环境科学  2025, Vol. 46 Issue (6): 3957-3964   PDF    
秸秆还田与化肥配施对冬小麦土壤微生物量及化学计量特征和微生物熵的影响
宋鉴恒1,2, 黄婧宇1,2, 郭欣玉1,2, 宋佳杰1,2, 黄禹铭1,2, 王晨瑜1,2, 冯永忠1,2, 任广鑫1,2, 王兴1,2     
1. 陕西省循环农业工程技术研究中心,杨凌 712100;
2. 西北农林科技大学农学院,杨凌 712100
摘要: 为探究秸秆还田和化肥相互作用对农田土壤微生物活性、微生物生物量(SMB)、土壤微生物熵(qmb)和土壤-微生物化学计量不平衡性的影响从而稳固土壤和增产培肥,试验采用二因素裂区设计,主处理为秸秆还田(W1)和秸秆不还田(W0),副处理为不施化肥、施用氮肥(N)和施用氮磷肥(NP),探究不同处理下土壤-微生物量碳氮磷变化特征及化学计量特征、化学计量不平衡性和微生物量熵之间的耦合关系. 结果表明,W1NP土壤有机碳(SOC)含量相比于W0显著提高(P<0.05),W1NP土壤全氮(TN)含量相比W0提高了56.56%,土壤(TP)含量没有显著差异(P > 0.05),W1NP处理C/P相较于W0显著提高(P<0.05). W1NP处理土壤微生物碳(MBC)、土壤微生物氮(MBN)和土壤微生物磷(MBP)含量均相较于W0显著提高(P<0.05). 秸秆还田各处理中土壤MBN含量较W0相比均有显著提高(P<0.05). W0NP与W1NP处理土壤MBP含量差异不显著(P > 0.05),但均显著高于其他处理(P<0.05),各处理MBN/MBP均显著高于W0(P<0.05). 施用磷肥微生物量熵碳(qmbc)、微生物量熵氮(qmbn)和微生物量熵磷(qmbp)会显著增加(P<0.05),W1与W0处理碳磷不平衡比(C/Pimb)无显著差异(P > 0.05),但显著高于其他处理(P<0.05). 各处理氮磷不平衡比(N/Pimb)较W0均显著降低(P<0.05). 相关性分析表明,MBC、MBN和MBP间均为显著正相关关系(P<0.05),且均与化学计量不平衡性呈显著负相关(P<0.05). 冗余分析表明,MBC/MBP与qmbc之间关系最密切,MBN/MBP与微生物量熵磷之间关系显著,微生物量熵氮与MBN/MBP之间关系最密切(P<0.05). 综上所述,秸秆还田配施氮磷肥(W1NP)处理改善土壤养分,改变土壤化学计量特征,同时提高土壤肥力,是最优处理.
关键词: 秸秆还田      冬小麦      微生物生物量      微生物熵      化学计量不平衡性     
Influence of Straw Return and Fertilizer Matching on Microbial Quantity and Stoichiometric Characteristics and Microbial Entropy of Winter Wheat Soils
SONG Jian-heng1,2 , HUANG Jing-yu1,2 , GUO Xin-yu1,2 , SONG Jia-jie1,2 , HUANG Yu-ming1,2 , WANG Chen-yu1,2 , FENG Yong-zhong1,2 , REN Guang-xin1,2 , WANG Xing1,2     
1. Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, China;
2. College of Agriculture, Northwest A&F University, Yangling 712100, China
Abstract: In order to investigate the effects of the interaction between straw return and chemical fertilizer on soil microbial activity, microbial biomass (SMB), soil microbial entropy (qmb), and soil-microbial stoichiometric imbalance in agricultural soil so as to realize the stabilization of soil and increase the production of fertilizers, the experiment was carried out in a two-factor split-area design, with the primary treatments of straw return (W1) and straw non-return (W0) and the secondary treatments of no fertilizer, nitrogen fertilizer (N) and nitrogen-phosphorus fertilizer (NP), and nitrogen-phosphorus fertilizer (NP), to investigate the characteristics of soil-microbial carbon, nitrogen, and phosphorus changes and the coupling relationship between stoichiometric characteristics, stoichiometric imbalance, and microbial entropy under different treatments. The results showed that the soil organic carbon (SOC) content of W1NP was significantly increased compared with that of W0 (P < 0.05), the soil total nitrogen (TN) content of W1NP was increased by 56.56% compared with that of W0, there was no significant difference in the soil TP content (P > 0.05), and the C/P was significantly increased in the W1NP treatment compared with that in W0 (P < 0.05). The soil microbial carbon (MBC), soil microbial nitrogen (MBN), and soil microbial phosphorus (MBP) contents were significantly higher (P < 0.05) compared to those of W0. Soil MBN content was significantly higher in all treatments of straw return compared to that of W0 (P < 0.05). The difference in soil MBP content between the W0NP and W1NP treatments was not significant (P > 0.05), but both were significantly higher than those of the other treatments (P < 0.05), and MBN/MBP was significantly higher than that of W0 in all treatments (P < 0.05). Application of phosphorus fertilizer significantly increased qmbc, qmbn, and qmbp (P < 0.05), and the carbon and phosphorus imbalance ratios (C/Pimb) of the W1 and W0 treatments were not significantly different (P > 0.05) but were significantly higher than in the other treatments (P < 0.05). The nitrogen phosphorus imbalance ratio (N/Pimb) was significantly lower (P < 0.05) in all treatments compared to that in W0. Correlation analysis showed that there was a significant positive correlation between MBC, MBN, and MBP (P < 0.05) and all were significantly negatively correlated with stoichiometric imbalance (P < 0.05). Redundancy analysis showed that the closest relationship was between MBC/MBP and qmbc, a significant relationship was between MBN/MBP and microbial mass entropy phosphorus, and the closest relationship was between microbial mass entropy nitrogen and MBN/MBP (P < 0.05). In conclusion, the straw return with the nitrogen and phosphorus fertilizer (W1NP) treatment was optimal for improving soil nutrients and changing soil stoichiometric characteristics, as well as increasing soil fertility.
Key words: straw return      winter wheat      microbial biomass      microbial entropy      stoichiometric imbalance     

