饮用水中三氯甲烷与致突变物

杨晓萍 蔡宏道

(武汉医学院卫生系)

氯化消毒饮用水已有八十余年的历史。过去人们一直把它作为一种安全、可靠、简便、易行的方法加以推广应用。 世界上有许多国家和地区使用氯化消毒饮用水。我国就是其中之一。根据我国国情,估计在今后数年甚至数十年内还可能要继续使用此法消毒饮用水。

1974 年 Bellar、Rook 等几乎同时发现 氯化消毒饮用水中有三卤甲烷。1976年后资 料陆续报道了氯化消毒饮用水中致突变物的 存在. 1979 年后一些国家陆续制定了饮用水 中总三卤甲烷(THMs,包括CHCl3,CHBrCl2, CHBr₂Cl, CHBr₃ 四种,其中 CHCl₃ 是主要 成份)的卫生标准四。 我国也在《生活饮用水 卫生标准》——1984年送审稿中规定饮用水 中三氯甲烷的最大容许浓度为 60 µg/l。但是 这些标准均未考虑致突变物。由于三卤甲烷 与致突变物之间的关系尚无定论, 因而有必 要进一步研究. 本实验就氯化消毒过程中几 种主要因素对三氯甲烷含量和致突变物活性 的影响进行研究,并通过现场分析验证,为我 国饮用水消毒方法的改革、改进、为制定卫生 标准提供依据.

一、材料与方法

本研究以 D 湖水厂为主,并以长江为水源的 Y 水厂、汉江为水源的 Z 水厂作对照.

1. 水样采集

水源水 采自水厂取水处。

出厂水 采自水厂检验室水龙头。

作三氯甲烷测定的水样另按要求采

集[2]。

- 2. 水样前处理
- (1) pH 调节 用 HCl、NaOH 和磷酸盐缓冲液。
- (2) 实验室氯化消毒 用漂白粉精,用 前测其有效氯含量.
- (3) 水中有机物浓缩 见王家玲等使用的方法^[3]。 此法所浓缩的是水中非挥发性的有机物。
 - 3. 水中三氯甲烷测定

按《美国水和废水标准检验法》第十五版。增补本中有关部分[2]。

溶剂 正己烷(日本进口)。

仪器 SP-2305 气相色谱仪.

色谱条件 色谱柱内径 4mm、长 2m 玻柱. 固定液为 15% 角鲨烷.

4. Ames 试验

根据我室多次实验表明,D 湖等水厂饮用水浓缩物的致突变活性主要表现为直接致突变阳性,加肝微粒体酶(S9)其活性有所降低。因此本实验一般未加 S9。标准菌株用 TA98、TA100。实验严格按 Ames 标准方法进行^[4](本实验结果浓缩物均对 TA98敏感,对 TA100 不敏感,因此未列出 TA100的结果)。

5. 前体物 —— 腐殖酸的制备与氯化

前体物腐殖酸按 Snoeyink 法制备¹⁵¹.泥土采自东湖水厂取水处附近岸边。制备出的腐殖酸经双蒸水稀释后测其总有机 碳 含量。然后按氯碳比 10:1 条件氯化。 48 小时测三氯甲烷和致突变物。

二、实验结果

本实验主要分为两部份.

1.实验室工作 几种影响因素对饮用水 氯化后形成的三氯甲烷和致突变物的影响.

表 1 反应时间与三氯甲烷形成 (ppb)

(1) Z 水厂源水 **启*** 反应时间 加 泵 (h) lmg/l2mg/13mg/I4 mg/113.5 2 9.5 10.0 12.0 12 11.5 20.0 28.0 35.5 24 14.5 28.0 41.0 44.0 48 18.0 36.0 49.0 55.0 72 19.0 36.0 49.0 52.0

(2) D 湖水厂源水

反应时间		ja Ş	a E	1
(h)	lmg/I	2mg/1	3:ng/1	4mg/I
2	4.0	7.0	8.5	12.5
12	5.5	12.0	13.5	20.0
24	6.5	13.5	16.5	22.5
48	7.5	14.5	21.0	23.0
72	7.5	13.5	23.0	25.0

(3) Y 水厂源水

反应时间	5		对 有	t.
(h)	lmg/l	2mg/I	3mg/1	4mg/1
2	3.0	8.0	8.0	8.0
12	3.5	7.5	7.5	14.0
24	4.5	11.5	13.0	14.5
48	4.5	13.0	17.5	18.0
72	5.0	15.5	19.5	19.5

表 3 加氯量与三氯甲烷(ppb) 和致突变物活性(MR, 2l/皿)

(1) D 湖水厂源水						
编号	1	2	3	4		
加氯量 (mg/I)	1.0	2.0	5.0	10.0		
耗氮量 (mg/I)	1.0	2.0	2.4	4.6		
三氯甲烷 (ppb)	2.5	4.5	9.0	15.0		
MR	2.75	3.30	3.99	4.13		

