表 3 全息图液滴直径 d; 重复测量误差

测量次序	1	2	3	4	5	6	7	8	9	10	平均值	误差 (%)
d, (μ m)	58.0	60.0	57.0	57.0	57.4	59.0	58.4	57.0	58.0	58.0	58.0	1.0

表 4 载玻片上液滴表观直径 D; 重复测量误差

测量次序	1	2	3	4	5	6	7	8	9	10	平均值	误差 (%)
$D_i (\mu m)$	183	184	183	184	183	184	184	183	182	183	183	0.3

全息图再现技术的全过程。因此,这一测量方法对操作人员的技术条件,要求较高。

三、结束语

本文叙述的激光全息照相术测量液滴平 面扩展系数的方法,是初次提出.由于全息 光学的复杂性,象质分辨率尚有待于进一步 提高.特别是小液滴和气溶胶粒子,由于本 实验使用的单谱发生器尚不能产生 30 微米 以下的小液滴和气溶胶,虽然 QX-1 机可以 拍摄和记录到 5 微米的粒子,但目前仍不能 用这一方法测量较小粒子的平面扩展系数 K. 随着激光全息光学技术的提高和实验设 备的进一步改进,用激光全息照相法测量液 滴平面扩展系数所提供的范围也将愈加扩 大. 它将成为这一研究的有力工具.

均匀气溶胶液滴流发生器

唐继荣 蒋锦华 聂书玉 (北京药物化学研究所)

在环境科学领域中, 许多场合都需要已 知尺寸的大小均匀的气溶胶粒子, 即单分散 气溶胶粒子。但以往制备单分散气溶胶粒子 所使用的方法相当简陋、粗糙、静态均匀粒子 通常是用毛细管人工滴定制备的; 动态分布 均匀气溶胶通常是采用多级(撞击、阻留、静 电分离等)滤过方法,最后获得较均匀的悬浮 气溶胶状态, 本文提出一种振针式均匀液滴 流单谱发生器。它能够产生30-500微米直 径范围内可调制的均匀大小的液滴流, 它可 以用于载玻片随机采集均匀分布的单分散粒 子,作液滴的各种平面特性研究,如液滴平面 扩展系数、接触角等。它可以直接作为动态 均匀分布液滴流,作粒子碰撞、凝并、反射、附 着等动力学研究,它也可以为各种新式气溶 胶(雾)发生器或测量仪的考核和校正时提供

已知大小的液滴样品.它在激光全息照相法 研究液体射流破碎分散历程中,作为液体射 流源,获得了成功应用.本文简要介绍这种 振针式均匀液滴流单谱发生器的原理、结构 和操作特性.

一、仪器原理、结构和性能

振针式液体射流源单谱发生器,是根据液体射流源的均匀破碎原理^[1]设计的。 早在 1833 年,Savart 首先在试验中发现了液体射流的均匀破碎现象。 1873 年 Plateau 从表面能推导出:在无限长的圆柱形液体射流中形成不稳定扰动的最小波长(即扰动间隔) λ_{min} 等于射流截面直径 D_i 的外缘周长。即

$$\lambda_{\min} = \pi D_i$$

1878 年 Rayleigh 根据非粘性不可压缩

圆柱形液体射流的真空喷雾试验,推导出不稳定射流破裂的最佳波长 $\lambda_{opt}=4.508D_{i}$. 1964年 Schneider 和 Hendricks 用实验方法确定了产生均匀液滴流的扰动波长范围为: $3.5D_{i} < \lambda < 7D_{i}$

即在一圆柱形液体射流中,其径向上加一对称于轴的正弦扰动,当扰动波长 λ_i 达到某一值时,液体便处于不稳定状态;在达到共振条件下的某一谐振频率范围时,液体射流便破碎成持续的、均匀的液滴流.

