环 境 科 学

表 3 不同净化剂对1311的净化效率

净化剂		净化效	搴 (%)		平均值(%)			
	99.9	99.7	99.6	99.5	99.7 ±0.2			
水中 ' 31[放射性净化剂	98.5	99.6	99.7	99.6	99.4 ±0.5			
饮水除沾 染粉	73.8	73.2			73.5*±0.3			

* 报道值为 85%

¹³¹I、¹³²I、¹³³I、¹³⁵I的总含量为 21.6%,爆后 9天仍有 18.2%.所以放射性碘的去除是个 重要问题.

小结

1. 从实验数据看,"饮水去沾染净化剂" 对落下灰污染水和¹³¹ 污染水的净化效率比 "饮水除沾染粉"高;"水中¹³¹ 放射性净化剂" 对¹³¹ 污染水的净化效率也比"饮水除沾染 粉"高.

2."饮水除沾染粉" 投加量虽然比"饮水 去沾染净化剂"和"水中¹³I 放射性净化剂" 小,但是配方中含有有毒物质银离子,净化处 理饮用水并不十分合适.而另两种净化剂可 保持原有饮水水质,并有较好的杀菌消毒作 用^[3],用来净化处理饮用水比较合适. 3. 根据放射性物质战时容许标准(十天 总量 75 微居里,一天容许量 25 微居里),如 果日饮水量为 3 升(包括食物),放射性污染 程度为 40 微居里/升,经过"饮水去沾染净化 剂"处理后,可以达到战时容许标准。若超过 这一污染水平,则需要控制饮水量或采取其 它措施。

4. 当缺乏有效的净化措施时,本文所试验的 13 种常见材料均可选用,亦能去除一部份污染水的放射性.

参考文献

- John Rosinski, C.T. Nagamato, Ind. Eng. chem. 52, 429, (1960).
- [2] A. S. Smirnor; Mendeleeva, 5, 651, (1960).
- [3] 路德元等,水中¹³¹ [放射性净化剂的研究,辐射防 护,3,(1982).

J江底质中重金属分布的一个相关矩阵

贺锡泉

(渡口矿务局)

用江河湖海底质中重金属的含量和分布 规律来调查、评价其水体的污染程度是当前 人们常用的方法.这方面的研究自本世纪七 十年代以来,国内外的报道日渐增多.最早见 于 De Groot 对 Ems 河底质的研究,发现富集 在底质中的重金属和 16 微米粒度呈良好的 线性关系^[11].国内有人对江苏沿海底质重金 属的研究,发现与小于 0.01 毫米和小于 0.001 毫米两级粒度的颗粒及有机质含量皆成密切 正相关. Skei 等人(1972)对工业污染的挪威 海湾底质进行研究,得出一个十种重金属的 相关矩阵,矩阵元素普遍在 0.7 以上,Zn—Cu 竟高达 0.993^[2].

笔者试就 J 江底质重金属检测数据加以 计算,得出一个相关三角矩阵,并提出其相关 分布律的粗浅看法.

一、研究方法

渡口市环境保护科研监测所于1979年 底、1980年初枯平水期两次乘船采样.样品 采自J江渡口段各排污口下游50—100米左 右岸(距岸10—20米)底质.第一次取样断面 点23个,第二次取样断面点39个.样品分析 采用原子分光光度法、极谱法和测汞仪等在 实验室完成,共得数据1000余个.经检测, 底质中13种重金属、1种准金属(As)的含量 范围、平均值、标准差及变异系数列于表1.

