流动注射分析在环境监测中的应用

马惠昌 严辉宇

(中国科学院环境化学研究所)

流动注射分析是一项湿化学法快速分析 新技术。它的分析频率有的已达每小时 1200 次^[50]. 它是通过一个旋转进样阀,将不连续 的样品溶液顺序地注射到一个非隔断的连续 液流中(通常称为载流,是由蠕动泵输送的), 在流过分析管路(指从进样阀到检测器之间 的一段管路)并做了适当的化学和物理"加工"之后,进入流通检测器,从而对分析物进 行测定,并由记录仪记录信号的方法。图 1 是 一种自动的或半自动的分析新手段。图 1 是 最简单的流程示意图。典型的测量记录构图 见图 3.

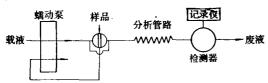


图 1 FIA 的流程示意图

分析管路除了混合圈之外,可能采取的单元还有: 1.混合室 2.分离柱、反应柱与单珠串连反应器 3.溶剂萃取膜相分离器 4.气体扩散与渗析单元 5.等温蒸馏单元等

流动注射分析的一般操作方法是将蠕动 泵、进样阀和流通检测器之间的管路(通常为 内径小于1毫米的聚四氟乙烯管)连通,在分 析管路中可根据实际需要安装诸如渗析器、 萃取装置、填充柱、混合室或珠串反应器等单 元之一(或两种).将进液管插入相应的容器 中,然后启动电源,调节蠕动泵的压板或转 速使载流达到所需的流速(通常约为2毫升/ 分).然后启动检测器(最常用的是流通比色 计),以手动或自动旋转进样阀进样测定.峰

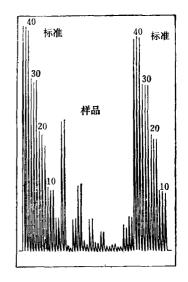


图 2 水中钾的流动注射测定^[34] 纸速: 24cm/hr; 量程: 50mV K+的浓度以 mg/l计。

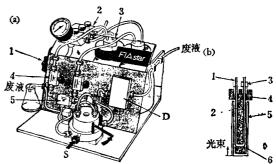


图 3 FIA star 的结构图

- a: (1) 气压调节器 (2) 分配单元 (3) 试剂贮液器 (4) 开关阀 (5) T型连接器 (S) 样品注射阀 (D) 检测器
- b: 流通池(1)0.5mm 内径的透明塑料管(2)固定用的不透明塑料(3)两个螺帽(4)弹性垫圈(5)流通池的透明容器(6)用以减少由反射而引起光损失的硅油。

型响应 (Stimulus response) 同时被记录下来。 若能与微处理机连用则可进行数据处理,储 存和自动控制.

关于流动注射分析(简称 FIA) 的原理, 实验技术和仪器结构已有专著[22]和综述[51-58] 作过介绍,这里不再重叙.

FIA 由于能对不连续样品(或在线样品) 进行快速和准确测定,且能与多种检测器连用,因而已成为环境监测的有力手段,并已进入环境监测标准方法的行列,可以相信,它将能更多地取代现行的手工分析方法.

关于环境监测的范围,早期仅限于废水、废气和废渣分析. 随着环境科学的发展,已扩展到清洁环境背景值的分析(包括空气、雨、雪、植物、粮食和土壤). 在探索污染物的迁移规律、生物链转移以及污染物对动、植物和人体影响的研究中,又进入了生化分析和医学临床化验的领域.

在极为广泛的环境监测中,不论是对大量的例行分析,还是对新方法的建立,以及现行方法的标准化,FIA 都大有用处.表1列

表 1 用于 FIA 的检测方法和实验技术

· · · · · ·	
检测方法	实 验 技 术
1.分光光度法	1.多通道系统
2.原子吸收分光光度法	2.混合室与滴定技术
3. 等离子体发射光谱法	3.间歇泵与停流技术
4. 荧光光度法	4. 渗析
5. 化学发光法	5. 气体扩散
6. 浊度法	6.等温蒸馏
7. 安培法	7.溶剂萃取
8.pH 和离子电极法	8.分离柱与反应柱
9. 库仑法	9.珠串反应器
10. 伏安法	10.合并带技术
11.化学敏感场效应管电极法	12.示差催化法
12.免疫试验	13.多元素分析
13.粘度测量	

举了用于 FIA 的检测方法和可能采用的在线 处理技术,它几乎包括了湿化学法的各种检 测手段和实验方法,其潜力之大也就不难想 象了.

