• 62 •

气溶胶粒度谱不同观测方法的比较*

秦 瑜 毛节泰

(北京大学地球物理系)

一、引 言

大气中悬浮粒子的大小谱分布是大气气 溶胶物理特性的重要参量.无论是大气污染、 大气光学传输或是云和降水物理的研究都从 各自需要出发对其进行研究.

气溶胶粒度谱的测量大致可分为三类方 法:¹¹¹

1. 直接测量.利用惯性沉降或热、电沉 降法将粒子沉降在取样片上,或用一定孔径 的滤膜过滤空气,使粒子沉积在膜片上,然后 用各种方法进行读数或计测. 膜片上的粒子 可用光学或电子显微镜逐个测量,最后得到 粒子的谱分布. 热、电沉降多用于取小尺度 的粒子. 惯性沉降法取得的粒子尺度也有一 定的范围. 如多级撞击式取样器,各级粒子 尺度有一些重迭. 滤膜孔径大小不同,流速 不同,粒子取样尺度的下限也不同.

2. 个别粒子的光、电特性测量.如用光 电粒子计数器,对通过光束的单个粒子用光 电系统和相应的电子线路对粒子散射光产生 的光脉冲进行逐个甄别计数,从而实现自动 检测粒子的谱分布.为了得到正确的谱分布, 对光路的均匀性和电路的稳定性提出了很高 的要求,但仍有粒子因出现在光路边缘,信号 偏小;从而使判断尺度偏小,这就是边缘效 应.当粒子浓度过高,在光束中同时出现二 个以上粒子,使小粒径的粒子浓度减低而大 粒径的粒子浓度增大,这就是符合误差.

3. 粒子总体光学特征参数测量,如光学

厚度,消光系数,散射方向性函数等。用这些 特征量随光波长或角度变化的多个量值测量 反演粒子谱分布.这样的仪器有积分散射度 计(nephelometer),激光雷达,望远光度计 等.这些光学参数的测量不难实现自动检测, 但利用光学参数反演粒子谱时对测量误差十 分敏感,反演结果未必是唯一的,需要用优化 方法计算得到近似解.

这三种方法目前都有应用,但尚很少见 到同时应用三种方法测量结果的比较.为了 检验这些方法的适用范围,我们在1984年春 于北京进行了对比测量,得到了一些有意义 的结果.

二、测量方法

1. 滤膜法 我们用稍作改装的 KB-40 型空气采样泵,采用直径 25mm, 孔径 0.4μm 的聚碳酸酯滤膜(Nuclepore)取样, 抽气速 度为 1m³/h, 采样时间为 0.5 到 2 小时.采 样后将膜片制成样片,用 S4-10 型扫描电子 显微镜和光学显微镜照相和读数.Nuclepore 滤膜属静电型塑料膜, 孔呈圆形, 大小均匀. 在所用的条件下可取到直径 0.1μm 的粒子. 直径 0.3μm 以上的粒子可按 100%取样考 虑.我们将这种方法的结果作为绝对法,粒 子尺度取直径在 0.2μm 以上,

2. 光电粒子计数器方法 采用苏州净化 设备厂生产的 Y09-4 型尘埃粒子计数器.仪

^{*} 参加观测和资料整理的还有蔡旭晖、黎洁、邵选民。

器共分六档 (0.3—0.5—1.0—2.0—5.0—10.0 和>10.0µm),可轮流显示各档粒子的浓度. 每次采样时间为 1min,采样体积为 11. 工厂 给出仪器可用的最高计数浓度为 3.5×10⁴/l, 但实际大气中的浓度常常要超过此值,常在 5.0×10⁴/l左右,因此有比较明显的符合误 差.粒子计数器的另一个特点是采样体积小 (11),为了和其它方法比较,我们采用了多次 读数平均(7次).

3. 望远光度计方法 采用自制的多波段 望远光度计^[2],对不同距离目标物作能见度 测量,然后反演粒子谱.仪器有一个f = 300 mm 的望远镜,后接一个由马达驱动的转轮, 上置八片干涉滤光片,再接光电检测和记录 设备.转轮每分钟转一周,轮流测量八个波 段的光度.在反演气溶胶粒度谱时我们仅用 了 6 个波长:0.4048,0.5000,0.5940,0.7630, 0.8815 和 1.0600 μ m.能见度测量的目标物 采用同方向上两个反射率相似的砖墙,离测 点距离 $L_1 = 730$ m, $L_2 = 30$ m. 气柱中粒 子的消光系数 $\beta_{ex}(\lambda_i)$ 与目标物亮度 B_1, B_2 和天空亮度 B_0 的关系可写作

$$\beta_{ex}(\lambda_j) = \frac{1}{L_1 - L_2} \ln \left(\frac{B_1 - B_0}{B_2 - B_0} \right)$$

又因

$$\beta_{ex}(\lambda_j) = \int_0^\infty \pi r^2 Q_{ex}(m, \lambda_j, r) n(r) dr$$

其中 r 为粒子半径, m 为粒子折射率, λ; 为光 波波长, Q_{ex} 为单个粒子的消光效率. n(r) 为粒子数密度随尺度分布谱.反演粒度谱时 采用随机最小二乘法.^[3]由散射理论得知, 粒 子最大消光效率出现于大约和波长相当的尺 度上,因而我们反演谱的上限也取直径 3.0 μm.

