环

坣

• 9 •

mental Studies Board, Washington, D. C., 1973.

- [7] Thurberg, F. P. and R. S. Collier, Bull. Environ. Contam. Toxicol., 18(4), 401 (1977).
- [8] McKee, J. E. and H. W. Wolf, Ed., Water Quality Criteria. 2nd Ed., Publication 3-A, California State Water Resources Control Board, 1963 (Reprinted 1973).
- [9] 王连生等,中国环境科学,5,23 (1981).

- [10] Coleman, R. L. and J. E. Cearley, Bull. Environ. Contam. Toxical., 12(1), 53 (1974).
- [11] 中国科学院海洋研究所放射性生态组,环境保护生物监测与治理资料汇编,193页,湖北省水生生物研究所编,科学出版社,1978年.
- [12] Hibiya, T. and M. Oguri, Bull. Jap. Soc. Sci. Fish., 27, 996-1000 (1961).
- [13] Pentreath, R. J., J. Exp. Mar. Biol. Ecol., 29(3), 315-326 (1977).

萃取法测定氯化汞络合物的稳定性常数

彭 安 王子健 许坤 (中国科学院环境化学研究所)

前 言

天然水体中,尤其是海口和海洋水体中, 氯化钠是主要的溶解无机盐. 氯离子和汞 (II)离子在水溶液中形成一至四级稳定络合物. 有关这些络合物的研究⁽¹⁻⁶⁾是汞水污染 化学的主要研究内容之一.

Sillèn 和 Martell^[7] 在 1949 年曾发表过 氯化汞形成常数的测定数据. Marcus^[8] 1957 年重复测定了这些常数. Sekine^[9] 测定了苯/ 水体系中氯化汞络合物形成常数. 但全部数 据均在离子强度 0.5M 条件下获得.

本文采用苯/水体系,双硫腙直接比色法 测定了不同离子强度下 HgCl_n (n = 1--4) 络合物逐级形成常数,并引入 TL-57 小型计 算器处理萃取数据. 利用所得结果计算了 pH = 7 和 pH = 8 条件下不同络合物的优 势分布.

实验方法

用分析纯 HgCl₂、HgO 配 制标 准 汞 溶 液,保持介质浓度为 1.3±0.1N 高氯酸. 所 配溶液在石英容量瓶中保存.用基准氯化钠 试剂在 450℃ 下烘干后配制氯化钠溶液.高 氯酸钠在使用前用重结晶提纯.双硫 腙用 Volhard 法标定纯度. 有机相所使用的优级 苯在使用前用 0.5*M* NaClO₄ 水溶液平衡.

通过按比例混合的方法制备一系列具有 不同 pH、C_{Cl}、C_{Hg²⁺}、以及离子强度的水相 起始溶液.将 10 毫升该溶液及等体积的苯有 机相一起加入一个石英试管,恒温 25±0.1℃ 下振荡 24 小时,平衡后将有机相转入 10 毫 升石英离心管,在 2000r.p.m 下离心,取出 3 毫升上清液加入双硫腙的苯溶液,对照双硫 腙空白溶液,测定有机相汞含量,水相汞含量 由差减法求出,从而可以计算分配比(D). 分光测定中的标准曲线通过直接把分析纯 HgCl₂溶于优级纯苯所配制的标准系列做 出,使用 ²⁰³Hg 验证了二组数据,证实该方法 的可靠性. 放射性实验的条件和上述相 同.

络合物稳定常数的计算方法

当起始水相氯化钠浓度很低时,可以认 为溶液中无 HgCl₅、HgCl⁻, 络合物形成,反应

Hg²⁺ + HgCl₂ ← 2HgCl⁺ (1) 的平衡常数可表示为

$$K = \frac{[\bar{n}(1+D)\lambda - 2D(1+\lambda)]^2}{D \cdot [(1-\bar{n})(1+D)\lambda + D(1+\lambda)]}$$
(2)

式中;
$$\bar{n} = \frac{[Cl^-]_{\oplus}}{[Hg]_{\pm}}, D = \frac{[Hg]_{4\pi,\#}}{[Hg]_{\pi,\#}}$$
定义为分

配比、 $\lambda = \frac{[HgCl_2]_{40,44}}{[HgCl_2]_{*44}}$ 定义为分配系数.