现将 FIA 在环境监测中的应用简介如下:

- 1. COD 的测定^[1,2]: 采用含银盐的硫酸和高锰酸钾两路载液,将 20 微升水样注射到硫酸载流之后,再与高锰酸钾汇合,随后进入沸水浴反应室,经过 φ0.5mm × 20m 的混合管路反应之后进入流通比色池,在波长525nm 处测量. 方法的灵敏度为 5 毫克/升,精度为 0.6%,Cl⁻ 含量直到 6000 毫克/升不干扰. 可用于工业废水分析,分析频率为7—20 次/小时.
- 2. 氰化物的分析: Pihlar 等[3]采用银丝作电极的安培流通检测器,借助于连续等温蒸馏技术,建立了游离氰和络合氰化物的FIA 方法. 据报道线性范围超过六个数量级,测量频率超过 100 次/小时. 笔者等[4]用金管流通检测器,借助于铅粒柱消除硫离子的干扰,成功地将 FIA 技术用于天然水中氰离子的测定. 灵敏度为 1ppb CN⁻. 该方法明显地优于离子选择电极法和比色法,装置简单,灵敏快速,易于实现.
- 3. **砷的测定**: Lown 等^[5]用 硫酸 肼 将 As(V)还原成 As(III),用小型阳离子交换柱除去过量的肼之后,再用铂丝流通电极进行安培检测. FIA 安培法的灵敏度为 0.4ppb AS(III),线性范围是三个数量级. 分析频率约为 20 次/小时. 他们分析了美国标准局的标准参考物质—— 1671 号果树叶样品,同中子活化法取得了一致的结果.
- 4. 酚的测定: Koile 等^[6]用铂流通电极 安培法研究了酚的流动注射分析. 水样不需 预浓缩,灵敏度为 lppb. 测量范围是 0.01—10μM,相对标准偏差小于 1%. 他们采用阳 极短时间极化除去酚聚合膜的办法,保持了电极活性.
- **5. 汞的测定:** 水溶液中的 Hg²⁺、Cu²⁺、Pb²⁺、Zn²⁺、Tl²⁺和 Cd²⁺ 可借离子色谱分离

后,以极谐鉴定器进行反相脉冲安培法检测^[7],一次测量可检出几个 ng 的上述离子,相对标准偏差小于 3%. 关于 Hg²⁺ 在流动注射库仑流通电极上的欠压沉积研究也有报道^[8].

- 6. 铭的测定^[5]: 用 1.5-二苯卡巴肼的酸性溶液作载液,与水样中的 Cr(VI) 反应生成深红紫色络合物,可在波长 540nm 处比色测量.测量范围是 0.1—20ppm,每小时可分析 70 个样品. FIA 的结果与火焰原子吸收标准方法令人满意地一致.已用于天然水样和土壤分析.
- 7. **氟离子的测定**^[10]: 用氟离子选择膜电极和 FIA 技术,可以检测雨水中 15ppb 的 F^- ,检测范围是 20—200ppb, 精度为 3%,分析频率是 60 次/小时.
- 8. 硫酸根的测定: 天然水中 ppm 级的 硫酸根可借 BaSO4 比浊法[11]测定,测量频率 为 180 次/小时。 河水[12]和雨水[13]中的硫酸 盐亦可借甲基百里酚蓝光度测定,灵敏度为 0.1ppm.
- 9. 硫离子的测定: 用次氯酸氧化硫化物使敏化的荧光素产生化学发光,借此可检出10ppb的硫离子[22]。测量频率高达720次/小时. Burguera等[14]在检测前将样品注射到试剂稳态混合物中去,还可提高灵敏度10—100倍. 用次甲基兰比色的FIA方法也有报道[15],它的分析频率为20次/小时,此方法可望用于工业废水和空气污染物分析. 笔者等[16]采用金管流通电极安培法,S=的灵敏度为0.5ppb.
- 10. 亚硫酸根和 SO₂: 由甲醛催化二氧化硫与副品红形成红紫色的化合物,其强度可用分光光度法测量^[17]. SO₂的灵敏度为5ppm,测量频率为105次/小时. 亦可用气隙气体传感器以电位法测定 SO₂. 借助于 SO₂与溴化吡啶形成的过溴化物的 FIA 步骤,可检出30ppm 的 SO₂^[18],方法快速(100次/小时)可靠,不需准确知道试剂浓度,所以在常

规分析中有吸引力.