按两次取样分别计算相关矩阵元素即重 金属元素的相对原子变化指数 (RAV),然后 将两组数据综合得出表 2,即 J 江 14 种重 金属、准金属的相关矩阵.其中显著性检验 $N = \frac{23 + 39}{2} = 31,显著性水平取 <math>\alpha = 0.05,$ 则 $|r| \ge 0.355$ 划为显著性相关(用*号标

表1 J江渡口段底质某些重金属的含量范围、平均值、标准差及变异系数

金属元素	Co	Ni	Мп	РЬ	Cu	Cd	Fe	Zn	Ti	v	Cr	As	Be	Hg
含量范围 (ppm)	23— 200	25— 120	100— 1350	20— 125	10— 100	1.0 - 3.15	35000— 125000	100— 875	40 00— 48000	110 350	40— 400	1.5— 15	1.0	0.026 0.54
平均值 (ppm)	50.48	76.19	743.22	39.79	78.97	2.43	56646.03	222.99	11176.90	175.69	165.43	7.73	3.93	0.16
标准差	34.65	15.36	291.36	28.49	39.41	0.62	24697.02	162.25	11858.66	97.47	70.87	3.76	2.22	0.21
变异系数	0.69	0.20	0.39	0.72	0.50	0.26	0.44	0.73	1.06	0.55	0.43	0.49	0.57	1.28

出).

二、粗浅看法

一般说来,河流底质中微量金属与各有 关影响因子间的量变关系可表示为^[3]:

T = f(L, H, G, C, V, M, e) (1) 式中T代表某微量金属在底质中的含量,L, H,G,C,V,M和 e分别代表分布岩体、水 文,地质特征、人类活动、植被、矿化带和其它 因素.其中人类活动和矿化带的影响最大.

从本文矩阵所见, Ti、V、Cr、Fe、Co、 Ni、Cu、Zn和Cd各"配对金属"间存在明显 的线性相关,与Skei等人的计算相吻合. 笔 者认为底质中各重金属元素相关存在,其机 理可根据(1)式归结于两方面:

1. 地球化学性质相似或相近. 按 A. H. 查瓦里茨基对元素的分类,上述元素分属"铁 族"和紧邻铁族的"亲硫金属族",彼此间具有 较强的化学亲合力,易于组合,呈现相关。 Allan 和 Brunskill(1977)提出了把元素的这种相关组合和其相对原子变化结合起来的理论^[4],线性回归的坡度即为 RAV 指数、同时指出,同类指数表明各元素在大量地球化学(包括风化、输送、沉积、岩化)过程中所具有的相似性和同类性.

2. 有利的环境化学条件. J 江渡口段地 处青藏高原东南缘、云南高原北部,属深切割 的侵蚀、侵剥蚀中山丘陵地貌. 在强烈的地 质作用和长期外营力作用下,地形复杂,山高 谷深,断层、褶皱均较发育. 地质构造以南北 向断裂为主.在海拔900—3000 米之间,分布 着时代不同的、种类繁多的火成岩、沉积岩和 变质岩,其中以沉积岩、火成岩分布最广. 在 火成岩的基性辉长岩中含有以磁铁矿为主的 多金属共生矿,伴生着 V、Ti、Co、Ni、Ga、Cr、 Sc等 20 多种有色金属和稀有金属. 此外,煤 炭、白云石、石灰石、粘土矿分布**藏量**也颇为 可观. 由于开矿、风化、径流等作用,很大部

表 2 J 江渡口段底质中某些重金属的相关矩阵

Co	Ni	Mn	РЬ	Cu	Cd	Fe	Zn	Ti	v	Cr	Be	As	Hg
Co	0.51*	0.87*	0.34	0.81*	0.53*	0.72*	0.62*	0.82*	0.71*	0.55*	-0.17	-0.42*	0.36*
Ni		0.37*	0.15	0.80*	0.44*	0.50*	0.49*	0.39*	0.45*	-0.39*	-0.06	-0.27	0.38*
Mn			0.19	0.65*	0.45*	0.90*	0.41*	0.92*	0.62*	-0.56*	0.15	-0.34	0.20
РЬ				0.22	0.34	0.34	0.54*	0.19	0.30	-0.09	-0.25	-0.04	0.14
Cu					0.51*	0.75*	0.77*	0.66*	0.67*	- 0.45*	-0.07	-0.28	0.25
Cd						0.61*	0.41*	0.45*	0.60*	-0.25	-0.20	-0.25	0.32
Fe							0.56*	0.92*	0.79*	-0.51*	-0.16	-0.44*	0.30
Zn								0.42*	0.48*	-0.30	-0.15	-0.26	0.20
Ti									0.66*	-0.64*	-0.24	-0.47*	0.27
v										-0.35*	-0.15	-0.29	0.23
Cr											-0.19	-0.29	-0.29
Be					-				-			-0.24	-0.16
As													-0.05
Hg			· <u>-</u>										

分进入水体,然后经过一系列物化变化迁移 沉驻下来.丰富的矿床、有利的地质条件提 供了J江重金属的物源.