三、测 量 结 果

1984 年 4 月 17 日至 5 月 3 日共作了 9 天观测,每天在下午二时进行。在观测日中 包括了一般晴天,扬尘天,尘暴和阴天。能见 **科 学** 度为 3—15km。

图 1 给出了三种取样方法得到的粒度谱 分布的典型情况。可以看出,光电计数器法 (光电法)所得的谱大小尺度粒子浓度相差最 小,即曲线最平坦,滤膜法居中,望远光度计 方法(光度法)大小粒子浓度差最大。在半径 0.2—1.0µm 区间,三种方法符合较好,而在 二端偏离较大。由边缘效应和符合效应使光 电法所测的粒子浓度随尺度分布趋于平均 化,从这里可以得到证实。特别在两端,小粒 子浓度因符合计数而减少,大粒子浓度有所 增加。

从按滤膜法测量的 11 个样本来看,粒度 谱更接近于两个对数正态分布的迭加,这和 Whitby^[4] 的结果一致.我们取

$$n(r)dr = \frac{1}{\sqrt{2\pi r}} \left\{ \frac{1}{\sigma_1} \exp\left[-\frac{(\ln r/r_1)^2}{2\sigma_1^2}\right] + \frac{k}{\sigma_2} \exp\left[-\frac{(\ln r/r_2)^2}{2\sigma_2^2}\right] \right\}$$

其中 r1, r2 为大小两个几何平均半径, σ1, σ2 为方差, k 为第二峰值对第一峰值的浓度比. 用正交设计法对上述五个参数进行拟合,最 后拟合误差一般在 20% 以内,最小的仅 11%.

为了进一步看出三种方法测量之间的离 散情况,分别计算了三种方法两两对比的逐 日和不同尺度的平均离差,定义

$$\sigma_i^{AB} = \sqrt{\frac{\sum_{i=1}^{k_1} \left[\lg n_i^A(r_j) - \lg n_i^B(r_j) \right]^2}{k_1}}$$

• 64 · 环境

$$\sigma_i^{AB} = \sqrt{\frac{\sum_{j=1}^{k_2} \left[\lg n_i^A(r_j) - \lg n_i^B(r_j) \right]^2}{k_2}}$$

*i、i*分别代表不同的取样日期和半径分档, *A、B*分别代表不同的取样方法, *k*₁、*k*₂分别 代表观测的日数和半径分档数. σ,^{AB}为固定 某一半径 *r*_i,考虑在各取样日, A、B 两种方 法所得的粒子浓度比 $n_i^A(r_i)/n_i^B(r_i)$ 对数的 方差,而 σ_i^{A8} 则是指第 *i* 天用两种不同方法 所测各种粒子浓度比 $n_i^A(r_i)/n_i^B(r_i)$ 对数的 方差.上面二种离差均是浓度比对数的离差, 因此当 $\sigma = 0.3$,则浓度比为 2, $\sigma = 1$,浓 度差为一个量级.现将结果列于表 1.

从表1可以看出,九天门雪中以光电法

日期	光电-滤膜	光电-光度	光度-滤膜
4.17	0.607	0.578	0.451
4.18	0.258	0.586	0.621
4.19	0.182	0.650	0.650
4.23	0.500	0.971	0.670
4.24	0.658	0.644	0.861
4.26	0.440	0.907	0.587
4.29	0.290	0.668	0.580
4.30	0.329	0.729	0.798
5.3	0.401	1.219	1.064

表1 逐日平均离差 o^{AB}

科

学

表2 尺度平均离差 o^{AB}

<i>r</i> (μm)	光电-滤膜	光电-光度	光度-滤膜
0.2	0.344	0.698	0.453
0.35	0.214	0.358	0.400
0.7	0.435	0.479	0.619
1.6	0.372	1.309	1.148
3.5	0.811		

和滤膜法之间平均离差最小,为0.182-0.658,相当于浓度比1.52-4.55倍.而光电 法和光度法离差最大,为0.578-1.219,相当 于浓度比3.78-13.46倍,从表2可以看出 以 $r = 0.35 \mu m$ 为最好,其中光电法与滤膜 法离差仅0.214,浓度比为1.64倍.光电法 与光度法离差在1.6 μm 处最大,为1.309,浓 度比为20.37倍.从趋势看,光电法与滤膜法 半径在0.20-1.6 μm 间隔内离差很接近.由 比较结果看,光电法在0.2-1.6 μm 半径区 间,光度法在0.2-1.0 μm 区间内所得的粒 子浓度分布还是和实际结果基本相符的.