当 ā 在 2 左右时,反应

$$HgCl_{2} \longrightarrow HgCl^{+} + Cl^{-} \qquad (3)$$

是优势反应,其平衡常数为

$$K_2 = \frac{D\lambda(1+D)}{(\lambda-D)^2 \cdot [H_g]_{ts}}$$
(4)

上述公式及推导可参考文献 [8].

在较高的氯离子浓度下, [Cl⁻] 相对过 量,此时 [Cl⁻] 近似等于 [Cl⁻]_&. 在此条件 下水相只存在 *n* > 2 的 HgCl_n 络合物,分配 比(*D*) 可表示为

$$D = \frac{\lambda}{(1 + K_3[\text{Cl}^-] + K_3K_4[\text{Cl}^-]^2)}$$
(5)

通常用曲线拟合法处理数据^[10].本工作则使用 TL-57 小型程序计算器处理数据.所用 程序的框图见图 1.为了计算上的方便,使用

存入 K₃, K₄ 初始值

$$U = \sum_{l}^{N_{p}} \left(\lg D_{l \dagger \sharp} - \lg D_{\sharp \sharp} \right)^{2} \quad (6)$$

作为最小平方和计算式,式中的 N_P 为实验 点数目.由于受计算器存贮器限制, lg D_{**} 用人工输入.为了减少循环次数, K₃, K₄ 的初 始值用曲线拟合法估计后输入.通过内循环 和外循环找出具有 U_{&4} 的一组 K₃、K₄值.该 程序原则上和 Liem, Sillén 等人的 LETAGR-OP-DISTR 大机程序类似,但适合实验室做 常规数据处理.

实验结果和讨论

表1列出了四种不同离子强度下 K_3 , K_4 的实验结果.使用曲线拟合法可以获得足够 精确的分配系数 λ 值及 K_3 , K_4 的估计值, 再 用计算器程序处理得到具有 U_{g_4} 的一组 K_3 , K_4 . 所获得的结果列在表 4.

不同离子强度下的 $\lg \lambda$ 有不同数值.这 一差别是由于中性二氯化汞的盐效应引起 的, $\lg \lambda - I$ 曲线为一直线,这一点已由其他 作者⁽¹¹⁾报道.图 2 中的直线斜率 $K_c = 0.15$, 和由热力学公式计算结果相符,直线在 y 轴 截距为-1.064,正好介于 Marcus 用分配法 获得的 $\lg \lambda^0 = -1.057$ 和溶解度法获得的

$$\log \lambda^0 = -1.084$$

之间.

表 2 和表 3 分别列出 K₂ 和 K 的 实 验 结 果.表中有*号的数据均是采用 ²⁰³Hg 示踪原 子技术测定.可以看出和分光法数据相符,由

图 1 计算 K,、K,的程序设计图(使用 TL-57 机)

l = 0.526M		I = 0	.326M	I=0.126M		l = 0	l = 0.076M	
$-\log X$	$-\log D$	$-\log X$	log D	$-\log X$	$-\log D$	$-\log X$	$-\log D$	
0.800	1.670	0.550	2.020	1.100	1.368	1.300	1.230	
0,920	1.440	0.660	1.860	1,150	1,340	1.400	1.198	
1.000	1.368	0.745	1.690	1.220	1.290	1.520	1.168	
1.100	1.328	0.855	1.600	1.300	1.255	1.700	1.125	
1.195	1.240	1.600	1.468	1.400	1.200	2.000	1.070	
1.314	1.170	1.154	1.340	1.520	1.158	2.220	1.085	
1.395	1.150	1.220	1.310	1.700	1.115	2.300	1.070	
1.550	1.100	1.512	1.130	1.990	1.068	2.400	1.075	
1.700	1.068	1.980	1.088	2.150	1.065	2,570	1.030	
1.800	1.060	2.200	1.065	2.210	1.065	1.700	1.035	
1.920	1.038	2,500	1.050	2.290	1.075			
2.190	0.985	2.615	1.060	2.380	1.060			
2.320	1.000	2.980	1.035	2.500	1.040			
2.495	0.988	3.020	1.040	2.650	1.040			
2.620	0.975	3.075	1.040					
2.800	0.972	3.130	1.065	ļ	1			
3.100	0.980	3,200	1.040	ł				
3.200	0.970	3.270	1.030					
3.400	0.985	3.360	1.040			ł		