J 江属典型的山区狭谷河流,流经剥蚀 严重、富集钒钛磁铁矿区时,河面窄,河床复 杂,坡降达 15%,流速达 2.5 米/秒,多年平 均流量达 1686.8 米³/秒,底质基本无淤泥,悬 浮沉积物粒度可达 1-2 毫米,因此具有很大 的稀释、输送和扩散能力,使 J 江上下段重金 属分布均一(除个别特殊源旁入的江段外). 从图 1 可看出,各金属元素几乎都成偏对数 正态分布(其中 Ti 的分布 图较畸形),这与 Förstner (1973, 1977)对世界各地 100 个湖 泊的研究结果一致.Fe、V、Ti 普遍偏高,显 示了J江流域的环境化学特点.

底质主要以石英、方解石、长石为主,间 以粘土矿和伊利石、绿泥石和高岭石等次生 粘土矿成分.其机械颗粒以较粗颗粒的砂型 为主,各断面的平均粒度分布百分比见表 3.

从表 3 可见, J 江渡口段底质粒度在 0.01—0.25 级占极大比例(83%),预示底质 重金属富集系数不会偏高.这与实际情况较 为一致(特别在 V断面以上江段(见表 4).据 Brannon 等(1976)的研究,Pb 极大部分易富 集在小于 2 微米的细微底质上.本研究小于 2 微米的粒度仅为 6% 左右,百分比标准差 约为 1.5,变动范围小.所以J 江底质 Pb 含 量低,且各断面变化幅度小,与其它金属多呈

 粒度级	<0.001	0.001-0.005	0.005-0.01	0.01-0.05	0.05-0.25	>0.25
百分比范围	4.0-7.5	0.6-6.0	2.0-9.0	5.0-40.0	35-70	0.4-3.6
百分比均值	5.9	3.1	5.8	26.7	56.3	2.2
	1.32	2.05	2.48	13.44	16.40	2.34

表3 J江渡口段平均粒度分布百分比(单位: mm)

[纵座标为频数,横座标为浓度 (ppm)]

• 47 •

现弱相关. 有研究表明, Mn 易结合在较粗的 有机质和细微的碎屑上. 据对 J 江小于 50 微 米沉积物的研究, 有机质仅占 10% 左右, 因 此 Mn 在底质中富集系数, 为 0.11, 位各重金 属富集序列之末[见式 (2)]. 为探求 J 江底质中重金属相关分布的人 为影响,本文在无法使用 Kemp 等 (1976) 所 设计的 SEF 系数时而采用 Johnston (1977) 研究 Lawrence 河的方法^[5],将 J 江未受人为 污染的龙洞前断面作为对照,计算出 Co 等