- 11. 硅酸根: 平井等^[19]和堀 智孝等^[20] 分别用硅钼兰法和库仑法测定了天然水中的溶解硅酸盐.前者的分析频率为 60 次/小时,灵敏度为 0.3ppm. 测量范围是 2—100ppm. 后者用玻碳纤维柱电极流通池,借库仑滴定法可测定 4 × 10⁻⁵—1 × 10⁻³M 的硅酸盐,分析频率超过 30 次/小时. 相对标准偏差小于 2%.
- 12. 磷酸根的测定: 平井等^[21]借助于磷钼兰比色法测定了河水、海水、自来水和井水中的磷酸根,磷的灵敏度为 0.01ppm,分析频率为 30 次/小时。 另外,关于植物和土壤样品中磷的 FIA 报告已超过 10 篇^[22],测量频率可达 120 次/小时。
- 13. NH;、NH; 的测定: 氨被次氯酸盐 氧化成氯化铵,然后与酚反应形成靛酚兰,可 用比色法测定[22],测量频率为120次/小时。 Krug 等[23]基于气体扩散技术和用酸碱指示 剂以分光光度法可检出 0.05ppm 的氨; 用 Nessler's 试剂比浊法可测定低至 0.1ppm 的 氨(测量频率为 120 次/小时). Zagatto 等[24] 将等温蒸馏技术用于 FIA 体系测定植物中的 总氮. Ruzioka 等[22]最早将气隙氨电极电位 法用于 10⁻³—10⁻²MNH, 的测定. 等[25]用计算机控制多通道 FIA 体系,用硝普 盐法同时测定雨水中的硝酸盐、氯离子和铵 离子. Bergamin 等[26]将离子交换柱与 FIA 结合起来,几乎消除了一切干扰,用 Nessler's 试剂比色可检出雨水中 1-200ppb 的NH+, 方法的准确度约为2%,测量频率为40次/ 小时, 最近一篇基于气敏氨膜电极的流动注 射方法[27] 可以快速测定 10-5-10-2M 的 氨氮. 他们用的是一种新型的流通 PVC 膜 电极,并使用了气体渗析单元,测量频率 超过 30 次/小时,检出下限的测量精度≤± 7%. 另外用固氮细菌的 FIA 安培法也有报 道[28]。
 - 14. 硝酸根: 用硝酸根离子选择电极

法^[23]可检出 $2 \times 10^{-5}M$ 的 NO_3^- ,进样频率为 100 次/小时.用紫外分光光度法(210nm)测定 NO_3^- ,得到了近似的灵敏度和进样率^[25]。 NO_3^- 用锌片柱或铜镉柱还原成 NO_2^- 后再比色测定,则可提高灵敏度(见下节)。