(2) Z 水厂源水						
编 号	1	2	3	4		
加氮量 (mg/l)	1.0	3.0	5.0	10.0		
耗氯量 (mg/l)	1.0	2.3	30	3.5		
三氯甲烷 (ppb)	6.0	8.0	9.0	12.0		
MR	1.46	1.90	2.13	2.53		

(3) Y 水厂源水

	1	2	3	4
加氯是 (mg/1)	1.0	2.0	3.0	5.0
耗氯量 (mg/l)	0.8	2.0	2.6	3.5
三氮甲烷 (ppb)	3.0	9.0	13,5	16.0
MR	1.59	2.08	2.75	3.40

注: 消毒 pH, 在磷酸缓冲液 pH6.7 中进行,接触时间 均为 48h.

表 4 腐殖酸氯化后形成的三氯甲烷 和致突变物活性 (MR)

腐殖酸 (mg/l)	0.2	0.5	1.0	对照
三氯甲烷 (ppb) MR	8.5 1.00	18.0	30.5	未检出 0.95

注: 腐殖酸含量以总有机碳 (TOC) 示;加氯量 TOC/Cl = 1:10; 测定致突变活性的水样量 21/皿.

表 2 氯化消毒时 pH 与形成的三氯甲烷 (ppb) 与致突变物活性 (MR, 21 水/皿)

氯化消毒	19844	年1月	19844	年 2 月	19843	年 3 月	1984	年9月	平均数(标准差)
pН	CHCI ₃	MR*	CHCI,	MR	CHC13	MR	CHCl ₃	MR	CHCl ₃	MR
3	2.5	8.54	4.5	7.42	4.5	7.89	7.5	8.98	5.0(1.8)	8.21(0.60)
6.7	13.5	4.02	24.0	3.46	30.0	3.38	32.0	2.14	25.0(7.2)	3.25(0.69)
10	31.5	1.85	38.0	2.15	-	2.15	65.0	2.04	45.0(14.5)	2.05(0.12)

注:加氯量均为 5mg/l, 消毒时间 48h.

^{*} 此次加 NaOCl 消毒

^{*} 致突变活性(以致突变率表示, $MR = _{}$ 样品产生的回变菌落数/ 四) 自发回变菌落数/ 四

2. 现场采样分析

(1) D 湖水厂不同时间源水和出厂水中 三氯甲烷和致突变物

本实验从 1983 年 12月—1984 年 8 月共 采样六次。

表 5 D 湖水不問时间三氯甲烷和致突变物活性

采样时间	源元	k	出厂水		
不行的	CHCl3(ppb)	MR	CHCl3(ppb)	MR	
1983年12月	未检出	1.69	20.0	2.77	
1984年1月	未检出	1.70	13.5	2.00	
1984年2月	未检出	1.67	24.0	2.28	
1984年3月	未检出	1.80	10.5	2.25	
1984年5月	未检出	2.50	13.5	3.51	
1984年8月	未检出	1.05	15.0	2.30	

(2) D 湖、Y、Z 三个水厂出厂水中三氯甲烷与致突变物。

表 6 三个水厂出厂水中三氯甲烷与致突变物

水厂	采样次数	CHCl ₃ (ppb)	检出致突变物 的水量(l)
D湖水厂	8*	12.8(10.5-24.0)	0.5-1.0
Y水厂	3	10.5(7.5-12.5)	1.0-2.0
z水厂	3	12.5(10.5-14.0)	2.0-4.0

* 其中两次仅测定了三氯甲烷

三、讨论

1. 反应时间与三氯甲烷

从表1可知,三氯甲烷的生成量总的趋势是随加氯接触时间的增加而增加。反应开始较快,即三氯甲烷的生成量变化大,48小时基本平衡。目前水厂在消毒饮用水过程中,水源水从第一次加氯到消水库出厂,时间约为两小时,同时从配水系统到用户的过程中,还可形成部份三氯甲烷等有害物质。本实验考虑到结果的重复性和出厂水到用户时间不等这一特点,本实验消毒时间均采用48小时,然后分析结果。