四、 讨 论

1. 使用光电粒子计数器和望远光度计作

粒度谱测量,可以实现自动记录,得到大容量 的资料,有利于环境监测。在 0.2—1.0μm 半 径范围内,光电法和光度法都可以考虑采用。

2. 光电法在大、小粒子两端会造成较大 的误差,整个谱分布比实际平坦,有平均化倾 向。即使粒子尺度的档分得再细,此缺点也 难避免。如果为计数器配置适当的稀释器或 适当降低抽气速度,控制粒子通过光场时的 密度,这一缺点可望有所改善.

3. 望远光度计法在测量光学参数的同时 得到粒度谱分布,方法简便,一举二得.可 是,受粒子光学效应与波长有关的影响,只适 于测量 0.1-1.0μm 尺度的粒度 谱.如对粒 度谱反演的初值加以改进,可使小粒子端拟 合得更好. l

ł

1

in the

表 3 非球形粒子订正因子 K

形状	К	说 明	
	1		
球 売	1.44($\triangle R/R$) ^{1/3}	R为球半径, △R 为球壳厚, △R/R≪1	
半 球 盖	$1.23(\Delta R/R)^{1/3}$	R为球半径, A R为球盖厚度, A R/R≪1,	
		下落方向为赤道面朝下	
正方体	0.921		
椭 球	$5X^{1/3}/(4 + X)$	旋转轴C平行于地面,X=C/R>1,R为旋转半径	
	$2.5X^{1/3}/(1.5 + X)$	X = C/R < 1,旋转轴C垂直于地面	
针状体	$1.5X^{-2/3}(\ln 2X - 0.5)$	旋转轴平行于地面, $X = C/R \gg 1$	
	$1.5X^{-2/3}(\ln 2X + 0.5)$	旋转轴垂直于地面, $X = C/R \gg 1$	
盘状	$0.375X^{1/3}f_1(X)^*$	旋转轴平行于地面, $X = C/R \ll 1$	
	$0.375X^{1/3}f_2(X)^{**}$	旋转轴垂直于地面, $X = C/R \ll 1$	
柱 状 体	$1.72X^{-2/3}(\ln 2X - 0.72)$	圆柱高为h,半径为R,旋转轴平行于地面,X=h/2R	
	$0.86X^{-2/3}(\ln 2X + 0.5)$	旋转轴垂直于地面	

• $f_1(X) = 2X/(1 - X^2) + [2(1 - 2X^2)/(1 - X^2)^{3/2}] \tan^{-1}[(1 - X^2)^{1/2}/X]$

** $f_2(X) = -X/(1-X^2) - [(2X^2-3)/(1-X^2)^{3/2}]\sin^{-1}(1-X^2)^{1/2}$

4. 滤膜法作为三种方法中绝对法使用, 也有一定的缺点。在大粒子端,仅有几个,十 几个 μm 尺度的粒子,空间浓度过小,读数的 代表性难以得到保证。

5. 上面所讨论的三种方法均属光学粒径 的测定,即测定粒子的几何平均(或等效)半 径,而较少涉及粒子的其它物理特性,如质量 密度、形状和表面结构等。几何平均半径在 大气光学、能见度等领域中有广泛的应用.在 环境污染监测工作中对粒子的沉降、清除等 动力学过程有较大的兴趣。这时粒子运动的 情况不仅取决于其大小,而且和其形状、密 度、表面结构等多种因子有关。因此近年来 常用空气动力学当量半径来描述粒子的大 小。所谓空气动力学当量半径是考虑二个粒 子同时在空气中下落,其中一个是球形粒子, 密度为 lg/cm3,而另一个为任意形状和密度 的粒子,当这两个粒子下落速度相同时,前一 个球状粒子的半径即为后一个粒子的空气动 力学当量半径。 对密度不是 1g/cm3 的球状 粒子,其空气动力学当量半径为

 $r_a = r_p \sqrt{\rho_p}$

其中 r_p 为球状粒子的实际 半 径, ρ_p 为球状 粒子的密度, r_a 为其空气动力学当量半径.对 非球状的粒子,则需考虑复杂的形状订正因 子. Lerman^[5] (1979) 曾讨论过几 种形状粒 子的订正因子 K,其定义为

$K = R_e^2/R^2$

其中 R_e 为非球形粒子的等效半径 (R_e = $(3V_p/4\pi)^{1/3}$, V_p 为粒子体积), R 为 Stokes 沉降速度与非球形粒子相同的球状粒子的半径.表3列出 Lerman 的一些结果。利用这些订正因子,就可以在几何平均半径和空气动力学当量半径间建立起适当的联系,以便把测量结果推广使用。

参考文献

- [1] T.艾伦著, 樂华璞、童三多、施娟英译, 颗粒大小 测定, 62页, 中国建筑工业出版社第一版, 北京, 1984年.
- [2] 毛节泰、李建国,大气科学,8(2),170(1984).
- [3] Heintzenberg J., et al., Appl. Opt., 20(8), 1308 (1981).
- [4] Whitby K. T., Atmos. Environ., 12(1), 135 (1978).
- [5] Lerman A., Geochmical Processes: Water and Sediment Environments, p. 262, Wiley, New York, 1979.

• 65 •