- 15. 亚硝酸根: NO₂ 与重氮磺胺反应的产物再与N-(1-萘基) 乙二铵的氯化物偶合形成一个红色偶氮染料,在波长 540nm 处测量,通常灵敏度为 0.1ppm 的亚硝酸根,测量频率为 125 次/小时^[22]. Gine^[29]将检出限降低 10—100 倍,进样频率为 90 次/小时. Zagatto等^[30]采用间歇流技术,让 500 微升的水样与 150 微升试剂准确同步地混合并反应,然后缓慢流入检测器. 该技术能降低分散度到 0.83,而反应率达 88%,所以很灵敏,可检出海水,天然水和土壤浸出液中 10ppb的 N-NO₂,测量频率为 70 次/小时,优于间歇泵技术,对于含 NO₂ 60ppb 的水样相对标准偏差为 0.5%.
- 16. 氯离子: 借氯离子从硫氰化汞中置换出 SCN⁻,在 Fe³⁺ 存在时,可用光度法间接测定各种水样中的氯离子,灵敏度为 5ppm,测量频率为 120 次/小时^[22]. Slanina 等^[25]的硝普盐法也已用于雨水中 Cl⁻ 的测定. 一个同时测定天然水中 Cl⁻ 和 SO⁻ 前 FIA 自动方法^[31]进一步提高了分析速度,达到 200 次/小时. 应该指出的是废液有毒,需要分别收集.
- 17. 阴离子表面活性剂: 阴离子表面活性剂能与次甲基兰形成离子对,并为氯仿萃取. 然后在有机相进行分光光度测定^[32],带萃取和相分离部件的分析管路能完成在线处理,FIA 法的灵敏度是 15μM,测量频率为 80次/小时,方法适用于工业废水.
- 18. pH 测量: 用流通帽玻璃电极电位 法^[17]可以测量血清的 pH 值,测量频率为 150 次/小时. 亦可采用酸碱单点滴定步骤,或用酸碱指示剂进行光度测定. 最近结合离子选择场效应管电极 (ISFETS) 的 FIA 步骤也有

报道[33]。

- 19. Na⁺: Basson 等^[34]基于 FIA 与火焰 光度和原子吸收法相结合的原理,建立了地 面水和家庭用水中 Na⁺、K⁺、Mg²⁺ 和 Ca²⁺ 的快速自动分析方法,测量频率为 128 次/小时,偏差系数小于 1.7—2.7%。
- **20. K**⁺: 用 K⁺ 离子选择电极电位法^[23] 可测定 2 × 10⁻⁵M 的 K⁺, 测量频率为 115 次/小时,亦可采用离子对萃取有机相荧光测定,原子吸收和火焰发射光谱以及离子选择场效应管电位法^[33].
- 21. Ca²⁺: Ca²⁺ 在碱性介质中能为邻-甲酚酞络合产生紫红色化合物,在波长580nm 处比色测定^[22],检出限为 lppm,测量频率为 120 次/小时. 用乙二醛双 (2-羟基缩苯胺)作显色剂^[35]的光度法,采用合并带技术,测量频率为 180 次/小时. 此外离子电极法、原子吸收和火焰发射光谱法(进样频率为 300 次/小时). 示差催化法^[36]以及离子选择场效应管电极法^[33]也已用于饮用水、废水和植物分析.
- 22. Mg²⁺: 用示差催化法可同时测定 Mg²⁺、Ca²⁺ 和 Sr^{2+[36]},其原理是利用金属 离子隐性络合物解离的差别,灵敏度为 2×10⁻⁴M,测量频率为 80 次/小时. 此外尚有原子吸收法^[37],测量频率可达 300 次/小时. 电感耦合氩等离子体发射光谱与 FIA 相结合,每小时可分析 100 个样品^[35].
- **23. Sr**²⁺: 见 22, 灵敏度为 2 × 10⁻⁴*M*, 分析频率为 80 次/小时, Espersen 等对 FIA 和示差催化分析已有综述^[38].
- **24. Cu**²⁺: 含Cu²⁺ 的水样借 FIA 技术可直接用原子吸收法测定^[22],最小检出量为 4ng/次,测量频率为 180 次/小时. 亦可用阳极溶出伏安法测定低至 10⁻⁹M 的铜. PAR 比色法的灵敏度为 3ppb, 测量频率为 300 次/小时. 此外尚有基于硫代乙酰胺预沉 淀的光度法,以及采用闭路循环血清铜催化比色法 [39],方法的优点是样品用量少,分析频率为

325 次/小时.