2. pH、加氯量、前体物的影响

表 2、3、4 表明: 以上三种因素对氯化 消毒形成三氯甲烷和致突变物均有不同程度 的影响,但表现不一。

- (1) pH 表 2 结果表明, 随氯化时 pH 的变化, 三氯甲烷含量和水中浓缩物的致突变活性呈负相关关系. 低 pH 时浓缩物 致突变活性是负相关关系. 低 pH 时浓缩物 致突变活性高,三氯甲烷含量低, 反之亦然. 推测有一最佳消毒 pH, 使得在此条件下消毒两类副产物都较低, 氯化消毒 pH 对副产物的影响, 主要是不同 pH 条件下有机物与氯反应机理的细微差异造成的. 虽然自来水厂氯化消毒自来水均在天然水 pH 条件下进行, 本结果仍提供了一定的理论数据.
- (2) 加氯量 从表 3 可知,同一水源水,在一定的加氯量范围内,加氯量越高,生成的三氯甲烷越多,其浓缩物的致突变活性也越强. 且耗氯量分别与三氯甲烷含量、浓缩物的致突变活性呈正相关;两类副产物之间也呈正相关(P < 0.05)。但是三种不同源水,因其前体物含量和性质的差异,回归直线的斜率不同(P < 0.01)。可见、减少加氯量可减少有害物质。但是饮用水中需保持一定的余氯以防二次污染,从而使减少加氯量的方法受到很大限制,必须去除源水的有机物才能降低加氯量。
- (3) 前体物——腐殖酸 本实验所用的腐殖酸是从D湖水厂取水处附近分离的。表4结果表明了不同含量的腐殖酸氯化后(时间 48h.)三氯甲烷含量和浓缩物致突变活性的变化(呈剂量反应关系)。从此结果还可看出其致突变类型与D湖出厂水浓缩物一致。

天然水(地面水)中含有大量腐殖酸,它构成了水中有机物的主要成份,被认为是氯化形成有害物质的主要原因。 去除腐殖酸,则可大大降低氯化形成的有害物。

现场采样分析结果 结合以上实验结果,本实验于1983年12月—1984年9月共六次采集了D湖水厂水,同时还采集了不同水源水,消毒方法一致的Y、Z两水厂出厂水,分别测定三氯甲烷含量和浓缩物的致突变活性,结果见表5、6. 统计学分析结果表明三氯甲烷和致突变物间无明显相关关系

(P > 0.05). 其原因可能有(a) 天然水 pH 有一定波动范围(6.5-8.5). D 湖水 pH 在 7.5~8.0间; Y、Z 水厂水源水 pH 在 7.0 左 右; (b) 不同水源水有机物含量和种类的差异,造成加氯量的不同和氯与有机物反应产物的不同。以上原因使出厂水中三氯甲烷和致突变物间无明显关系。但目前国内外饮用水卫生标准中只规定了三氯甲烷(或总三卤甲烷标准),无致突变物标准,这显然不能满足要求。

资料表明: 致癌物大多是致突变物,饮用水中致突变物含量虽少,但人们长期饮用,也可能有一定的潜在危害。从保护消费者利益出发,建议制定致突变物的卫生标准。

四、小结

- 1. pH、加氯量、前体物等因素不仅影响 氯化消毒饮用水中三氯甲烷的含量,还影响 其浓缩物的致突变活性。
 - 2. D 湖、Y、Z 三个水厂出厂水浓缩物

的致突变类型主要是对 TA98 菌株敏感的 移码型直接致突变物。

3. 不同水源水或同一水源水,不同时间 经氯化消毒后,水中三氯甲烷的含量和浓缩 物的致突变活性无明显相关关系。因此三氯 甲烷指标不能完全反映氯化消毒造成的饮用 水污染。建议及时建立相应的卫生标准。

致谢 本文承蒙武汉市有关水厂的支持, 本系环境微生物学教研室的协助以及王家玲 副教授、陆定中讲师的指导,在此一并致谢.

参 考 文 献

- [1] 丹保憲仁,用水と废水, 23(8), 3, (1981).
- [2] American Public Health Association, Supplement to the Fifteenth Edition of Standard Methods for the Examination of Water and Waste-Water, pp.92-101, American Public Health Association, Inc., New York, (1981).
- [3] 王家玲等,环境科学与技术,(3),1,(1983).
- [4] Maron, D. M. &. B. N. Ames., Mutat. Res., 113 (2), 173, (1983).
- [5] Quimby, B. D. et al., Analyt. Chem., 52 (2), 260(1980).

湿式催化氧化有机废水铜锰铁氧化物催化剂的研制

尹 玲 张秋波 李 忠 温德勤 焦玉英 秦 涛 胡克源 (中国科学院环境化学研究所)

一、前 言

对于高浓度、剧毒或难于生物降解的有机废水,湿式催化氧化是一种有效的处理方法,早为工业发达国家所重视。它可以将有机物完全转化为水、二氧化碳等无害物;也可以将有毒或难降解物部分氧化到低毒或易降解物。催化剂是实施湿式催化氧化工艺的核心,要求催化剂的活性高、稳定性好并在水热条件下有一定抗酸溶蚀的能力。大量专利报道,湿式氧化催化剂主要用过渡金属复合氧

化物。例如有人研究过铜锰、铜锰锌以及铜锰铁复合氧化物,用作湿式氧化催化剂[1-3]。

我们较系统地考察了用于湿式催化氧化 处理工艺的铜、锰、铁复合氧化物催化剂的制 备条件以及所得高活性催化剂实际应用的可 能性。本文为其中的部分研究结果。

二、实验方法

1. 催化剂的制备

以化学纯试剂为原料用共沉淀法先制得铜、锰、铁的混合氢氧化物。经老化、过滤、洗