塋

环

现以每亩施用量为1万斤或施用年限为 20年,计算污泥金属元素控制浓度及施用量, 结果如表5.

结果可见,按目前污泥中重金属水平,以 Cd 的污染危害最为突出.在实际应用中,由 于金属元素进入土壤后,土壤条件的改变,有 时会使土壤平衡受到破坏,有效态含量激增, 故仍需考虑其总量指标.

参考文献

[1] 高桥敬雄,公害研究,8(3),39-51 (1979).

- [2] Kirkham, M. B., Compost Science, 15(2), 6-10 (1974).
- [3] 山本滿壽夫, 用水と廃水, 21 (6), 635-641 (1979).
- [4] Kirkham, M. B., Environmental Science & Technology, 9(8), 765-768 (1975).
- [5] Spotswood, A. et al., Wat. Pollut. Control, 72, Part I, 71-77 (1973).
- [6] Van Loon, J. C., Environ. Pollut., 7(2), 141 147 (1974).
- [7] 杨国治等,土壤学报,16(1),38-43 (1979).
- [8] 镰田賢一, 日本土壤肥料学雑誌, 52(6), 385-391 (1981).

丘陵地区磷肥厂含氟气体 在大气中扩散问题的探讨

全国中小型磷肥厂大气污染协作组*

为了解丘陵地形条件下含氟气体对大气 污染的动态及其扩散稀释的状况,为今后修 订有害气体的排放标准、防护距离及治理 措施提供科学依据以及验证帕斯廓尔(Pasquile)-吉福德(Gifford)的大气稳定度分类标 准和高斯(Gauss)模式在丘陵地区的适用状 况,我们于1978年分别在湖南和福建的三个 磷肥厂(以下简称甲、乙、丙)进行了现场监测 和研究.

一、概 况

甲厂座落在湘南丘陵谷地中,其西南方 为西北-东南走向的鲤鱼江(江面约250米 宽). 乙厂位于福州市北郊,厂西北方约 1600米远处有100-200米高的山包,东北与 东南方较开阔. 丙厂位于闽江河谷中,背贴 山(约100米左右高),面临闽江(江面约800 米宽).

这三个厂在整个生产流程中分解和产生

氟化氢与四氟化硅等含氟气体和粉尘.这些 气体虽经净化,但仍有一些从烟囱、高炉、热 风炉、成品车间、烧结场等处排向天空、污染 大气、危害动植物和人体健康.

二、有关扩散的数值计算

1. 大气稳定度的确定

对于开阔平坦地区来说,目前广泛使用 的是 P-G 稳定度分类标准. 但对于山区丘 陵是否适用,我们曾做了试验. 与其它分类 标准比较,发现基本上也可采用,只是在山区 地形条件下更偏向于不稳定. 由于 P-G 分 类标准简单,有关的气象资料一般都能获得, 故本文采用 P-G 分类标准. 其中A 为极不 稳定,B 为不稳定,C 为弱不稳定,D 为中性, E 为弱稳定,F 为中等强度的稳定(详见表 1、表 2).

* 中央气象局气象科学研究院杨东贞执笔。

0

	के वि	太阳高度角 (サ)						
	12 10	<i>θ</i> ≤15°	$15^{\circ} < \theta \leq 35^{\circ}$	35°<θ≤65°	<i>θ</i> >65°			
<3/8	-2	-1	+1	+2	+3			
在任一高度上为 3/8, 或在 16000 英尺 以上裂开(包括①)	-1	Û	+1	+2	+3			
在 16000 英尺以上为①,或在 7000 英尺 与 16000 英尺之间为①	-1	0	0	+1	+1			
在 7000 英尺以下为①	0	0	0	0	+1			

表 1 净辐射分级

表 2 根据风速和净辐射的稳定度分类

0

0

地面风速米/秒			净 辐 身	生 等 级		
	+3	+2	+1	0	-1	-2
<2	A	A-B	В	D	E	F
23	AB	В	С	D	E	F
3—5	в	B—C	с	D	D	D
5-6	с	C—D	D	D	D	a
>6	С	D	Ð	ם	D	D
	•	•		•		

2. 扩散参数 σ, 的确定

在 7000 英尺以下为①

对于开阔平坦的地区,可根据 P-G 的稳 定度分类在其扩散曲线上直接查得相应稳定 度下风方各个距离的 σ, 和 σ_x. 但由于这三 个厂不属平坦开阔下垫面,直接引用不合适, 可能偏低,因此用实测的浓度资料计算扩散 参数.

