城市大气可吸人颗粒物中重金属 元素分布规律的研究

季廷安 傅 光 (北京市环境保护科学研究所)

大气颗粒物中含有各种元素,而燃煤、燃 油及其他人为活动散发不同粒度的颗粒物, 其中可吸入颗粒物⁽¹⁾(Inhabable Particulate Matter——IPM)中含有有害重金属元素,如人们 公认的具致癌作用的 Cd、Ni、Cr(III)等元 素,因此对 IPM 中有害重金属的研究受到 广泛重视⁽²⁻⁴⁾.

近来,对城市大气 IPM 中有害重金属 元素的研究尤为引起注意^[5-7],但对不同粒径 IPM 中重金属元素分布的研究尚不多见.

本工作试图探讨城市大气 IPM 中有害 重金属元素在采暖期与非采暖期的污染状况 及污染元素在不同粒径 IPM 中的分布特征, 这对改善控制大气污染;制定大气中有害化 学物质的浓度标准以及进行大气污染评价等 均有一定参考作用.

一、实 验

1.采样布点 城区设置四个典型采样
点:西单——代表商业-交通区;东城兵马司
—代表居民区;崇文花市——代表居民-商
业区;大栅栏——代表居民-商业区.另设对
照点,距北京170公里处——兴隆,该点距地
面为280余米,海拔860米。

2. 采样器 采用 Sierria 230 大流量冲 击式分级采样器,使用该采样器可获得动力

		商业-交通区 西 单		居民区	商业-居民区 商业-居民区		对照点			
元素				兵马司		东花市		大棚栏	兴隆	
:	n*	* 平均浓度		平均浓度	n*	平均浓度	n*	* 平均浓度		平均浓度
Ca	4	15.45	5	16.83	5	13.82	5	17.76		
Mg	4	35.90	5	36.90	5	31,40	5	60.70		
Fe	6	(5.50)** 5.51	6	(5.80) 3.93	6	(9.5)	6	(41.50) 31.02	4	(0.40)
Mn	6	(0.1077) 0.190	6	(0.1604) 0.195	6	(0.108) 0.108	6	(0.204) 0.344	4	(0.02)
Ni	6	(0.015) 0.019	6	(0.022) 0.027	6	(0.09)	6	(0.019) 0.044	4	n. !)***
Cu	6	(0.11) 0.20	6	(0.16) 0.30	6	(0.20) 0.12	6	(0.146) 0.187	4	(0.09)
Zn	6	(0.34) 0.43	6	(1.11) 1.98	6	(0.48) 0.69	6	(0.72) 0.78	4	(0.10)
Pb	6	(0.15)	6	(0.21)	6	(0.21)	6	(0.32)	4	(0.033)
Cr	6	(0.018)	6	(0.016)	6	(0.019)	6	(0.037)		
Cd	6	(0.0011)	6	(0.0038)	6	(0.0034)	6	(0.0032)		
v	4	<0.007	4	<0.007	5	(0.00) <0.009	5	0.021		
Ве	4	<0.001	4	<0.001	5	<0.001	5	0.0103		
Sr	4	0.133	4	0.148	5	0.139	5	0.264		

表1 城区 IPM 中元素的平均浓度 (µg/m³)

n*: 为样品数. ()** 内为 AA 测定结果,其余为 ICP 测定. n.D*** 检不出.

学切割直径为 15µm 以下六个粒径尺度的 颗粒物,采样流量为 1.13m³/min, 样品收集 于 15-11 型有机滤膜上(遵义化工厂).

3. 样品分析

样品前处理采用索氏提取法原子吸收光 谱及等离子发射光谱*(岛津 ICPQ-100 型) 测定了 Al、Ca、Mg、Fe、Cr、Mn、Ti、P、Zn、 Ph, Ni, V, Co, Zr, Nb, Be, La, Cd, Y, Sr, Ba 等 22 个元素. 其中 Fe、Mn、Cu、Zn 和 N1 同时用二种方法测定,结果较为一致。

二、结果与讨论

1. 城区 IPM 中重金属元素污染水平及 污染趋势.

城区四个采暖期样(西单——S-01;兵马 司---S-02, 花市----S-03; 大栅栏----S-04; 83.12-84.1) 与相应点非采暖期样 (S-05, S-06, S-07, S-08; 84.9), 采集大气 中六种粒径范围(< 0.49μ、 0.49-0.95μ、 $0.95 - 1.5\mu$, $1.5 - 3.0\mu$, $3.0 - 7.2\mu$, $7.2 - 15\mu$) IPM,分析其中无机元素,各点较为重要元素 的平均浓度列于表 1.