秸秆是一种重要的生物资源,内含大量的有机物质,是土壤有机肥料的重要来源. 我国秸秆资源丰富,但秸秆许多都会被田间焚烧,这样不仅造成了秸秆资源的浪费,也会引起环境的污染[1]. 当秸秆残茬掺入土壤中时,可以刺激土壤微生物的生长,并进一步促进秸秆分解. 微生物介导的秸秆分解本质上是养分释放、有机碳矿化和土壤有机碳平衡的过程[2]. 然而,小麦秸秆还田也不是完全有益于土壤,秸秆中带有各种各样的细菌真菌病原体例如小麦赤霉病、白粉病和条锈叶锈杆锈等病毒,秸秆还田同时给土壤带来良好的温湿条件,利于病毒生存[3].

氮素(N)是土壤肥力的关键元素之一,通常限制植物生长并控制土壤碳循环. 在充足的碳供应下,氮的增加满足了微生物的碳氮比需求,并刺激了微生物活性,加速了有机碳(SOC)矿化[4]. 有研究表明,施用化肥可以显著改变土壤微生物群落的丰度和组成并且显著增加土壤微生物生物量,导致微生物群落分化[5]. 然而,也有研究表明,长期施肥,特别是氮肥,可以加速土壤酸化、降低碱饱和度、阳离子交换能力、土壤团聚、持水能力和土壤微生物活性,但会增加土壤容重和紧实度,从而降低土壤生产力[6].

土壤微生物生物量(SMB)作为土壤中活跃的有机质的一部分,在各种生态系统过程中发挥着关键作用,对环境变化响应十分强烈[78]. 土壤微生物生物量同样对土壤氮矿化、团聚体、碳氮磷(CNP)养分循环和温室气体排放起着关键作用[9~12]. 近年来,土壤微生物生物量碳、群落结构、功能和酶活性等指示性成分已被用于描述不同农业实践下的土壤质量[13]. 土壤微生物熵(qmb)是土壤微生物生物量C、N和P占SOC、TN和TP含量的比例,主要用于反映一个资源单位可以支撑的微生物生物量[14]. 因此,土壤微生物熵可作为不同处理措施下农田土壤质量的有效评价指标. 土壤-微生物化学计量不平衡性可以测量微生物与资源化学成分的差异,该值越小表示土壤资源质量越高,微生物生长效率越高,有助于明确土壤与微生物之间养分的动态平衡[15].

关中平原粮食生产基地占陕西省粮食总产量的2/3以上,农作物秸秆是农业生产的必然产物,农民一般选择田间焚烧以节省人力投入,但是会降低土壤肥力[16],而增产已成为当前关中地区农业科学研究的重点内容之一. 因此,本研究旨在以土壤微生物熵和土壤-微生物化学计量不平衡性为切入点,分析秸秆还田和化肥及两者交互作用对土壤-微生物C、N和P含量的协同变化以及关联化学计量特征,从而探究土壤微生物对其响应,以期为关中地区科学合理使用秸秆和化肥,调节土壤养分提高作物产量减少大气污染提供理论指导.