(1)当氟化物浓度分布接近正态时,我们 就用图解法求得,即 $\sigma_y = \frac{H}{2.35}$. 其中H为 浓度分布曲线的半峰宽度, 2.35 为一个系数 (见图 1).

(2) 当浓度分布非完全正态时,则用下 式计算:

$$\sigma_{y} = l_{0} \sqrt{\sum_{i=1}^{m} (i - i_{0})^{2} q_{i}} / \sum_{i=1}^{m} q_{i} \quad (1)$$

式中**m**为一采样弧线上的采样总数, l。 为两采样点间的距离(等间距时 l₀ = 常数) q_i为弧线上第 i 测点的浓度. l₀ 由下式确 定:

0

0

图 1 示意图

$$\sum_{i=1}^{t_0} q_i l_0 = \frac{1}{2} \sum_{i=1}^m q_i l_0$$

用上述方法求得的扩散参数 σ, 以"σ_y_#" 符号表示, 并与 P-G 法查得的扩散参数 (以 σ_{yp} 表示)作比较(见表 3).

由表 3 可以看出: (1) σ_y^μ 随着下**风方** 距离的增加而增大; (2) 在 A—D 的各**类稳** 定度下,下风方任何距离上的σ_y^μ都大于σ_{yp}, 其中甲厂σ_y^μ/σ_y^p 值较乙丙两厂更大些; (3) 随着大气层结趋向于稳定,σ_y^μ/σ_y^p 也逐渐增 大.如D型时σ_y^μ比σ_y^p 要大 3 倍,而在不稳

• 15 •

稳定度	Α	A	B		В		в—с		с		C-D		D	
σ _y ι+/σ _g p 距离(米)	丙厂	甲厂	ZF	甲厂	zr	丙厂	丙厂	甲厂	zr	丙厂	丙厂	甲厂	zΓ	丙
200	1.1	2.3	1.5	2.4	1.7	1.7	1.9	2.5	2.4	2.3	3.2	5.1	3.3	4.2
400	1.7	2.3	1.8	2.2	1.5	1.6	2.4	3.0	2.7	2.1	2.0	4.5	3.8	4.6
600	1.4	2.3	1.4	1.6	2.5	1.8	2.5		2.5	2.7	3.2	3.4	5.1	4.6
800	1.3	2.3	2.1	2.1	1.8	1.9	2.5		2.7	2.8	2.5	4.1	4.3	4.3
1600	0.9	2.1	1.0	1.3	1.5	1.3	1.6	—	2.1	-	—	3.1	2.3	2.8
 σ _y μ/σ _y ρ 的平均值	1.3	2.3	1.6	1.9	1.8	1.7	2.2	2.8	2.5	2.5	2.7	4.0	3.8	4.1

表3 σ_{ytt}/σ_{yP}值

定时还不到1倍.

由此可见,象甲、乙、丙三厂所处的丘陵 地形因下垫面的不均匀而使湍流扰动加强, 所以扩散参数比平坦地区要大. 但另一方 面,因山区地形比较闭塞,即使扩散能力加强 了,但污染物也不易被输送出去,因此山区的 污染一般比平坦开阔地区要严重.