表1 汞(II) 在苯和水两相间分配数据(C_{Hg} = 7.09×10⁻⁵M)

表 2 log K₂ 实验

$I = 0.526, -\log \lambda = 0.975$		$I = 0.060, -\log \lambda = 1.040$			$I = 0.076, -\log \lambda = 1.050$			
$-\log M$	−log D	$\log K_2$	$-\log M$	-log D	$-\log K_2$	$-\log M$	$-\log D$	$-\log K$,
4.96	1.050	6.52	4.43	1.061	7.07	4.43	1.086	6.63
4.66	1.020	6.52	4.53	1.063	7.10	4.53	1.105	6.35
4.43	1.016	6.53	4.65	1.155	5.83	4.65	1.127	6.19
			4.83	1.158	5.99	4.96	1.109	6.72
			5.13	1.242	5.81			
log	$\log K_2 = 6.52 \pm 0.03$		$\log K_2 = 6.36 \pm 0.60 \qquad \log K_2 =$		$K_2 = 6.27 \pm$	0.25		

反应(1)、(3)可得

 $Hg^{2^+}+Cl^- \iff HgCl^+ \quad K_1=K_2\cdot K$ (7) 从而获得 K_1 值,至此获得全部

 $K_n(n=1-4).$

所得结果列人表 4.

在 Marcus 的实验中, $\bar{n} = 0.2$ 实验条件 下的 lg $D_{\pm 2}$ 值在单位 1 左右. 这一实验结 果在本实验室无论用比色法或是 203 Hg 示踪 原子法均得不到重复,见表 4. 在 $\bar{n} = 0.2$ 条 件下,即使全部氯离子参与络合形成 HgCl₂, 则 $[HgCl_2] = 0.1[Hg]_{\#}$ (8)

$$D = \frac{0.1\lambda[\text{Hg}]_{g}}{[\text{Hg}]_{g} - \lambda \cdot 0.1 \cdot [\text{Hg}]_{g}} \approx 0.01$$

即 lg D 在 2 左右,和本实验结果一致.而前 者无法获得满意解释.

将用程序计算的方法获得的 K_3 , K_4 值 代人(5)式. 计算出 $\lg D \sim \lg [Cl] 曲线$, 在图(3)中用实线表示.图中的圆圈表示实 验点.并对全部数据计算出 σ 值列人表 4, 二 者相符甚好. 表 4 中出现的 $\lg K < 0$ 现象 亦在 $Ag(I)-NH_3$ 体系中出现过^[12],可用构型

1 -	$= 0.526, -\log \lambda = 0$	0.975	$l = 0.326, -\log \lambda = 1.018$					
n	$-\log D$	log K	n	-log D	log K			
0.28	2.285	-0.10	0.20	2.370	-0.55			
0.40	2.080	-0.01	0.23	2.360	-0.34			
0.50	1.930	-0.01	0.50	2.020	-0.13			
0.50	1.965	+0.09	0.55	1.920	-0.03			
0.57	1.860	+0.04	0.78	1.623	-0.28			
0.78	1.622	-0.07	0.89	1.543	-0.28			
0.89	1.520	-0.17	1.00	1.466	-0.34			
1.00	1.462	-0.08	1.10	1.440	-0.09			
1.11	1.460	+0.35	1.12	1.450	-0.07			
1.22	1.381	-0.30	1.22	1.342	-0.07			
	$\log K = 0.03 \pm 0.16$			$\log K = -0.16 \pm 0.22$				
l =	$l = 0.06, -\log \lambda = -1.040$			$l = 0.076, -\log \lambda = 1.050$				
ñ	$-\log D$	log K	ñ	$-\log D$	log K			
0.78	1.663	-0.18	. 0.78	1.615	-0.52			
0.89	1.579	-0.19	0.89	1.552	-0.44			
1.00	1.461	-0.56	1.00	1.438	-0.94			
1.22	1.318	-0.45	1.22	1.385	-0.26			
0.80*	1.570	-0.38	0.80*	1.570	-0.79			
1.00*	1.440	-0.46	1.00*	1.490	-0.35			
1.20*	1.370	-0.09	1.10*	1.400	-0.90			
1.40*	1.280	-0.07	1.20*	1.350	-0.86			
0.90*	1.490	-0.81	1.30*	1.290	-1.09			
1.10*	1.390	-0.81	1.40*	1.280	-0.62			
	$\log K = -0.40 \pm 0.$	26		$\log K = -0.67 \pm 0.$	26			