1 材料与方法 1.1 试验地概况

本试验2020~2021年开展于陕西省西北农林科技大学曹新庄试验农场(E108°04',N34°17'),位于关中平原中部,麦-玉轮作制度,暖温带半湿润季风气候,年均温为12.9℃,年降水为660 mm,年日照时数2 163.5 h,平均蒸发量993.2 mm,基础理化性质见表 1.

表 1 土壤基础理化性质 Table 1 Soil basic physical and chemical properties

1.2 试验设计

本试验采用二因素裂区设计,主处理为秸秆还田(W1)和秸秆不还田(W0),副处理为不施化肥、施用氮肥(N)和施用氮磷肥(NP),组成秸秆不还田不施肥(W0)、秸秆不还田配施氮肥(W0N)、秸秆不还田配施氮磷肥(W0NP)、秸秆还田不施肥(W1)、秸秆还田配施氮肥(W1N)和秸秆还田配施氮磷肥(W1NP)共6个处理,3次重复,18个小区,每个小区面积为64 m2. 供试样品为冬小麦晋麦-47,每年9月底播种,次年6月10~15日收获. 在作物播种前施肥,施肥量与秸秆还田量见表 2. 秸秆粉碎散布于土壤表面,随后所有小区采用旋耕,其中旋耕深度为10 cm. 其余田间管理措施与当地农户保持一致.

表 2 秸秆还田与施肥量/kg·hm-2 Table 2 Straw and fertilizer application rate/kg·hm-2

1.3 测定项目及方法

于2021年冬小麦收获期采用五点取样法,采集0~10 cm土层土壤样品,自然风干过筛(10目)除杂,过筛(100目)待测. 风干土样用来测量有机碳、全氮和全磷,新鲜土样保存于-4℃冰箱,并用于测量微生物生物量. 土壤样品测定方法为:有机碳(SOC)采用重铬酸钾外加热法,全氮(TN)采用凯氏定氮法,全磷(TP)采用HClO4-H2SO4消解钼锑抗比色法测定[17]. 土壤微生物生物量碳(MBC)、氮(MBN)和磷(MBP)采用氯仿熏蒸-浸提法测定[18]. 本试验土壤碳氮磷化学计量比均采用质量比. 土壤微生物量熵和化学计量不平衡性公式如下:

1.4 数据处理与分析

采用WPS Office和IBM SPSS Statistics 25软件对试验数据进行整理分析. 不同处理间进行单因素方差分析及LSD多重比较(P<0.05),使用Origin pro 2024和Canoco 5进行相关性分析、冗余分析及数据可视化.

2 结果与分析 2.1 秸秆还田配施肥下土壤碳氮磷含量及化学计量变化特征

表 3可知,秸秆还田和施肥交互作用显著影响土壤SOC、TN和TP含量. 由图 1可知,秸秆还田与施用化肥处理土壤SOC和TN含量均有提高,TP含量有所降低. 单因素方差分析表明,W1NP处理土壤SOC含量较W0相比提高了65.64%,其他处理相较于W0无显著差异(P > 0.05). W1NP土壤TN含量相较于W0提高了56.56%. TP含量差异变化不显著(P > 0.05). W1NP处理C/P和N/P均较W0有所提高且N/P提高显著(P<0.05),W1NP处理C/N相较于W0提高了7.5%. 除W1NP外其他处理C/N无显著差异(P > 0.05). W1NP处理C/P较W0提高了63.75%. 所有处理N/P较W0均有提高,且差异显著(P<0.05).

表 3 秸秆和施肥交互作用对土壤养分指标的影响1) Table 3 Effect of straw and fertilization interaction on soil nutrient indexes

不同小写字母表示处理间差异显著(P<0.05) 图 1 不同处理下土壤有机碳、全氮、全磷含量及其化学计量比 Fig. 1 Soil organic carbon, total nitrogen, total phosphorus contents and their stoichiometric ratios under different treatments