本文描述的均匀液滴流单谱发生器,是一种振动毛细管式液体射流源发生器^[2]。由于采用了一根不锈钢细针代替了毛细管,我们称之为振针式均匀液滴流单谱发生器。它包括压力源、贮液瓶、针头、声频振荡器、电子信号发生器、数字式频率监测器以及电源等部件组成。其构成示意图如图1所示。射流

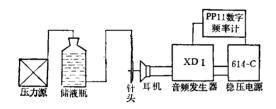


图 1 振针式均匀液滴流单谱发生器

源是由压力源作用于贮液瓶中的液体,使液体流经针管而形成定向射流. 针管被悬挂于声频振荡器(耳机)上,调节信号发生器的频率和功率,当达到其共振(谐振)条件下,液体

射流便分裂成均匀液滴流,即形成大小均匀 的球形粒子,

压力源是一个带有压力指示器的充气瓶。在低频小流率情况下喷射,可以直接用贮液瓶与针头出口端面的液面差作压力源,省去专门设置的压力源。振针是选用国产排号的 4[#] 和 5[#] 皮下注射不锈钢针头,可产生200 微米和 270 微米两种圆柱形液体射流。

本机选用一个 1000 欧姆阻抗的耳机代替了声频振荡器,使整个装置变得简单、经济、易于制作和操作。

分裂和破碎的液块(液滴)大小,与液体射流的流速、针管直径和形状、共振(谐振)频率等因素有关.按本装置图 1 提供的仪器系统操作,可产生直径 30—500 微米的均匀液滴流.如能选用更细的针管和更高频率的机振系统和控制系统,可产生更细小的均匀机振系统和控制系统,可产生更细小的均匀、油量频波产生的一条射流线,单位时间生成的粒子数与扰动频率相等。由倍频波(谐波)产生的液滴数量,也与其频率相等[3],而且粒充尺寸更细小。但这种由倍频波生成的液滴流很不稳定,必须严格控制操作条件。

二、仪器测试和实验结果

我们使用一种能表征该装置应用范围的 非粘性难挥发性液体一苯二甲酸二丁酯(有 关分散的物理参数见表5),进行了实验测

				**************************************	•					
针长L		共振条件([1/4 波长]		共振条件 (3/4 波长)					
(mm)	频率 f(llz)	振幅 A (mm)	电压 U(V)	功率 P(W)	频率 1(Hz)	振幅 A (mm)	电压 U(V)	功率 P(W)		
	40	7	77	53.6	340	1	83	3.0		
50	80 8		78	50.4	506	2	84	2.5		
	162	11	79	46.6	1020	3	86	1.5		
	28	6	77	53.6	230	1	82	3. 5		
60	55	12	78	51.2	346	2	83	3.0		
	110	17	78	48.2	696	3	86	2.0		

表 1 空载共振操作条件

表2 针长 L 与最大共振频率 f_{max} 关系(符号同表 1):

L		5 号针	一空载	· -	5 号针一苯二甲酸二丁酯					
(mm)	f_{\max}	A	U	P	f _{max}	A	U	P		
30	470	6	85	2.6	456	4	85	2.7		
35	345	9	83	3.5	344	5	83	3.2		
40	260	9	83	3.4	254	8	82	3.4		
45	204	13	82	3.9	204	8	80	3.8		
50	165	14	18	4.0	162	11	79	3.7		
55	136	14	78	4.0	134	12	78	4.0		
60	115	14	80	4.0	110	17	78	3.8		

表 3 共振频率与液滴大小关系 (5#针, L = 54.3 mm):

频率	流量				港	(滴直径	<i>d</i> (μm)				平均	$\frac{\sigma^*}{\bar{d}}(\%)$
(Hz)	(ml/min)	1	2	3	4	5	6	7	8	9	10	\bar{d} (μ m)	$\frac{\overline{d}}{\overline{d}}$
	0.00	342	340	343	34 5	341	345	3 49	351	342	344	344	0.9
66.0	0.02	140	141	137	136	135	131	133	144	144	143	138	3.4
	0.05	279	280	278	276	283	275	279	280	276	275	278	0.9
133	0.05	99	97	98	96	99	97	97	98	100	99	98	1.3
		208	197	211	203	202	209	204	203	208	202	205	2.0
276	0.09	78	77	77	74	75	72	71	73	76	77	75	3.2
	0.05	179	179	172	174	172	171	176	177	172	162	173	2.9
414	0.06	24	24	20	27	26	29	22	22	27	26	25	11.2
025	0.00	165	168	153	151	171	169	172	158	153	158	162	5.1
825	0.09	52	59	59	59	55	58	59	76	57	55	59	10.9