表 3 log K 实验

* 为用 ²⁰³Hg 示踪法测得的结果

表4 主要实验结果

离子强度(1)	$-\log \lambda$	log K	$\log K_2$	$\log K_{3}$	$\log K_{\star}$	Umin	$\sigma \log D$
0.076	1.050	-0.67 ± 0.26	6.47±0.25		_		
0.126	1.040	-0.40 ± 0.26	6.36±0.60	0.89	1.04	0.0005	0.0086
				0.90*	1.0*		
0.326	1.030	-0.12 ± 0.22		0.91	0.99	0.0018	0.017
				0.90*	1.0*		
0.526	0.975	0.03 ± 0.16	6.53 ± 0.03	0.94	1.00	0.0024	0.020
				1.0*	1.1*		{

* 由曲线拟合法测得数据

表 5 本工作结果与文献值比较

1	$\log K_1$	$\log K_2$	$\log K_3$	$\log K_{\star}$	$-\log \lambda$	数据来源
0.500	6.74	6.48	0.85	1.00	~	[7]
0.500	6.74	6.48	0.95	1.05	0.963	[8]
0.500		-	0.85	1.00	0.95	[9]
0.526	6.56	6.53	0.94	1.00	0.975	本工作

环

坣

科

图 3 氯化汞在苯/水二相的分配

转化现象加以解释.

为了和国外同类工作比较,表5列出了 离子强度 0.526 时的实验结果及目前广泛采 用的三个数据,以资比较.除 K₁外,均和前 人工作结果相符.

使用实验结果及文献 [13] 的数据. 作

图 4 不同氯离子浓度下汞水解和络合形态的百分数

出了汞(II)离子的络合物形态优势分布图,从 图 4 中可以看出,在 0.1—0.01M[Cl⁻]区域, 主要形成 HgOHCl. 但当 [Cl⁻]达到 0.1M以上时, HgCl₅ 和 HgCl₇ 为主要溶解形态. 低浓度氯化钠时,汞(II)离子则以水解状态 的 Hg(OH)₂ 为主. 从而证明了海水中溶解 状态的 Hg(II)离子以 HgCl₅ 和 HgCl₇存 在. 而在低盐度河水中则以 HgOHCl 形式 存在.

参考 文献

- [1] Reimes, R. S., Kvenkel, P. A., Water. Poll. Contr. Fed., 46 352 (1974).
- [2] Feick, G. Horne, R. A., Science, 175 1142 (1972).
- [3] Hahne, H. C. H., Kroontze, Jour. Environ. Quality, 2 1470 (1973).
- [4] Farach, H., Pickering, W. F., Water, Air and Soil Poll., 9(1), (1978).
- [5] Vuceta, J., Morgan, J. J., Environ. Sci. Tech., 12 1302 (1978).
- [6] Morel, F., Morgan, J., Environ. Sci. Tech., 6 58 (1972).
- [7] Sillén, L., Martell, G., Acta Chem. Scand., 3 539 (1949).
- [8] Marcus, Y., Acta Chem. Scand., 11 329 (1957).
- [9] Sekine, T., Iskii, T., Bull. Chem. Soc. Japan, 43 2422 (1970).
- [10] Sekine, T., Bull. Chem. Soc. Japan, 2087 (1965).
- [11] McDevit, W. F., Jour. Am. Soc., 74 1733 (1952).
- [12] 张祥林. 络合物化学, p. 145 (1978).
- [13] 彭安,许坤,王子健,环境科学,(5),1(1981)。

黄金电极阳极溶出法同时测定铋和铜

崔春国

(中国科学院环境化学研究所)

阳极溶出法是测定痕量和超痕量物质的 有效手段之一,现已广泛地被采用.用金电 极阳极溶出法成功地测定了硒(IV)^[1-2]、砷 (III)^[3]和铜^[4],也有利用悬汞电极和汞膜电 极同时测定铜和铋等元素^[5-6]. 我们在用黄 金电极测定铜(II)^[4]的工作基础上,探讨了 用黄金电极单扫描导数阳极溶出法同时测定 铋和铜的可能性.通常,在酸性介质中,铋