2.2 秸秆还田配施肥下土壤微生物量碳氮磷含量及化学计量变化特征

图 2可知,施用化肥处理MBC含量均较W0有显著提高(P<0.05),W1NP处理含量提升最多,相较于W0提高2.41倍. 秸秆还田和施用化肥均显著增加土壤MBN含量(P<0.05),其中W1NP处理MBN含量提升最显著(P<0.05),较W0提高3.77倍. 施用NP肥处理组MBP含量差异变化不显著但显著高于其他处理组(P<0.05). 秸秆还田中各个处理MBC/MBN较W0比均有所降低,且W1处理较W0显著降低(P<0.05). 秸秆不还田处理中W0N处理MBC/MBN显著高于W0处理(P<0.05),W0N相较于W0处理提高了37.27%. 随着化肥的施入,各处理MBC/MBP均有显著提升(P<0.05). 相较于W0处理,其他处理组MBN/MBP均有显著提高(P<0.05),且W1NP提高最多为2.83倍.

不同小写字母表示处理间差异显著(P<0.05) 图 2 不同处理下土壤微生物量碳、氮和磷含量及其化学计量比 Fig. 2 Soil microbiomass carbon, nitrogen, phosphorus contents, and their stoichiometric ratios under different treatments

2.3 秸秆还田配施肥下土壤微生物熵与化学计量不平衡性

图 3可知,随着化肥的施入,qmbc和qmbn较W0处理显著增加(P<0.05). 施用P肥处理组会提高MBP从而显著提高qmbp(P<0.05). 秸秆还田和施肥对C/Pimb和N/Pimb影响较大,C/Pimb和N/Pimb变化趋势相似,随着化肥施的施入各处理组C/Pimb和N/Pimb较于W0显著降低(P<0.05).

不同小写字母表示处理间差异显著(P<0.05) 图 3 不同处理下土壤微生物量熵碳、氮、磷及化学计量不平衡比 Fig. 3 Soil microbial mass entropy carbon, nitrogen, phosphorus, and stoichiometric imbalance ratio under different treatments

2.4 土壤微生物量碳氮磷和土壤-微生物化学计量不平衡性的相关性

MBC、MBN和MBP两两之间呈极显著正相关关系(P<0.001,图 4). MBC、MBN和MBP与C/Pimb、C/Nimb和N/Pimb两两之间呈显著负相关(P<0.001). C/Nimb与C/Pimb和C/Pimb与N/Pimb之间呈显著正相关关系(P<0.001).

1.MBC,2.MBN,3.MBP,4.C/Nimb,5.C/Pimb,6.N/Pimb;*表示P<0.05的显著性,**表示P<0.01的显著性,***表示P<0.001的显著性 图 4 土壤微生物生物量与化学计量不平衡比之间的相关性分析 Fig. 4 Correlation analysis between soil microbial biomass and stoichiometric imbalance ratio

2.5 土壤微生物熵与土壤-微生物化学计量不平衡性的冗余分析

冗余分析结果表明,第1轴和第2轴分别解释了微生物熵变化的58.45%和14.15%(图 5). qmbc与MBC/MBN、MBN/MBP和MBC/MBP之间呈正相关关系,与C/Nimb、C/Pimb、N/Pimb和C/N呈负相关关系. qmbn和qmbp与C/P和N/P间呈正相关关系,与C/Pimb和N/Pimb之间呈负相关关系.

红色箭头表示解释变量,蓝色箭头表示响应变量 图 5 土壤微生物量熵和土壤微生物生物量及其化学计量的RDA分析 Fig. 5 RDA analysis of soil microbial entropy and soil microbial biomass and their stoichiometry

3 讨论 3.1 秸秆还田配施化肥对土壤-微生物碳氮磷及化学计量比特征的影响

本试验田土壤中ω(SOC)和ω(TN)平均值(8.02和0.92 g·kg-1)远低于全国(11.12和1.06 g·kg-1)平均值[18]. 秸秆还田显著提高了SOC和TN含量,这与孙轶萱等[19]的研究结果一致. 因为秸秆中富含碳氮等大量元素,覆盖在土壤上可以被微生物降解,从而使SOC和TN含量提高[20]. 土壤TP含量会随秸秆还田降低,这与严啟蕾[21]的研究结果一致. 可能是因为秸秆还田促进壤微生物的呼吸,降低了对磷素的固持. 秸秆腐解过程中,易使秸秆疏松多孔,促进水分渗透,从而使得土壤中的磷素随水渗透至深层土壤[22]. 施肥显著增加土壤SOC和TN含量. 这是由于化肥的投入导致地下生物量和根系分泌物的增加[23]. W1NP处理SOC和TN显著高于其他处理是由于秸秆覆盖保护土壤团聚体稳定性和氮磷添加改变土壤团聚体结构,因此提高土壤固碳和固氮能力[24]. 这与汪冬至等[25]的研究结果一致.