- **25. Pb**²⁺: Pb²⁺ 与双硫腙络合后用氯仿萃取,相分离后比色测定^[40],灵敏度为50ppb,测量频率为90次/小时,已用于汽油中铅的分析. 此外尚有阳极溶出伏安法,测量范围是10⁻⁵—10⁻⁹M. 反相脉冲安培法^[8],最小检出量为2ng/次,且溶解氧不干扰. 基于pH 梯度的多元素分光光度分析以及原子吸收法^[41],后者在用乙酸正丁酯作载液时灵敏度可提高2.5 倍.
- **26. Zn**²⁺: 含 Zn²⁺的水样可注射到一个水的载流^[22]或有机溶剂载流^[41]中直接用原子吸收法测定,一次测量的最小检出量为3ng,测量频率分别为180次和300次/小时。借等离子体发射光谱法^[42,43]可检出16ppb的锌,相对标准偏差小于4%,对标准参考物质(果树叶)进行了分析验证。借化学发光法可测定10—100ppb的Zn²⁺,变更系数为2%。阳极溶出伏安法和反相脉冲安培法^[8]也已用于Zn²⁺的测定。
- **27. Cd**²⁺: Cd²⁺ 与双硫腙络合后可借氯仿萃取有机相光度测定^[40],灵敏度为 50ppb,测量频率为 90 次/小时. 此**外尚**有伏安法,反相脉冲安培法^[8]、原子吸收法^[41]、等离子体发射光谱法^[43]以及化学发光法^[41],后者的灵敏度为 2ng/次.
- **28. Co**²⁺: 借助于 Co²⁺ 对 SPADNS-H₂O₂ 的催化反应^[45],以光度法可检测 0.05-2ng (或 5-200ppb) 的 Co²⁺,分析频率为 60次/小时,相对标准偏差为 2.0%,许多离子不干扰. 由 Co²⁺ 催化 H₂O₂ 氧化发光醇产生的化学发光法^[14],可检测 0.1ppb 的 Co²⁺,测量频率为 150-300 次/小时,亦可用原子吸收法^[41],测量频率为 300 次/小时,但灵敏度较差.
- **29.** Ag^+ : 可用双硫腙萃取有机相比色 测定^[22],检出限为 5 × 10⁻⁵M. 笔者等^[46]以 金管流通电极原电池安培法,用 0.01N 硝酸 作载液可检测 5ppb—5ppm 的 Ag^+ ,测量频

率超过 100 次/小时.

- 30. 钒: V(V) 与 PAR 在 pH2 时反应 生成紫色络合物,可在波长 530nm 处比色测量^[22],另一基于铬变酸与溴酸盐的催化光度 法也已建立,可检测 10—160ppb 的 V(V),测量频率为 60 次/小时,相对标准偏差为 2%。最近还报道了借溴酸钾氧化 BGL 的催化光度法测定痕量钒^[47],一次测量的检出限为 0.1—0.2ng,测量频率为 60 次/小时.
- 31. 钼: Mo(VI) 与硫氰酸盐反应生成硫氰酸钼,以异丁醇萃取后有机相在波长470nm 处比色测定^[48],方法的灵敏度为0.05 ppm,测量频率为30次/小时,已用于植物样品的分析。
- 32. Mn²⁺: Mn²⁺ 与甲醛肟形成一个稳定的有色络合物,可在波长 455nm 处比色测定天然水中的微量锰^[22],Fe⁺⁺ 可用 KCN掩蔽,Fe³⁺ 可用抗坏血酸还原,灵敏度为0.1ppm,测量频率为135次/小时. 也可采用等离子体发射光谱法^[43](测量频率为100次/小时)和原子吸收法^[41],后者的测量频率为300次/小时.
- 33. **氯和溴**^[49]: 基于气-固界面上两个相连的反应,即卤素首先与滤纸上的 2-萘黄酮反应,生成红棕色的固体产物,产物进而与 As(III) 反应,试剂再生并产生卤离子. 借透射分光光度计在波长 520nm 处测量,可检出 0.5ppm 的 Br_2 和 1ppm 的 Cl_2 ,相对标准偏差 小于 3%. 分析频率为 100-120 次/小时.
- **34.** $H_2O_2^{[50]}$: 由 Cu^{2+} 催化 H_2O_2 对发光醇的氧化反应所产生的化学发光可用光电倍增管检测,灵敏度为 $10^{-7}M$,测量频率为 1200 次/小时. 应该指出的是化学发光的强度正比于反应速率,即正比于电子的激发态,而不是产物的浓度,因此工作曲线是非线性的.
- **35. 肼**^[22]: 肼是锅炉用水的除氧剂,它又是致癌物质,因而需要连续监测. 肼与 4-二甲胺基苯叉醛反应产生黄色的对醌 化合物,然后在波长 460nm 处比色测定. 灵敏度为

0.02ppm,分析频率为350次/小时.这个频率对肼投放量的监控是必要的.该方法已用于锅炉用水的分析.

