法[1-3]。前法简便,但工作曲线线性关系不良,定量精度较差;后法则需分离铬酸钡沉淀,操作手续较繁,我们曾用偶氮氯膦 III 间接光度法测定硫酸根[13],但也未解决沉淀分离之弊。本文提出用偶氮氯膦 III 钡作显色剂测定硫酸根,方法简便快速,应用于地表水中硫酸根的测定,结果甚佳。

实验部分

一、仪器和试剂配制721型分光光度计。

偶氮氯膦 III 钡溶液 (A) 8 × 10⁻⁴ M 的偶氮氯膦 III 的 95%乙醇溶液 (B) 4× 10⁻⁴ M 氯化钡溶液: 称取结晶氯化钡 $(BaCl_2 \cdot 2H_2O)$ 97.7 毫克溶于 10 毫升 1M 盐酸中,然后用 95%乙醇稀释至 1 升。使用