				_	-									
	Co	Ni	Mn	РЬ	Cu	Cd	Fe	Zn	Ti	v	Cr	As	Be	Hg
 【木材加工厂】	0.08	0.21	0.04	-0.13	0.42	-0.07	-0.02	0.01	-0.13	-0.14	-0.32	0.22*	0.23	0.16
I₃(电厂)	0.08	0.25	0.01	-0.05	0.48	0	0.04	-0.05	-0.07	-0.10	0.09*	-0.01	0.77	0.15
Ⅲ _i (攀钢3 [#])	0.40	0.39	0.11	0.29	1.06	0.45*	0.36	1.82*	0.16	0.54	-0.23	0.19	1.02*	1.02
IV ₁ (仁河)	0.27	0.36	-0.17	0.46*	0.48	0.15	0.09	1.05	-0.07	-0.04	-0.43			
 V₁(攀矿尾矿)	2.90*	0.46*	0.90*	0.12	2.16*	0.31	1.82*	0.99	5.34*	0.88*	-0.63	-0.45	0.11	1.72
V,	2.18	0.39	0.66	0.31	1.51	0.29	0.96	1.56	4.01	0.68	-0.65	-0.61	0.22	2.81*
VI,	1.94	0.46*	0.51	0.31	1.53	0.17	0.65	1.72	3.00	1.17	-0.62	-0.32	0.36	-
平均富集系数	0.68	0.31	0.11	0.12	0.83	0.12	0.33	0.86	0.94	0.17	-0.30	-0.17	0.27	1.15

表 4 J 江渡口段重金属最大富集系数断面一览表

* 代表某金属最大富集系数所处断面

14 种金属元素的相对富集系数.

按上表富集强弱排列为:

Hg > Ti > Zn > Cu > Co > Fe > Ni

> Be > V > Cd, Pb > Mn (2)

可见人类活动所引起的环境化学条件变 化对底质重金属的富集产生了显著效果:从 上游向下,木材加工厂含 As 废水(0.75毫克/ 升)的大量排入,使 L 断面成为 As 的最高富 集断面.同样,电厂含 Cr(0.014 毫克/升)废 水、攀钢 3[#]排污口焦化、动力、炼钢炼铁废水 以及高含 Pb 的仁河支流的旁人,都相应地引 起其下游江段重金属的富集,特别是攀矿多 金属尾矿水(矿物悬浮物达 100 克/升以上, 流量达 5 万吨/日)的排入,下游江段底质检 出的 Co、Ni、Cu、Fe、V、Ti 都大幅度升高 (主要以有机物和硫化物结合态及中等还原 态存在^[6]),富集明显.经计算,这一特殊源 的加入因突然加大计算权重,反而削弱了整 个江段的相关矩阵元素值.本矩阵与 Skei 等 人所得矩阵相比,元素值即 RAV 指数普遍 偏小,这除了上述原因外,还与本底质粒径偏 大、有机质含量偏小以及水文、河床形态相异 等因素直接相关.

此外, 各元素 (除 Be、Hg、Pb 和 As 外) 相关富集还与底质中存在一定量的 Fe、Mn 水合氧化物和微生物有关. Fe、Mn 水合氧 化物 (J 江中占 5 种结合态的 15%)引起微 量金属共沉淀,集附在底质中,这是众多研究 所证实的. 而底质微生物种如某些鞘衣细菌 (Sheathed bacteria) 和鞭毛虫 (Flagellates) 以 及大量的好气及嫌气细菌也能同化、吸附Cr、 Cu、Mn、Fe、As 和 Zn 在体表或体内,而在还 • 48 •

٢

てミ

原条件下重又释放在所处环境中[2].

Bc、Hg、Pb 和 As 在本矩阵 中值 较小 (几乎都小于 0.355),呈现弱相关或不相关。 这 4 种元素都是有毒元素,是否偶然巧合,需 作进一步研究。

本工作得到渡口市环境保护局、渡口市 环境保护科研监测站的大力支持,特此致谢。

参考文献

- [1] Groot, A. I. de. et al., Geol Mijnbouw, 50, 393 (1971).
- [2] Ralph, M., Water Pollution Microbiology, 2,

209, New York, (1978).