图 1 城区采暖期与非采暖期 IPM 元素浓度比较

Ni 外,其余均为 IPM 中主要元素成份(浓 度 > 0.1µg/m³), 元素浓度在 0.1-0.01µg/ m³ 有 Ni、Cr, 元素浓度小于 0.01 µg/m³ 有 Cd、V、Be 等. 可以看出,四个样点(在

* 由核工业部三所吴锡风工程师提供特此致谢.

68km²)的 IPM 中,污染元素基本相同,但 大多数元素的浓度以大栅栏为最高,其余各 点差別不大。 这与 1979—1980 年的结果相 仿,说明污染物无明显逐年增加的趋势. 可 能与燃烧方式的不断改进有关.

与对照点相比, Fe 高出 35 倍(城区 Fe 平均浓度为 13µg/m³; Mn 为 0.18µg/m³, Pb 为 0.22µg/m³, Zn 为 0.78µg/m³), Mn、Pb、Zn 分别高出 9, 7, 8 倍,这表明城市大气中污染 元素的浓度较清洁地区有十分明显的差 别.

 4. 城区不同时期 IPM 中元素浓度比较 城区颗粒物中元素浓度随采暖期与非采 暖期有显著差別.

由图1看出所有元素的浓度(或相对浓

度)采暖期高于非采暖期,这与 IPM 的浓度 变化趋势相仿. 在采暖期与非采暖期,各种 元素的增大倍数是不同的,其中人为污染元 素 Ni、Pb、Zn、Cr 分别增大4,5,2,20 倍; 而地壳的主要成份元素 Ca、Mg 变化均不 大、两者相比,表明自然来源较为稳定.

 不同粒径 IPM 中元素浓度分布特征 测定每个样品六个级分中无机金属元 素,由于数据较多,为便于说明,仅以大栅栏 样为例(S-04,S-08).在对数概率纸上以颗 粒物粒径的对数为横坐标,某些有害的重金 属元素浓度累积百分数(表2)为纵坐标,呈 线性关系(图2-1,2-2,2-3,2-4),这表明元素 浓度与粒径大小呈对数正态分布.S-04,S-08 样中 Mn、Pb、Cu、Be等金属元素随粒径分

表 2 某些重金属元素在不同粒径物中累积量 (µg/m³)

	14 E	元素在不同粒径颗粒物累积含量及百分比(%)											
儿书		< 0.49µ	%	$< 0.95 \mu$	%	< 1.5μ	%	$ < 3.0 \mu$	%	$< 7.2 \mu$	%	$ < 15\mu$	1%
Mn	S-04	0.056	18.5	0.116	38.4	0.145	47.9	0.187	61.7	0.227	75.0	0.302	100
	S-08	0.017	15.7	0.041	36.6	0.043	38.7	0.067	60.6	0.090	80.0	0.111	100
Pb	S-04	0.1879	36.2	0.2940	56.6	0.3668	70.7	0.4200	80.9	0.4785	92.2	0.5190	100
	S-08	0.0276	25.1	0.0583	53.1	0.0767	69.9	0.0921	83.9	0.1021	93.0	0.1096	100
Zn	S-04	0.7166	61.9	0.8548	73.8	0.9734	84.1	1.0447	90.3	1.1097	95 .7	1.1575	100
	S-08	0.0599	21.4	0.1103	39.4	0.1746	62.4	0.2159	77.1	0.2588	92.4	0.2800	100
Cu	S-04	0.0641	34.8	0.0908	49.3	0.1136	61.7	0.1344	73.0	0.1592	86 .5	0.1840	100
	S-08	0.0192	17.7	0.0499	46.1	0.0683	63.1	0.0790	73.0	0.0959	88.0	0.1082	100
	S-04	0.0148	40.8	0.0193	53.2	0.0232	63.9	0.0269	74.1	0.0315	86.7	0.0363	100
NI	S-08	0.0008	32.0	0.0025		0.0025		0.0025		0.0025			
······	S-04	0.0193	25.9	0.0325	43.7	0.0430	57.8	0.0540	71.4	0.0639	85.9	0.0744	100
Cr	S -08							n. D		n. D		n. D	
	S-04	0.0019	37.2	0.0027	52.9	0.0030	64.7	0.0039	76.4	0.0045	88.2	0.0051	100
Cu	S-08	0.0004	33.3	0.0006	50.0	0.0006		0.0006		0.0009	75.0	0.0012	100
Ве	S-04	0.0031	20.4	0.0072	39.3	0.0094	51.3	0.0115	63.6	0.0135	73.6	0.0183	100
	S-08	0.0006	26.7	0.0010	45.1	0.0012	51.6	0.0015	64.8	0.0017	75.7	0.0023	100
<u> </u>	S-04	5.8573	23.5	8.6460	32.3	10.241	41.1	12.6465	50.7	17.1524	68.8	24.9166	100
Ca	S-04	0.5839	5.5	0.9259	8.7	1.5168	14.3	2.7157	25.3	6.5494	61.8	10.604	100