土壤C/N与有机质分解速率成反比[26]. 本试验结果表明,土壤C/N与土壤TN呈负相关,可能是因为施用氮肥会显著降低氮素利用率,同时SOC吸收速率增加从而作物吸收氮素变少留在土壤的氮素增加导致C/N降低[27]. W1NP处理提高土壤C/N可能是秸秆与磷肥互作增加植株对氮吸收. 土壤C/P为土壤P有效性的重要指标[26]. 土壤SOC与C/P成极显著正相关,因为秸秆还田会直接增加土壤SOC含量,但是TP的含量会随着秸秆增加导致土壤水热增加而径流. 土壤N/P与土壤TN呈显著正相关,土壤TN含量与秸秆还田同时呈显著正相关,由此可以看出秸秆里的氮素会大大增加土壤里面的TN含量,从而导致N/P含量增加. N/P大于16时认为土壤受P限制,小于14时土壤受N限制,试验地土壤N/P平均值为1.01,所以土壤主要由N限制[26].

养分转化和循环离不开土壤微生物,细微微生物量变化会对土壤碳氮库的有效性产生变化[2829]. 结果表明,秸秆还田会增加土壤MBC、MBN和MBP,施用化肥处理显著高于不施肥处理,这与刘子刚等[30]的研究结果一致,这是由于秸秆还田直接提高土壤养分来源,外援有机物质输入直接导致土壤微生物呼吸速率加强,土壤矿化作用变强,土壤微生物量增加[31]. 微生物生物量C/N在3~6,土壤细菌占优势,7~12以真菌为主导. 本研究MBC/MBN平均值为5.63,远低于全球平均值(8.20)[32],证明研究地区主要为细菌主导. MBN/MBP平均值为12.03远远高于全球平均值(6.90)[32],说明研究区域在一定水平上受N限制,这与上文分析的结果一致.

3.2 秸秆还田配施化肥对土壤微生物熵和土壤-微生物化学计量失衡的影响

土壤微生物熵(qmb)可以反映单位土壤所包含的土壤微生物生物量,反映微生物对土壤养分的利用效率,从而影响土壤肥力大小,qmb越大,土壤养分更容易积累[33]. 有研究表明,有机质的数量和质量会影响土壤qmb[34]. 本研究表明,qmbc、qmbn和qmbp在不同利用处理下的变化存在差异. W0与W1处理qmb差异不显著,W0N和W0NP处理较W0显著提高,且秸秆还田与施肥互作qmb会显著增加,表明施肥对土壤微生物作用有正效应,并且秸秆给土壤微生物提供更好的环境,有助于微生物腐解秸秆,为土壤提供有机质. 本研究qmbc、qmbn和qmbp平均为2.87%、4.61%和0.36%,与全国平均水平(1.92%、3.43%和3.48%)相比qmbc和qmbn高于全国水平,qmbp略低于全国水平,表明该研究区土壤P利用效率相对较差. 为了维持植物生长所需的P等营养物质,需要增加MBP的比例,以维持较高的物质代谢能力. 有研究表明,土壤-微生物化学计量不平衡值越高,土壤质量越差,微生物生长利用效率越低[33]. W1NP处理C/Nimb相比W0提高47.06%,结果表明秸秆还田和P肥的过量施入导致土壤微生物活性降低,W0N处理化学计量不平衡最低,土壤质量较好,微生物的生长和利用效率较高.

3.3 土壤-微生物化学计量失衡与土壤微生物熵之间的耦合关系

本研究表明,MBC、MBN和MBP三者之间存在显著正相关,MBC与碳氮磷失衡比存在负相关关系,而MBN和MBP与C/Nimb存在正相关关系,与C/Pimb和N/Pimb存在显著负相关,MBC含量的增加或减少会影响MBN、MBP含量,从而影响化学计量不平衡性,这与Chi等[33]的研究结果一致. 即微生物可以通过调整自身的生物量来适应土壤-微生物化学计量失衡的变化.

qmb对土壤微生物同化和呼吸作用响应强烈,而微生物同化和呼吸作用主要受土壤资源和环境条件的影响[34]. 土壤-微生物化学计量失衡可以反映微生物对土壤养分波动的适应以及两者在生态系统养分动态平衡协同调控中的关系. RDA结果表明,qmbc与土壤C/N和微生物量碳氮磷化学计量比间均呈正相关关系,与C/Nimb、C/Pimb和N/Pimb呈负相关关系. qmbn和qmbp与土壤C、N和P化学计量比之间均呈正相关关系,这与张冠华等[32]和Zhou等[35]的研究结果一致,表明微生物元素利用的平衡对生态系统中C、N和P的循环有一定影响. 高C/N、低N/P,qmbc会显著降低,N/PimbP=0.002)和C/NimbP=0.002)对qmb影响最大. 综上所述,该地区土壤质量可能受N素限制.