3. 高斯模式的试用

对于高架点源地面浓度的高斯模式是:

$$q(x, y, o; H) = \frac{Q}{\pi u \sigma_y \sigma_z} \exp\left[-\frac{1}{2} \times \left(\frac{y}{\sigma_y}\right)^2\right] \exp\left[-\frac{1}{2} \left(\frac{H}{\sigma_z}\right)^2\right]$$
(2)

式中Q是源强(毫克/秒), # 是风速(米/ 秒), σ, 为横向扩散参数(米), σ, 为垂直方 向扩散参数(米), y 是采样点离主轴的横向 距离(米), H是烟气的有效高度(米).

 $H=h+\Delta h,$

h是烟囱的几何高度, Δh 是烟气的抬升高度

(米),它用霍兰德公式计算:

$$\Delta h = \frac{V_s d}{u} \left(1.5 + 2.7 \, \frac{T_s - T_s}{T_a} \, d \right) \tag{3}$$

式中 V,是烟气出口速度(米/秒); T,是 烟气温度(°K); T_a是烟囱高度的环境温度 (°K); #是烟囱高度的环境风速(米/秒)(计 算结果从略).

为了表示计算的精确度,以

$$E = \frac{|q_{\texttt{H}} - q_{\texttt{X}}|}{q_{\texttt{X}}}$$

表示其相对误差,把同一类稳定度条件下的 E值求平均以 \overline{E} 表示,计算结果见表 4(1), 表 4(2).

由下两表可知,主线浓度的计算值 q_#与 实测值 q_{*}比较一致,只在近处两者相差稍 大些,这可能是受地面源影响之故. 随着 下风方距离的增加 E 变小,即 q_#与 q_{*}比较 接近,而且乙厂除个别点 E > 1 外,从 200 米到 1600 米各层结各测点均为 E < 1,丙

表 4(1) 乙厂主线浓度的计算值 9# 与实测值 9*

中日	的空度	200m			400m		600т			800m			1600m			
רית 	杨定度	<i>q</i> भ	<i>9</i> y	Ε	9tt	<i>4</i> ¥	E	<i>q</i> #	<i>9</i> ¥	E	9 म	4买	E	4 it	9 <u>%</u>	E
1	с	0.03006	0.0063	3.8	0.00907	0.026	0.7	0.0044	0.015	0.7	0.00265	0.0045	0.4	0.00091	0.0026	0.6
2	С	0.06399	0.098	0.3	0.02515	0.077	0.7	0.0135	0.047	0.7	0.00808	0.045	0.8	U.00371	U.045	0.9
3	В	0.0268	0.0147	0.8	0.01263	0.007	0.8	0.00235			0.0024	0.0044	υ.5	0.00402	_	
4	D	0.02984	0.044	0.3	0.00996	0.013	0.2	0.00304	0.0120	0.7	J.00247	0.0120	0.8	0.00241	0.0078	0.7
5	С	0.02808	0.0432	0.4	0.00943	0.013	0.3	0.00528	0.0268	0.8	U.00295	0.0067	0.6	0.00133	0.0029	0.5
6	с	0.03087	0.050	0.4	0.01032	0.0149	0.3	0.00543	0.0130	0.6	0.00321	0.0033	1.0	0.00149	0.0045	0.7
7	с	0.01758	0.0240	0.3	0.00661	0.009	0.3	0.00353	0.005	0.3	0.00209	0.0060	0.7	0.00064	0.0024	0.7
8	A - B	0.04921	0.003	15.4	0.01763	0.0024	6.3	0.00948	0.0016	4.9	0.00281	0.0020	0.4	0.00494	0.00092	4.4

表 4(2) 各种稳定度时距源下风方各距离 E 的平均值 (Ē)

距 离		Z		Г		丙					
稳定度 Ē	200m	400m	600m	800m	1600m	200m	400m	600m	800m	1600m	
不稳定	3.1	1.3	1.3	0.0	1.3	4.4	1.6	0.5	0.3	0.8	
不稳定*	1.0	0.5	0.6	0.7	0.7	3.5	1.8	0.5	0.3	0.8	
中性	0.8	0.2	0.7	0.8	0.7	1.2	0.6	0.6	0.6	0.7	

厂约在 600 米以外出现一致性的 E < 1,600米以内基本上是 E > 1,但各厂在中性层结 下, q_{+} 与 q_{+} 都较吻合,两者相差不到一 倍.不稳定条件下只在近源处(200 米)相差 较大,若不考虑其中差值较大的一次,则 q_{+} 与 q_{*} 的差值大大减少,相差亦不到一倍(打 有"*"号的一行).可见,通过实测浓度资 料计算的扩散参数及高斯模式验算主线浓度 效果较好,该模式基本可采用.