- [3] Dahlberg, E. C., Pa. Econ. Geol. 63, 409 (1968).
- [4] Förstner, U. and Wittmann, G. T., Metal Pollution in the Aquatic Environments, p. 130, New York, 1979.
- [5] Johnston, L. H., Abstr. Conf. Great Lakes Res, 1971.
- [6] Brannon, J. M. et al., Ann Arbor Sci. Publ,
 p. 125 (1976).
- [7] Silverman, M. P. et al., Advances in Applied Microbiology, 6, 153, Academic Press, New York, 1964.
- [8] 武汉地质学院矿床学教研组,矿床学,29,1,地质出版社,1979.
- [9] 曾北危等,环境科学 5,46(1981),

兴平化肥厂含砷废水对土壤的污染

姜永清 郝小品 (中国科学院西北水土保持研究所)

陕西省兴平化肥厂自 1970 年正式投产 以来,一直采用砒霜(三氧化二砷)氢氧化钾 碱液脱硫脱炭,每年耗用砒霜 60 吨以上.这 些砷排入废水,等于日排砒霜 165 公斤以上, 排污渠内接纳废水(包括碱厂和纸厂的废水) 约 600 吨/小时,废水含砷量 6.5—10.8ppm, 该厂排污口竟高达 46ppm. 在浅层水中尚 残留相当数量的三价砷(约占总砷的 10%— 40%). 这些废水灌溉耕地三万余亩、灌溉 十年后,土壤发灰变黑,完全不同于非污灌 区.

该区耕作土壤是堘土,无污染的土壤中, 砷分布较为均一:耕作层、底土层、粘化层和 田质层依次是16.19、14.79、18.19和14.51 ppm. 污灌十年后,首先可见到剖面形态上 有明显的变化: 0—30厘米的土层变为灰黑 色,30—60厘米土层的虫孔及粗大根孔中仍 有明显的炭黑条斑,说明污水下渗所至.污 染的砷主要积累在0—30厘米的耕作层中, 低于 30 厘米后,砷突然降低,转折明显,但在 2米深处仍有砷污染(图 1).0—30 厘米内净 积累的砷量占总积累量的 50.14%、66.02% 和 96.16%,与污染砷总量有关. 总积累量 越高,耕作层内积累量的比例越低,污染的土 层亦深,反之则绝大部分集中在耕作层内.

样品名称 者品号 合神量 (P. P. M.) As+1 息砷 PH fi 心理 三分砷 (%) PH fi 化肥厂总污水 ×27-2 4.84 0.57 11.78 1 化肥厂脱硫水 ×28-2 46.24 19.0 40.09 1 化肥厂脱炭水 ×29-2 36.14 3.58 9.91 1 型河水(周至县) ×9-3 0.017 0.00 0.00 1			_			
化肥厂总污水 ×27-2 4.84 0.57 11.78 1 化肥厂脱硫水 ×28-2 46.24 19.0 40.09 1 化肥厂脱炭水 ×29-2 36.14 3.58 9.91 1 潤河水(周至長) ×9-3 0.017 0.00 0.00 1	样品名称	样品号	含和 <u>(P.P</u> 总砷	[▶] 量 - M.) 三价砷	As+3 总砷 (%)	pH 值
化肥厂脱硫水 × 28-2 46.24 19.0 40.09 1 化肥厂脱炭水 × 29-2 36.14 3.58 9.91 1 潤河水(周至具) × 9-3 0.017 0.00 0.00 1	化肥厂总污水	×27-2	4.84	0.57	11.78	1
化肥厂脱炭水 × 29-2 36.14 3.58 9.91 1 潤河水(周至县) × 9-3 0.017 0.00 0.00 1	化肥厂脱硫水	×28-2	46.24	19.0	40.09	1
- 潤河水(周至具) ×9-3 0.017 0.00 0.00 1	化肥厂脱炭水	×29-2	36.14	3.58	9.91	1
	渭河水(周至县)	×9-3	0.017	0.00	0.00	1
碱厂、纸厂污水 7 0.021 0.011 52.38 8.35	碱厂、纸厂污水	7	0.021	0.011	52 .38	8.35
滑惠渠灌溉水 8 0.016 0.005 31.25 8.40	渭惠渠灌溉水	8	0.016	0.005	31.25	8.40
排污渠污水 5 7.76 2.59 33.38 9.20	排污渠污水	5	7.76	2.59	33.38	9.20

表 1 水中砷的含量

各类砷的积累量 Y(ppm) 与总积累 X