4 结论

(1)化肥是影响SOC主要因素,TP受秸秆与施肥互作影响显著.

(2)MBC、MBN和MBP在W1NP处理中含量最高,且显著高于其他处理,施肥是影响土壤微生物量的主要因素.

(3)W1N处理qmbc最高,MBC占比高,该研究区qmbp显著低于全国水平,土壤P利用效率相对较差.

(4)W1NP处理N/PimbP=0.002)更小,C/NimbP=0.002)值更大,是优化区域农田养分管理的最优处理.

参考文献
[1] 张俊豪, 柴雪茹, 马嵩科, 等. 秸秆还田配施磷肥对豫西旱地小麦碳同化物积累的影响及其生理机制[J]. 草业学报, 2024, 33(6): 89-104.
Zhang J H, Chai X R, Ma S K, et al. Effects of straw return combined with phosphorus fertilizer on carbon assimilate accumulation in dryland wheat and the associated physiological mechanisms[J]. Acta Prataculturae Sinica, 2024, 33(6): 89-104.
[2] Yang H S, Fang C, Meng Y, et al. Long-term ditch-buried straw return increases functionality of soil microbial communities[J]. CATENA, 2021, 202. DOI:10.1016/j.catena.2021.105316
[3] Zhang S L, Li M, Cui X Y, et al. Effect of different straw retention techniques on soil microbial community structure in wheat-maize rotation system[J]. Frontiers in Microbiology, 2023, 13. DOI:10.3389/fmicb.2022.1069458
[4] Song J J, Song J H, Xu W, et al. Straw return with fertilizer improves soil CO2 emissions by mitigating microbial nitrogen limitation during the winter wheat season[J]. CATENA, 2024, 241. DOI:10.1016/j.catena.2024.108050
[5] Jiao F, Zhang D D, Chen Y, et al. Effects of long-term straw returning and nitrogen fertilizer reduction on soil microbial diversity in black soil in northeast China[J]. Agronomy, 2023, 13(8). DOI:10.3390/agronomy13082036
[6] Zhu Z L, Bai Y, Lv M L, et al. Soil fertility, microbial biomass, and microbial functional diversity responses to four years fertilization in an apple orchard in North China[J]. Horticultural Plant Journal, 2020, 6(4): 223-230. DOI:10.1016/j.hpj.2020.06.003
[7] Qu Q, Wang Z, Gan Q, et al. Impact of drought on soil microbial biomass and extracellular enzyme activity[J]. Frontiers in Plant Science, 2023, 14. DOI:10.3389/fpls.2023.1221288
[8] Chen C, Xiao W Y. The global positive effect of phosphorus addition on soil microbial biomass[J]. Soil Biology and Biochemistry, 2023, 176. DOI:10.1016/j.soilbio.2022.108882
[9] Li Z L, Zeng Z Q, Tian D S, et al. The stoichiometry of soil microbial biomass determines metabolic quotient of nitrogen mineralization[J]. Environmental Research Letters, 2020, 15(3). DOI:10.1088/1748-9326/ab6a26
[10] Lupwayi N Z, Soon Y K. Carbon and nitrogen release from legume crop residues for three subsequent crops[J]. Soil Science Society of America Journal, 2015, 79(6): 1650-1659. DOI:10.2136/sssaj2015.05.0198
[11] Blaud A, Lerch T Z, Chevallier T, et al. Dynamics of bacterial communities in relation to soil aggregate formation during the decomposition of 13C-labelled rice straw[J]. Applied Soil Ecology, 2012, 53: 1-9. DOI:10.1016/j.apsoil.2011.11.005
[12] Mooshammer M, Wanek W, Zechmeister-Boltenstern S, et al. Stoichiometric imbalances between terrestrial decomposer communities and their resources: mechanisms and implications of microbial adaptations to their resources[J]. Frontiers in Microbiology, 2014, 5. DOI:10.3389/fmicb.2014.00022
[13] Chakraborty A, Chakrabarti K, Chakraborty A, et al. Effect of long-term fertilizers and manure application on microbial biomass and microbial activity of a tropical agricultural soil[J]. Biology and Fertility of Soils, 2011, 47(2): 227-233. DOI:10.1007/s00374-010-0509-1