4. 有关排放标准的扩散参数 $C_z/C_y(\sigma_z/\sigma_y)$ 的估算

地面最大浓度公式:

 $q_{\max} = \frac{235Q}{uH^2} \cdot \frac{C_s}{C_y} = \frac{235Q}{uH^2} \cdot \frac{\sigma_s}{\sigma_y} \quad (4)$

式中 qmax 是地面最大浓度(毫克/米³), C,是垂直方向扩散系数,C,是横风方向扩 散系数,Q是源强(克/秒),其它符号意义同 前.

制定某种气体的排放标准,实质上是以 国家制定的卫生标准 \bar{c} 来代替 q_{max} ,则(4) 式为:

$$\bar{C} = \frac{235Q}{\mu H^2} \times \frac{C_{s}}{C_{y}},$$

则

$$Q_c = Q = \frac{\overline{C} u H^2}{235} \times \frac{C_y}{C_x}$$
(5)

(5)式中的 Q。就是允许的排放量——排放标 准.确定 Q。在于确定 C_z/C_y,而 C_z/C,可 由(4)式求得:

$$\frac{C_s}{C_y} = \frac{q_{\max}uH^2}{235Q} \tag{6}$$

(6)式中右边各参数值均为实测值.

另有
$$x_{\max} = \left(\frac{H}{C_z}\right)^{\frac{2}{2-n}}$$
 (7)

式中 *x*_{max} 是最大浓度的落地距离, *n* 是稳定 度参数.可根据风速垂直分布廓线求得.则 由(6)、(7)两式也可求得:

$$C_s = H/x^{\frac{2-n}{2}}_{\max} \tag{8}$$

$$C_y = \frac{235Q}{uH^2} \cdot \frac{C_z}{q_{\max}} \qquad (9)$$

总之,无论采用何种方法计算 C₂/C₃ 都必须先要确定最大浓度及其落地距离 (x_{max}). 对于高架点源来说,烟气最大浓度 落地距离与烟囱高度的倍数关系随大气层结 而变化.在开阔平坦地区其关系是:不稳定 层结时为 5—10 倍.中性条件为 20 倍左右, 稳定时为 40 倍以上. 实际计算中我们根据

表5 甲、乙、丙三厂 C_z/C ,的计算值

甲 /	ζΓ	丙厂
稳定度 C _z /C, 不稳定 0.59 中 性 0.48 稳 定 0.36	稳定度 C ₁ /C, 不稳定 1.25 中 性 0.82 稳 定 0.14	稳定度 C ₄ /C, 不稳定 1.29 中 性 0.90

	Br	中国	中国科学院大气所的结果					
稳定度	B ₂		c	D		天气状况	次数	$C_z/C_y = \sigma_z/\sigma_y$
	1.025 0					晴天	69	0.89
C_z/C_y		0.92	0.92 0.69			阴天	74	0.69
		Smith 的约	与果		<u> </u>			
稳定度	В	с	D	E	F			
<i>C_z/C</i> ,	1.0	0.9	0.7	0.5	0.2			

表 6 Brummage 结果与大气所结果之对照

上述原则,同时又考虑到山区丘陵地形效应 来确定 qmax 和 xmax 的.计算结果见表5.

从表 5 可看出扩散系数 C_x/C_y 是随着 大气层结不稳定性的增强而增大. 另外,除 甲厂的 C_x/C_y 偏小外,乙、丙两厂的值与表 6 中的 Brummage、Smith 及中国科学院大气 所的结果较接近. 所得的 C_x/C_y 具有一定 的精确度,为制定排放标准提供依据.

