2. 山东碧蓝生物科技有限公司, 泰安 271400;
3. 山西农业大学植物保护学院, 太谷 030800
2. Shandong Baolai-Leelai Bio-Industrial Co., Ltd., Taian 271018, China;
3. College of Plant Protection, Shanxi Agricultural University, Taigu 030800, China
全球塑料废物的积累和相关污染对环境及社会经济造成了严重影响[1], 聚氯乙烯(polyvinyl chloride, PVC)是一种广泛使用的塑料聚合物, 占全球塑料产量的10%[2, 3]. 因其具有高相对分子质量、高稳定共价键和高疏水性的特性, 以及它的骨架中引入了氯原子在环境中难以被降解[4, 5], 通常塑料废物处理采用填埋和焚烧方式, 导致释放二次污染物如氯化氢和二英等[6]. 因此, 开发可持续和环保的方式处理塑料废物亟待解决.
现有研究发现黄粉虫和大麦虫等昆虫幼虫可以咀嚼和摄取各类塑料, 表现出良好的塑料降解潜力[7, 8]. Wu等[9]仅用PVC喂养黄粉虫幼虫发现虫粪中聚合物的傅里叶变换红外光谱(fourier transform infrared spectroscopy, FTIR)发生显著变化, 同时虫粪中聚合物的分子量也发生了显著变化, 表明聚合物可能发生了生物降解. Brandon等[7]发现不同地区的黄粉虫种群均能够消耗聚苯乙烯(polystyrene, PS), 通过进食和咀嚼行为以及依赖于肠道微生物的氧化消化机制对PS进行生物降解. 大麦虫是黄粉虫与黑粉虫的杂交种, 体型更大, 同样可摄取并降解多种聚烯烃塑料[10, 11]. 殷涛等[12]研究通过不同塑料饲喂黄粉虫和大麦虫发现这两种昆虫取食偏好相似. 有研究通过抗生素抑菌试验确定了黄粉虫对塑料的生物降解取决于肠道微生物, 且幼虫摄取塑料后肠道内优势菌属发生明显变化[8]. 因此通过从这类昆虫的肠道内筛选出具有塑料降解能力的微生物, 可以实现对塑料的有效降解.
目前有关PVC生物降解的研究进展仍滞后于聚乙烯(polyethylene, PE)[13, 14]、聚对苯二甲酸乙二醇酯(polybutylene terephthalate, PET)[15, 16]和PS[17, 18], 并且所分离的降解菌中以真菌类微生物居多. 例如, 有研究表明土壤中的旋孢腔菌属(Cochliobolus sp.)具有降解低分子量PVC的能力[19];Ali等[20]利用土壤包埋筛选PVC降解菌, 得到4株具有PVC降解能力的真菌, 其中黄孢原毛平革菌(Phanerochaete chrysosporium)在降解PVC的过程中可以明显观察到聚合物分子量的降低和微观结构的变化. 最近的一项研究基于草地贪夜蛾幼虫肠道分离得到1株细菌(克雷伯氏菌EMBL-1), 能够解聚和利用PVC膜并形成生物膜[2]. 然而, 基于大麦虫肠道分离PVC降解菌的研究少见报道, 菌株对PVC的解聚和降解模式仍不清楚. 基于此, 本研究依托大麦虫幼虫肠道微生物可生物降解PVC这一特性, 进行可生物降解PVC菌株的分离和鉴定, 旨在获得高效降解菌株, 丰富PVC降解菌株储备.
1 材料与方法 1.1 测试材料及培养基PVC(0.030 g·cm-3)购自上海防震包装厂, 溴化物和普通增塑剂的含量均低于检测限(溴化物浓度 < 1 mg·L-1, 增塑剂浓度 < 25 mg·L-1), PVC塑料薄膜由平板硫化机压制而成, 厚度为0.06 mm. 大麦虫及麦麸购自广东省阳江市养殖场, 麦麸的C∶H∶O∶N元素比约为34∶4∶45∶2, 所有幼虫均未喂食任何激素或抗生素, 图 1为大麦虫钻入PVC塑料中进行取食.
![]() |
图 1 大麦虫啮食PVC形成孔洞 Fig. 1 Larvae of Z. atratus feeding on PVC and forming holes |
无碳营养液体培养基(LM, g·L-1):KH2PO4 0.700, K2HPO4 0.700, FeSO4·7H2O 0.002, MnSO4·H2O 0.001, MgSO4·7H2O 0.700, ZnSO4·7H2O 0.002, (NH4)2SO4 1.650, NaCl 0.005, 无菌水定容至1 L. 添加20 g琼脂配置成固体培养基, pH 7.0.
LB培养基(LB, g·L-1):胰蛋白胨10, 酵母提取物5, NaCl 10, 无菌水定容至1 L.