[14] Heuck C, Weig A, Spohn M. Corrigendum to Heucket al. (2015) 'Soil microbial biomass C∶N∶P stoichiometry and microbial use of organic phosphorus', Soil Biology & Biochemistry 85, 119-129[J]. Soil Biology and Biochemistry, 2018, 127: 329-330. DOI:10.1016/j.soilbio.2018.09.011
[15] 韩玥, 赵正, 田静, 等. 中国南方典型稻作梯田土壤有机碳积累及其来源表征[J]. 农业资源与环境学报, 2025, 42(1): 139-148.
Han Y, Zhao Z, Tian J, et al. Characterization of organic carbon pool and the source of paddy soil from typical rice terraces across southern China[J]. Journal of Agricultural Resources and Environment, 2025, 42(1): 139-148.
[16] 白金泽, 刘镇远, 宋佳杰, 等. 秸秆还田配施生物炭对关中平原夏玉米产量和土壤N2O排放的影响[J]. 环境科学, 2022, 43(8): 4379-4386.
Bai J Z, Liu Z Y, Song J J, et al. Effects of straw returning and biochar application on summer maize yield and soil N2O emission in Guanzhong Plain[J]. Environmental Science, 2022, 43(8): 4379-4386.
[17] 崔盛超, 图雅, 萨拉, 等. 呼伦贝尔寸草苔草原群落特征及物种多样性与土壤理化性质的关系[J]. 水土保持通报, 2023, 43(5): 27-34, 44.
Cui S C, Tu Y, Sa L, et al. Relationship between community characteristics and species diversity of Carex duriuscula and soil physiochemical properties in Hulunbuir steppe[J]. Bulletin of Soil and Water Conservation, 2023, 43(5): 27-34, 44.
[18] 贺婧, 魏琪琪, 钟艳霞, 等. 贺兰山东麓不同种植年限葡萄地土壤生态化学计量特征[J]. 干旱地区农业研究, 2020, 38(5): 23-30.
He J, Wei Q Q, Zhong Y X, et al. Eco-stoichiometry characteristics of grape fields with different planting years in the east foothills of Helan Mountain[J]. Agricultural Research in the Arid Areas, 2020, 38(5): 23-30.
[19] 孙轶萱, 李建峰, 胡文河, 等. 秸秆还田方式下黑钙土土壤碳氮磷钾化学计量特征研究[J]. 玉米科学, 2023, 31(6): 75-81.
Sun Y X, Li J F, Hu W H, et al. Stoichiometric characteristics of soil carbon, nitrogen, phosphorus, and potassium in chernozem soil under straw returning[J]. Journal of Maize Sciences, 2023, 31(6): 75-81.
[20] 苏弘治. 秸秆还田对黑钙土性质的影响和黑钙土肥力质量综合评价[D]. 沈阳: 辽宁大学, 2019.
Su H Z. Effect of straw returning on the properties of chernozem and fertility of chernozem overview[D]. Shenyang: Liaoning University, 2019.
[21] 严啟蕾. 不同气候区玉米秸秆腐解养分释放特性及土壤养分变化规律[D]. 沈阳: 沈阳农业大学, 2023.
Yan Q L. Nutrient release characteristics and soil nutrient variation of maize straw decay in different climatic regions[D]. Shenyang: Shenyang Agricultural University, 2023.
[22] 宋佳杰, 徐郗阳, 白金泽, 等. 秸秆还田配施化肥对土壤养分及冬小麦产量的影响[J]. 环境科学, 2022, 43(9): 4839-4847.
Song J J, Xu X Y, Bai J Z, et al. Effects of straw returning and fertilizer application on soil nutrients and winter wheat yield[J]. Environmental Science, 2022, 43(9): 4839-4847.
[23] Lan Z L, Zhao Y, Zhang J G, et al. Effects of the long-term fertilization on pore and physicochemical characteristics of loess soil in Northwest China[J]. Agronomy Journal, 2020, 112(6): 4741-4751.
[24] 李顺, 张新建, 宁晓光, 等. 天津农田三种典型冬绿肥的施磷效应[J]. 中国土壤与肥料, 2023(10): 65-74.
Li S, Zhang X J, Ning X G, et al. Effects of phosphorus application on three typical winter green manures in Tianjin farmland[J]. Soil and Fertilizer Sciences in China, 2023(10): 65-74.
[25] 汪冬至, 董思奇, 吴梦娜, 等. 秸秆还田配施氮肥对黑土区玉米连作体系土壤细菌群落结构的影响[J/OL]. 吉林农业大学学报, 1-13. https://doi.org/10.13327/j.jjlau.2021.20231, 2023-10-12.