^{*} σ 为几何标准偏差

表 4 针长 L 与液滴大小的关系

L.	f _{max}				饱	滴直径	<i>d</i> (μm))		_		ã	$\frac{\sigma}{\sigma}$	
(mm)		1	2	3	4	5	6	7	8	9	10	(µ m)	$\overline{\overline{d}}(\%)$	
60	111	334	328	340	339	336	37 9	337	334	351	336	341	4.2	
60	111	159	147	146	147	143	152	151	142	145	149	148	7.4	
54.4	132	279	280	278	276	283	275	279	280	276	275	278	0.9	
24.4	132	92	97	98	96	99	97	98	100	99	97	97	2.3	
50.0	162	278	273	272	279	269	260	268	273	264	264	270	2.2	
JU.U	102	185	186	186	187	189	186	184	184	184	188	186	0.9	
40.0	258	251	251	254	231	240	251	245	245	235	235	244	3.3	
70.0	٥٠٠	150	150	132	154	149	154	149	147	152	143	148	4.4	

(下转第76页)

且试管中染色体畸变与化学致癌的作用,目前还存在着两种完全相反的理论见解. SCE 实验虽比 CA 实验灵敏,但其机制迄今未明. MNT 实验有快速、简易的优点,但只能作为一种预测、筛选的手段. DNA 损伤修复或合成抑制实验,是一种观察 DNA 损伤 早期变化的方法,但目前资料积累不够丰富,仍有待于进一步探讨. CT 实验是一种能够更加直接地反映化学物的致癌性质,但实验需要较长的时间,且操作复杂.

以上这些方法都是从不同的方面来探讨 化学污染物的致癌作用。由不同化学物所造 成的 DNA 损伤及由之而引起的变化不尽相 同,因此化学致癌作用的探讨,显然应该采用 多指标的方法。

主要参考文献

[1] Garner, R. C. et al.. Cancer Res., 32 2058

(1972).

- [2] Popescu, N. C. et al., J. Natl. Cancer Inst., 59 289 (1977).
- [3] Huang. N. C. et al., Exp. Cell Res., 111, 458 (1978).
- [4] Kligerman, A. D., Environ, Mutagenesis 2, 157 (1980).
- [5] Evans, H. J. et al., in B. J. Kilbey (Eds). Handbook of Mutagenicity Test Procedures, p. 261. Elsevier Amsterdam, (1977).
- [6] Johnson R. T., Nature, (London), 226, 717, (1970).
- [7] Schmid, W., in [5], p. 235, (1977).
- [8] Latt, S. A. Ibid. p. 275, (1977).
- [9] A Sudharsan RAJ et al., Mutation Res., 78 253, (1980).
- [10] Margison. G. P. DNA Danage and Repair in A. Canonico (eds) Medical Oncology Research and Education. 1 Carcinogenesis p. 299, Pergamon Press (1977).
- [11] Painter, R. B. Nature, 256, 650, (1977).
- [12] Brambilla, G., Pharmacol. Res., Comm, 19, 683 (1978).
- [13] Kohn, K. W., Biochem., 15, 21, (1976).
- [14] Pienta, R. J., In Vitro Transformation of Cultured Cell, in [10], p. 255, (1977).

(上接第62页)

试. 表 1 是空载共振操作条件. 表 2 是针长 L 与最大共振频率 f_{max} 关系的操作条件. 表 3 给出了共振频率与液滴大小的关系. 表 4 给出了针长与液滴大小的关系. 液滴直径是用 QX-1 型激光全息滴谱记录仪动态实时拍摄和记录的.

表 5 苯二甲酸二丁酯有关分散物性参数

比重	粘度	表面张力	他和蒸汽压
(g/cm³)	(c. p.)	(dyn/cm)	(mmHg)
1.045(20℃)	18.8(20°C)	34(20°C)	1.677×10 ⁻⁴ (50°C)

三、结 语

本文描述的振针式均匀液滴流单谱发生

器,是一种简单、实用、易于制作的动态均匀 粒子发生器。它的构件和配用仪表都是经过 实验筛选后确定的通用器件和仪表。读者可 以根据需要,自行装制。如果希望液滴流具 有更大的初始速度,可以用扬声器代替耳机。 如若使液滴带电,可外加电场使粒子带以正、 负电荷;也可以用电场使粒子偏转定向,以期 进入预定轨道和地点。

参考文献

- [1] R. N. Berglund and Benjamin, Y. H. Ldu, Environmental Sci. & Technology, Vol. 7(2), p. 147 (1973).
- [2] J. M. Schneider and C. C. Hendricks, Rev. Sci. Instru., Vol. 35(10), p. 1349, (1964).
- [3] D. J. Ryley and M. R. Wood, J. Sci. Instru., Vol. 40, p. 303, (1963).