

图 9 华南工学院稀释 5 倍自来水水样 Na+, NH+, K+ 的测定 进样量 100 µ1, 其他条件同图 4. 图中离子浓度 为 ppm

馏-比色法是困难的.

本文测定了华南工学院自来水稀释 5 倍的水样. NH.⁺ 的测定结果为 1.5 ppm. 经稀释 5 倍的水样, K⁺ 仍可定量检出(图 9).分

析东莞县某泉水的水样,含 NH, 为 0.05 ppm, 在色谱图中仍可满意的分离 (图略).

四、结语

- 1. 所研制的阳离子分离柱是成功的. 对 碱金属和碱土金属离子都具有良好的分离效 果并具有渗透性能好和对铵灵 敏度 高的 特 点.
- 2. 所研制的差示电导检测器 也是成功的,体积小,在灵敏度较高条件下,基线仍然稳定.
- 3. 采用无抑制柱结合电导检测的方法 是可取的,结构简单,容易装配.
- 4. 本装置在水的分析中是有效的,水中 铵的测定在环境监测中有特别意义。

参考文献

- [1] Small, H., Anal. Chem., 47, 1801 (1975).
- [2] Gjerde, D. T. and J. S. Fritz, J. Chromatogr. 186, 1081 (1979).
- [3] Gjerde, D. T. and J. S. Fritz, *J. Chromatogr.* 187, 34 (1980).

BOD 快速监测器的基本原理和应用*

杨林青 伍正贤 咸惟慧 (兰州化学工业公司环保所)

标准稀释五天生化需氧量(BOD₅)试验主要缺点是①实验条件与水样实际状态相差甚远;结果的重现性和再现性差;②五天,20℃培养不具确切的理论意义,更不适宜作污水厂控制分析;③试验结果不代表废水在处理过程中的实际氧消耗,所以,做为设计和控制参数,实际意义不大。在近半个世纪中,为改进 BOD 实验技术,人们进行了大量的工作^[13]. 其中电解呼吸计虽已广泛使用^[23],但仍要 3—5 天才能得出结果。Lamb 等^[3,4]提出的短期 BOD 测定技术,每次测定只要 30—60 分钟,但由于可利用的溶解氧不足等缺

点,也未受到重视.

目前水污染控制、废水处理研究和工艺设计等工作广泛开展,急待提出一种简单快速的相应技术,为此,我们对上述短期 BOD技术进行了较大的改进,不仅使灵敏度和精密度有所提高,而且提高了自动化程度,扩大了方法的使用范围,尤其在下述三个方面:①快速测定废水 BOD,试验各种毒物对生化过程的可能影响;②对活性污泥系统进行

^{*} 本工作承蒙省科委刘渊、周化尧同志大力支持,谨表谢意。本所刘鹏、赵桂元、孙毅、陆立荣、颜玉东也参加了部分工作。

控制分析和运转评价,如测定进、出水 BOD 和污泥活性;③ 研究各种废水的生物处理性能并提供有关的工艺设计参数。

1. 仪器结构及 BOD 曲线

(1) 仪器结构

仪器结构如图 1 所示. 空气流量一般为 300 毫升/分,反应瓶容积为 500 毫升,并具 有曝气、和澄清支管的玻璃瓶. 接种污泥取 自兰化污水厂,用自来水洗涤三次后取适量 加人反应瓶中,污泥浓度一般 控制在 3 克/升,恒温箱温度控制在 15—30℃. 瓶中溶解 氧的变化由隔膜氧电极测定,废水的 BOD 峰由记录仪记录,峰面积由数字积分仪自动显示.