Wang D Z, Dong S Q, Wu M N, et al. Effects of straw returning with nitrogen application on soil bacterial community in acontinuous maize crop system of the black soil area[J/OL]. Journal of Jilin Agricultural University, 1-13. https://doi.org/10.13327/j.jjlau.2021.20231, 2023-10-12.
[26] 张旸, 高燕, 张延, 等. 秸秆还田对东北黑土碳氮磷钾化学计量特征及玉米产量的影响[J]. 植物营养与肥料学报, 2023, 29(1): 31-44.
Zhang Y, Gao Y, Zhang Y, et al. Effects of residue return on stoichiometric characteristics of soil carbon, nitrogen, phosphorus, potassium, and the maize yield in black soil of Northeast China[J]. Journal of Plant Nutrition and Fertilizers, 2023, 29(1): 31-44.
[27] Zhang W F, Yang S Q, Jin Y H, et al. The effects of straw mulching combined with nitrogen applications on the root distributions and nitrogen utilization efficiency of summer maize[J]. Scientific Reports, 2020, 10(1). DOI:10.1038/s41598-020-78112-9
[28] 刘宇浩. 川滇高山栎灌丛土壤碳氮磷储量与酶活性及其生态化学计量变化特征[D]. 雅安: 四川农业大学, 2023.
Liu Y H. The Change of soil carbon, nitrogen, phosphorus storage, enzyme activity, and their ecological stoichiometric ratios in Qercus aquifolioides shrub of subalpine Western Sichuan, China[D]. Ya'an: Sichuan Agricultural University, 2023.
[29] 李源, 何丙辉, 秦华军, 等. 金银花林地土壤微生物量碳、氮与酶活性的分异特征[J]. 山地农业生物学报, 2022, 41(5): 67-73.
Li Y, He B H, Qin H J, et al. Spatial characteristics of soil microbial biomass carbon, nitrogen and enzyme activities in Lonicera japonica forest land[J]. Journal of Mountain Agriculture and Biology, 2022, 41(5): 67-73.
[30] 刘子刚, 卢海博, 赵海超, 等. 旱作区春玉米秸秆还田方式对土壤微生物量碳氮磷及酶活性的影响[J]. 西北农业学报, 2022, 31(2): 183-192.
Liu Z G, Lu H B, Zhao H C, et al. Effects of methods for spring maize straw-returning to field on soil microbial biomass C, N, P and enzyme activities in dry farming area[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2022, 31(2): 183-192.
[31] Bulgarelli D, Schlaeppi K, Spaepen S, et al. Structure and functions of the bacterial microbiota of plants[J]. Annual Review of Plant Biology, 2013, 64: 807-838.
[32] 张冠华, 牛俊, 易亮, 等. 不同植茶年限土壤-微生物生物量碳氮磷化学计量特征[J]. 应用生态学报, 2023, 34(4): 969-976.
Zhang G H, Niu J, Yi L, et al. Ecological stoichiometry of soil and microbial biomass carbon, nitrogen and phosphorus in tea plantations with different ages[J]. Chinese Journal of Applied Ecology, 2023, 34(4): 969-976.
[33] Chi Y K, Song S Z, Xiong K N, et al. Responses of soil microbial biomass, microbial entropy and soil-microorganism stoichiometry imbalance to different utilization patterns in the artificial grassland of karst desertification area[J]. Frontiers in Microbiology, 2023, 14. DOI:10.3389/fmicb.2023.1293353
[34] 吴秀芝, 刘秉儒, 阎欣, 等. 荒漠草地土壤微生物生物量和微生物熵对沙漠化的响应[J]. 应用生态学报, 2019, 30(8): 2691-2698.
Wu X Z, Liu B R, Yan X, et al. Response of soil microbial biomass and microbial entropy to desertification in desert grassland[J]. Chinese Journal of Applied Ecology, 2019, 30(8): 2691-2698.
[35] Zhou Z H, Wang C K. Reviews and syntheses: Soil resources and climate jointly drive variations in microbial biomass carbon and nitrogen in China's forest ecosystems[J]. Biogeosciences, 2015, 12(22): 6751-6760.