三、无组织排放源的处理

无组织排放源是指烟囱以外的排放,如 热风炉、烧结场、高炉、成品车间等其它一些 管道不严密的跑、冒、滴、漏等组成的排放源。

甲厂以地面烧结与热风炉排放为主,故 采用通量法求源强,即在排放源的下风方一 定距离的垂直面上,设置垂直与水平的网格 测点,浓度与风速同步采样,按下式计算源 强:

 $Q = \bar{q} \cdot \bar{V} \cdot S \cdot \cos \alpha$

式中Q为所求的源强, \bar{q} 是各测点浓度 的平均值, \bar{v} 是各测点风速的平均值,s是 垂直测定面的面积,a是垂直测定面的法线 与风向的交角.

乙丙两厂以高炉漏风量的排放为主,故 采用漏风量计算法,即 *Q* = (鼓风量一风量) ×浓度.

计算与实测均表明造成厂区污染主要来 自无组织排放,治理厂区污染可由此着手.

四、一次最大浓度的估算

人们所关心的是造成污染危害的高浓 度,而一次最大浓度是一个较好的指标. 通 过估算可预测到污染的程度和范围. 在此我 们估算了三种不同稳定度条件的一次最大浓 度及其范围(见图2). 由图可知: 在不稳 定条件下,甲乙丙各厂浓度超标距离分别为 320米、390米、480米. 中性条件时分别为 690米,370米,550米. 乙厂在稳定条件时 为 670米. 上述各超标距离为制定防护距离 提供依据.

图 2 一次最大浓度计算值

学

五、小 结

由于地形作用,甲乙丙三厂的扩散参数 平均比平坦地区要大二倍左右; P-G 稳定度 分类基本适用于该三厂;通过对浓度的验算, 表明高斯模式只要对其扩散参数作适当的修 正仍然可以采用;有关排放标准的扩散参数 C_x/C_y 及最大一次浓度的估算,为今后制定有害气体的排放标准和防护距离提供依据;初步摸索了计算无组织排放源强的一些方法.

(参考文献略)

高梯度磁分离处理热轧钢废水*

韦敬祥 陈志诚 吴林娣 (上海市环境保护科学研究所)

一、前 言

高梯度磁分离是近几年发展起来的一项 新分离技术.它可以在高流速下捕集微米粒 级的顺磁性颗粒,设备占地面积小,不受处理 对象的温度、浓度、酸碱度等限制,因而在水 处理应用上具有很大的吸引力.国外在处理 钢铁废水方面已工业化应用,在其他废水中 涂油、除重金属、除磷及除细菌、病毒、悬浮 物等方面都有实验室或中间工厂试验的报 道.国内对高梯度磁分离技术,在水处理中 的应用研究最近几年才开始.

二、原 理

置于均匀磁场的铁磁性钢毛,其边棱产 生的磁力,其大小与颗粒磁化率X、颗粒体积 V及场强H、磁场梯度 $\frac{dH}{dX}$ 成正比.要使磁 性颗粒从液体中分离出来,必须使它获得足 够的磁力 F_m ,并大于相抗衡的流体曳力 F_d 和颗粒重力 F_g 的物理合力,即 $F_m > F_g + F_d$.

$$F_m = XVH \frac{dH}{dX} \tag{1}$$

$$F_g = \rho g V \tag{2}$$

$$F_d = 6\pi\eta b\nu. \tag{3}$$

三、试验装置[1]

结构示意图见图 1、2,特性曲线见图 3、 4. 分离器的通道内,装入一定填充率和厚度 的铁磁性晶态不锈钢毛,截面尺寸为 0.02× 0.08 毫米及 0.03×0.1 毫米⁴.

^{*}本文中的设备及试验部分摘自由我所与上海第二钢 铁厂、上海冶金设计研究院、上海市自来水公司组成 协作组的试验报告。