元 素	样品	相关系数 <i>Y</i>	质量中值 直径 (MMD)	几何标准差 Sg	截 距 (a)	斜 率 (b)	回归方程	
	S-04	0.9927	1.8	3.2	36.9	51.1	Y = 51.1Logx + 36.9	
MI	S-08	0.9955	2.0	1.7	33.5	55.6	Y = 55.6 Log x + 33.5	
	S-04	0.9722	0.7	1.7	56.6	41.2	Y = 41.2Logx + 56.6	
Pu	S-08	0.9588	0.9	4.0	52.1	47.7	Y = 47.7Logx + 52.1	
	S04	0.9600	0.1	1.2	74.6	24.7	Y = 24.7Logx + 74.6	
Ln	S-08	0,9742	1.3	5.8	44.4	53.6	Y = 53.6Logx + 44.6	
	S-04	0.9957	0.9	2.9	50.7	42.9	Y = 42.9 Log x + 50.7	
Cu	S-08	0.9706	1.3	1.7	44.4	52.0	Y = 52.0 Log x + 44.4	
NI:#	S-04	0.9975	0.8	2.0	54.5			
1914	S-08							
	S-04	0.9933	1.3	1.8	45.0	48.7	Y = 48.7Logx + 45.0	
CI.+	S-08							
<u>. </u>	S- 04	0.9879	1.7	1.3	38.5	49.1	Y = 49.1 Log x + 38.5	
Ъ¢	S-08	0.9898	1.8	2.0	42.8	45.5	Y = 45.5Logx + 42.8	
€d*	S-04	0.9936	0.8	1.8	53.4	41.1	Y = 41.1Logx + 53.4	
	S-08							
Ca	S-04	0.9754	2.2	1.5	33.5	49.0	Y = 49.0Logx + 33.5	
	S-08	0.9460	4.1	0.3	11.0	63.7	Y = 63.7Logx + 11.0	

表 3 Mn、Pb、Zn、Cu、Ni、Cr、Cd、Be、Ca 随粒径分布回归数据

* 在夏季样品中有的级分检不出.

布的规律性较好.

对 S-04、S-08 样中 Mn、Pb、Zn、Cu、 Cr、Cd、Be 等元素随粒径分布的回归运算, 结果列于表 3. 并求出各组质量中值直径 (MMD)和几何标准差(Sg),MMD 为颗粒 物累积浓度在 50% 时所对应的动力学切割 直径,它表示粒径集中趋势:Sg 为颗粒物累 积量在 84.2%和 50% 时所对应动力学切割 直径之比值——表示颗粒物分散性不同期样 品的回归方程,如 Mn,Pb 的两条线离得很 近,表示它们随颗粒物粒径分布的规律性较 好,其余元素相差不多.

由表中看出,除 Mn 的 S-08 样外,所有

元素的 MMD 均小于 1.8μm, 说明这些**元** 素都有集中于细颗粒 (< 2μm) 的趋势, 冬 季样品的 MMD 均小于夏季样品,这是因为 冬季采暖小煤炉多之故.

参考文献

- [1] 曹守仁,环境保护,7,21(1982).
- [2] Natusch, D. F. S., Science, 183, 202(1974).
- [3] Coles, D. G. and Ragami, R. C., Environ. Sci. Tech., 13, 455(1979).
- [4] McElroy, M. W. et al., Science, 215, 13(1982).
- [5] Natusch, D. F. S. et al., Science, 186, 695(1974).
- [6] Harkov, R., The Science of the Total Environment, 26(1), 67(1982).
- [7] Miller, F. J., J. Air Pollution Control Association, 29, 611(1979).