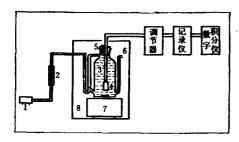


图 1 仪器结构示意图

1---空气泵 2---流量计 3---反应瓶 4---氧电极 5---进样口 6--出水口 7---搅拌器 8---恒温箱

(2) BOD 曲线

一次进样的 BOD 曲线如图 2 所示。在 未进水样前,瓶中溶解氧的变化为

$$\frac{dc}{dt} = K_a(c_s - c) - r \tag{1}$$

式中 c_s ——混合液的饱和溶解氧(毫克/升),

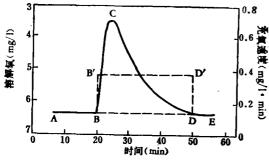


图 2 BOD 曲线

c---t 时溶解氧(臺克/升),

疗──污泥内源呼吸速度,即无有机物存在时,微生物本身的呼吸速度(毫克/升・分)

充氧速度随溶解氧升高而减小,当其等于污泥的内源呼吸速度时,瓶中溶解氧保持不变(即基线值),如 A—B 所示. 水样加入后,溶解氧的变化可表示为:

$$\frac{dc}{dt} = K_a(c_s - c) - r - R \qquad (2)$$

式中 R——水样耗氧速度. 因体系的总耗氧速度大于充氧速度,溶解氧下降,如 B—C 所示. 当有机物大部分被氧化利用时,体系的。耗氧速度小于充氧速度,溶解氧开始回升,如 C—D 所示, D—E 表示有机物完全被氧化,系统又回到内源呼吸状态,即:

$$\frac{dc}{dt} = 0, K_a(c_s - c_c) = r \qquad (3)$$

式中 ce——基线相应的溶解氧。

若以 B'-D' 代表 B-C-D 过程,充氧速度变化的平均值为 R_a , 其相应的溶解氧为 c_a ,

则
$$R_a = K_a(c_s - c_a) \tag{4}$$

从而,废水的耗氧量可表示为

$$O_w = [K_a(c_s - c_a) - r] \times t$$

= $K_a(c_e - c_a) \times t$ (5)

式中t为出峰时间,即 B—D 相当的时间 (分)。 若以 BOD_B 表示本方法测定的结果,则有

式中, V——反应瓶体积(亳升) n——加人水样体积(亳升) m——BD/t 纸速(厘米/分) *h*──记录纸上单位溶解氧 相 当 的 间 距(厘米)

$$A$$
——BB' × BD, 峰面积(厘米²)

K_a——计算因子

 K_a 与温度、空气流速、溶液性质和曝气管形状等因素有关,具体求法见参考文献^[5]。 在试验条件下, K_a 、V、m 和 h 为常数。

不同水样有不同的 BOD 蜂形,表示各自的生化动力学过程,峰越尖锐,表示废水越易于生物净化。图 3 是几种有代表性的峰性。

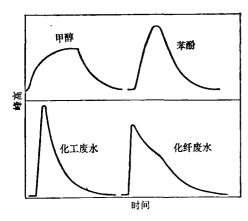


图 3 典型的 BOD 峰

(3) 线性关系

图 4 是对两种水样测定的线性关系. 若进样量为 10 毫升,本方法的测定范围为 5—2000 毫克/升.

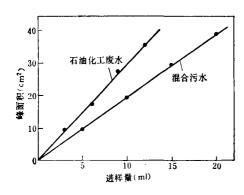


图 4 结果的线性关系

2. BOD 与 COD 和 BOD, 的比较

表1是几种有机物的三种耗氧量参数的比较,在废水生物处理过程中,一般包括能氧、细胞质合成和内源呼吸三种基本反应,BOD_E 代表原有机物完全被微生物氧化利用时的耗氧量,即能氧量. 不同有机物的能氧消耗是不同的.

表 1 不同有机物的 COD、BOD, 和 BODE

化合物	COD (mg/l)	EOD, (mg/l)	BOD _E (mg/l)	BOD _F /BOD,
甲醇	1066	1019	985	0.97
乙醇	1389	1185	762	0.64
甲醛	518	3 83	376	0.98
乙醛	862	699	336	0.48
丙烯晴	6 3 9	388	284	0.73
丙烯酸	1187	770	438	0.57
苯乙烯	701	376	327	0.87
苯酚	23 52	1441	873	0.61
醋酸	663	458	210	0.46
苯甲酸	771	652	393	0.60