结 束 语

从 Ruzicka 对这一技术正式命名算起,到现在仅七、八年时间,但它比其他分析技术都更受分析化学界的重视. 关于 FIA 的理论、技术和应用研究在西欧、北美、南美、南非和亚洲的许多国家已普遍开展. 应用研究的范围也已从早期的医药、农业和临床化验方面,扩展到环境监测,工业在线分析和一些化学反应机理的研究.

在已有的分析技术中,没有一种像 FIA 那样可与许多检测器联用,可进行各种在线处理.

FIA 不仅可与专用传感器连用进行单项监测,也可同多用途的传感器(如等离子体直读光谱仪、原子吸收、火焰光度和多探头的化学敏感场效应管电极)联用,进行多元素的同时测定或巡检.

流动注射分析仪结构简单、组装方便.比如,承担混合、反应和分离等任务的"分析管路",可在 1—2 分钟内由一种形式组装成另一形式.

总之, FIA 能适应各种分析实验室的需要,特别是中小实验室. 几年之后,它就会像普通比色计那样普遍使用.

参考文献

- [1] 伊永隆史, 井縢久喜, 日本化学会誌, 4, 616 (1981).
- [2] Korenaga, T. and Ikatsu, H., Analyst, 106, (1263), 653 (1981).
- [3] Pihlar, P. and Kosta, L., Anal. Chim. Acta, 114, 275 (1980).
- [4] 马惠昌,金莉,严辉宇,待发表。
- [5] Lown, J. A. and Johnson, D. C., Anal. Chim Acta, 116, 41 (1980).
- [6] Koile, C. and Johnson, D. C., Anal. Chem., 51, 741 (1979).

- [7] Maitoza, P. and Johnson, D. C., Anal. Chim. Acta, 118, 233 (1980).
- [8] Lindstrom, T. R. and Johnson, D. C., Anal. Chem., 53 1855 (1981).
- [9] Jorgensen, S. S. and Regitano, M. A. B., Analyst, 105, 292 (1980).
- [10] Slanina, J. et al., Anal. Chim. Acta, 117, 91 (1980).
- [11] Baban, S. et al., ibid, 114, 319 (1980).
- [12] Kondo, O. et al., ibid, 134 353 (1982).
- [13] Madsen, B. C. et al., ibid, 53, 1924 (1981).
- [14] Burguera, J. L. et al., ibid, 114, 209 (1980).
- [15] Leggett, D. J. et al., ibid, 128, 163 (1981).
- [16] 马惠昌,严辉宇,科学通报,27(15),959(1982).
- [17] Ruzicka, J. and Hansen, E. H., Anal. Chim. Acta, 114, 19 (1980).
- [18] Williams, T. R. et al., ibid, 123, 351 (1981).
- [19] 平井 幸雄等,分析化学,30,350 (1981)。
- [20] 堀 智孝等,分析化学,30,582 (1981)。
- [21] 平井 幸雄等,分析化学,30,465(1981).
- [22] Ruzicka, J. and Hansen, E. H., Flow Iniection Analysis, John Wiley and Sons, Inc. New York, 1981.
- [23] Krug, F. J. et al., Analyst, 104, 47 (1979).
- [24] Zagatto, E. A. G. et al., Anal. Chim. Acta, 109, 45 (1979).
- [25] Slanina, J. et al., ibid, 113 331 (1980).
- [26] Bergamin F. H. et al., ibid, 117, 81 (1980).
- [27] Mcyerhoff, M. E. et al., Anat. Lett., 14 415 (1981).
- [28] Karube, I., Anal. Chem., 53, 1852 (1981).
- [29] Gine, M. F. et al., Anal. Chim. Actz, 114, 191 (1980).
- [30] Zagatto, E. A. G. et al., ibid, 120, 399 (1980).
- [31] Basson, W. D. et al., Water Res., 15, 333 (1981).
- [32] Kawase, J. et al., Anal. Chem. 51, 1640 (1979); 52, 2120 (1980).
- [33] Ramsing, A. U. et al., Anal. Chim. Acta, 118, 445 (1980).
- [34] Basson, W. D. et al., Z. Anal. Chem., 302, 370 (1980).
- [35] Jacintho, A. D. et al., Anal. Chim. Acta, 130, 361, (1981).
- [36] Kagenow, H. et al., Anal. Chim. Acta, 114 227 (1980).
- [37] Yoza, N. et al., ibid, 111, 163 (1979).
- [38] Espersen, D. et al., Arch. Pham. Chem. Sci.