3. 囊性试验

微生物酶的活性主要决定于酶活性中心的各种活性基,如-SH、-S-S-、-NH₂、-COOH和Fe²⁺等金属离子的络合基。废水中的某些化学物质,如CN-、H+、Cu²⁺、Hg²⁺以及碱性染料等,能与上述活性基发生反应,使酶失去活性。关于各种毒物对BODs 去除速度的影响,前人已有不少研究^{16,77},我们实验了Cu²⁺、Hg²⁺、CN-、H⁺和OH-对不同水样生化反应的冲击影响,部分结果示于图5和图6.Hg²⁺的毒性试验,每次进水样3毫升,唯第一次不加Hg²⁺,从第二次起,在进水样同时,依次增加Hg²⁺,的加入量。由图5可知,当Hg²⁺的累积浓度达20毫克/升时,水样的BOD_B和峰高明显降低。

图 6 是强酸和强碱性水样对生化反应的影响. ① 1 和 9 进废水样 3 毫升,虽然 pH 不同,BOD_E 却无明显变化;② 2—4 是强酸性水样,(在加水时增加适量 1N HC!). 随 pH 降低,BOD_E 相应减少,③ 5—8 是强碱性水样,(在加水样时增加适量 1N NaOH). 随

pH 升高, BOD_E 呈一峰形变化,这表明强碱性水样的冲击负荷能使系统耗氧量迅速增加,以致系统缺氧。

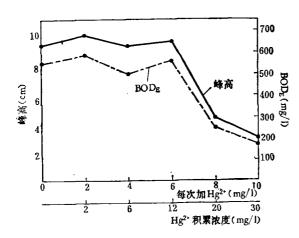


图 5 Hg²+ 对石油化工废水生物氧化的影响

4. 温度的影响

温度不仅能影响生化反应速度,也是有 关气体传递和污泥沉淀特性的重要因素. 温 度对不同废水生化需氧量的影响是不同的, 我们取三种水样,分别在 20° 和 30° 进行 试验,由表 2 可知: ①乙醇和化工废水,在 30° 的耗氧速度和峰高都比 20° 有明显增 加,但其 BOD_E 基本不变;②甲醛在 30° 时 的 BOD_E 比 20° 时明显减小.

表 2 温度的影响

项 月	水样	甲醛	乙醇	化工废水
蜂高 (cm)	20℃ 30℃	3.0	6.1 9.9	7.5 10.6
BOD _E (mg/l)	20℃ 30℃	395 235	374 397	431 437
峰顶耗氧速度 (mg/l·min)	20℃ 30℃	0.2	0.4	0.5 0.71

5. 结论

为便于比较,兹将四种 BOD 测定方法的要点列于表 3。

BOD 快速监测器基本上是一个小型的 活性污泥过程的模拟装置,其主要特点是快速、多用,测定废水 BOD_E, 只需 30-60 分

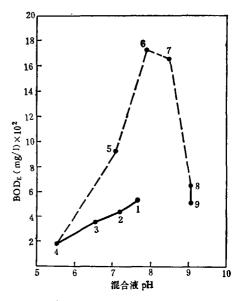


图 6 强酸和强碱性水样的 BODE

表 3 四种 BOD 方法比较

项目	EOD,	BODL	STOD	BODB
计量方式	容量滴定	自动记录	自动记录	自动记录
BOD 曲线	无	5	7.	Λ
结果意义	不定	不定	能氧	能氧
试验时间	5 天	3-5天	1 小时	1小时
进样时间	一次	一次	一次	可连续
氧源	溶介氧	电解供氧	溶解氧	连续充气

钟,而且所得结果基本上相当于废水在处理 过程中的实际耗氧量,同时还可以由 BOD 峰形判断各种废水生化处理的难易程度。这 无论对控制、研究和设计都是十分重要的。

参考 文献

- [1] Montgomery, H. A. C., Water Res. 1 (10), 631 (1967).
- [2] Young, J. C. et al., Water Res. 10 (12), 1141 (1976).
- [3] Lamb, J. C. et al., JWPCF., 36 (10), 1263 (1964).
- [4] Vernimmen, A. P. et al., JWPCF., 39 (6), 1006 (1976).
- [5] 埃肯费尔德 W.W. 等著,同济大学给水排水教研室 译,水污染控制实验 PP88—90,上海科学技术出版 社1981年
- [6] Ghosh, M. M. et al., JWPCF., 45 (3), 424 (1973).
- [7] Barth, E. F. et al., JWPCF., 37(1), 86 (1965).