Ed., 8, 53 (1980).

- [39] Kamasamy, S. M. et al., Anal. Chim. Acta, 127, 39 (1981).
- [40] Klinghoffer, O. et al., Talanta, 27, 169 (1980)
- [41] Fukamachi, K. et al., Anal. Chim. Acta, 119, 383 (1980).
- [42] 伊藤 哲雄等,分析化学,29,332 (1980)。
- [43] Jacintho, A. O. et al., Anal. Chim. Acta, 130, 243 (1981).
- [44] Burguera, J. L. et al., ibid, 127, 199 (1981).
- [45] Yamane, T., ibid, 130, 65, (1981).

- [46] 马惠昌,严辉宇,环境化学,待发表。
- [47] 平山和雄等,日本化学会誌,98,(1981)。
- [48] Bergamin F, H. et al., Anal. Chim. Acta, 191. 9 (1978).
- [49] Ramasamy, S. M. et al., Anal. Chem., 52, 2062 (1980).
- [50] Rule, G. and Seitz, W. R. Clin. Chem., 25 1635 (1979).
- [51] Ranger, C. B., Anal. Chem., 53 20A (1981).
- [52] 方肇伦,分析化学,9,369 (1981).
- [53] 马惠昌、严辉宇,环境科学丛刊,1,44(1983)。

植物对金属元素的吸收积累及忍耐、变异

孔令韶

(中国科学院植物研究所)

植物与环境的统一,是植物长期适应环境的结果.环境中一些化学元素的状况,植物会从各个方面反应出来并与之相适应.植物中几乎含有地球表面上所有的元素.这些元素主要来自它所赖以生存的土壤、水分和大气中无机元素、化合物和离子.在这些元素中,有些是植物大量需要的元素,有些是植物需要的微量元素如硼、锌、铜、锰、钼等.有些元素在植物机体中的作用尚未被人们所认识或开始有所认识,如汞、镉、铅、银、砷等.

环境中的化学元素在地球表面的分布是 不均衡的.由于地球化学的作用,在金属矿 露头及其附近地区土壤中常常出现异常高的 金属含量.采矿、冶炼、交通和其他工业行业 的发展以及含金属元素的杀虫剂、杀菌剂等 农药的使用,可使金属元素在地球表面的分 配发生变化.土壤、水、大气中某些金属元素 的过剩或缺乏,都将不同程度地影响到植物 的吸收、积累,影响到植物的分布和生长发 育. (-)

植物对金属元素的吸收积累,近几十年 来从生物地球化学、环境科学和指示植物方 面做了大量的工作。 Peterson, P. J. (1971) 就动植物对元素不正常的积累按元素类群进 行了较系统的综述,列举了一些植物中异常 高的数值. 如生长在硒土壤上的黄蓍 (Astragalus sp.) 的灰分中的硒含量高达 15000 毫 克/公斤,比牧草的正常含量(通常小于0.01 毫克/公斤)高一百万倍, 生长在汞矿上的纸 皮桦 (Betula papyrifera) 含有 1150 毫克/公 斤的汞(占灰分). 蛇纹岩土壤上的十字花科 植物 (Alyssu:n bertolonii) 的灰分中含有高达 5-10%的镍. 在富含钴的土壤上的一种野 百合 (Crotalaria cobalticola) 的灰分中含有 1.8% 的钴,至今被认为是含钴最高的植物。 据报道,芦苇叶菥蓂 (Thlaspi calaminare) 对 锌的积累在灰分中达到 13%. 受铅污染的 大气、土壤上牧草灰分中的铅含量高达 3000