1.2 PVC饲喂试验本试验共设2个处理组:PVC(C)和PVC+麦麸组(CW), 每组设置3个平行, 试验开始前大麦虫保持饥饿状态48 h. 各平行试验选择100只大麦虫进行饲喂, 为期30 d, 培养箱的温度控制在27 ℃, 湿度控制在70%. 试验开始时, 在C组中加入PVC 2 g, CW组中加入PVC和麦麸各2 g, 在相同条件下保持30 d, 每隔6 d补充等量饲料并用镊子尽可能多地收集大块PVC和幼虫啃食的塑料碎片, 称重计算塑料消耗量, 记录存活幼虫数, 测量幼虫体重计算幼虫平均体重变化, 即(不同培养阶段幼虫体重-幼虫初始体重)×100%. 每天检查清除死亡的大麦虫以防止被同类相食消耗的质量, 收集的虫粪保存于-80 ℃冰箱中备测.
1.3 幼虫粪便的红外光谱和热重分析饲养结束后, 将收集到的虫粪和KBr按1∶100质量比混合, 在玛瑙研钵中充分研磨, 利用油压机压成透明薄片进行FTIR(Tango-R, Brock instruments, Germany)分析. FTIR参数设置:光谱分辨率为4 cm-1、扫描次数为32和波数为4 000~400 cm-1. 通过热重分析仪(TGA-50/50H, Shimadzu Corporation, Japan)分析PVC原样和各组虫粪样品的热稳定性. 取(10 ± 1)mg的样品加入到坩埚中, 将坩埚和待测样品共同放入热重分析仪中. 热重分析仪参数如下:升温速率10 K·min-1, 温度范围30~800 ℃, 高纯度氮气(N2, 99.999%)流速10 mL·min-1.
1.4 PVC降解菌株筛选 1.4.1 大麦虫肠道可培养微生物的分离与纯化在PVC组中随机挑选大麦虫10条, 将虫体浸泡于95%酒精30 s, 然后置于无菌生理盐水15 s, 之后浸泡于75%酒精1 min, 取下幼虫的头部和尾部, 用灭菌后的镊子取出大麦虫的完整肠道装入含有1 mL无菌生理盐水的离心管中, 涡旋仪振荡直至肠道内容物全部析出, 取1 μL上清液接种至LB液体培养基中37 ℃厌氧培养24 h, 在LB固体培养基上划线37 ℃厌氧培养过夜, 挑取单菌落进行划线纯化, 根据菌落形态筛选出不同的菌株, 将筛选得到的菌株于-80 ℃冻存.
将上述筛选得到的不同菌株接种至LB液体培养基中, 37 ℃、200 r·min-1培养12 h后离心10 min收集菌体, 菌体用无菌生理盐水漂洗3次后重悬于等体积无菌生理盐水中. 取1 mL重悬菌液接种于以PVC塑料薄膜为唯一碳源的LM液体培养基中, 37 ℃、200 r·min-1培养20 d, 用酶标仪测定D600, 以确定菌株生长情况, 进而判断菌株对PVC的降解能力.
1.4.2 PVC降解菌株的鉴定通过16S rRNA基因对1.4.1节筛选得到的菌株进行分子生物学鉴定. 利用DNA提取试剂盒提取降解菌株基因组, 采用细菌通用引物27F(5′-AGAGT TTGATCCTGGCTCAG-3′)和1492R(5′-TACGGCTA CCTTGTTACGACTT-3′)扩增16S rRNA基因. PCR反应体系(50 μL):Taq DNA Master Mix 25 μL, 上、下游引物(0.4 μmol·L-1)各2 μL, DNA模板(50 μg·mL-1)3 μL, RNase-free H2O 18 μL. PCR反应条件:95 ℃ 90 s;95 ℃ 10 s, 58 ℃ 10 s, 72 ℃ 70 s, 35个循环;10 ℃保存. PCR产物经1%琼脂糖凝胶电泳测其纯度, 然后送睿博兴科生物技术有限公司(青岛测序部)进行测序. 将生物公司测得的16S rRNA基因序列发送到美国国家生物技术信息中心(National Center for Biotechnology Information, NCBI)的GenBank数据库中, 进行BLAST比对、分类和鉴定.
1.4.3 降解前后PVC理化性质的测定PVC降解菌接种于LM培养基中37 ℃培养50 d, 未接菌为对照, 7 d时取塑料膜片制取生物样品观察其表面生物膜定殖情况. 将降解50 d后的塑料薄膜清洗除去塑料表面杂质, 具体操作如下:将PVC薄膜与2%(质量分数)的十二烷基硫酸钠水溶液混合, 振荡4 h, 然后用无菌水冲洗, 在恒温干燥箱(50 ℃)中干燥24 h后, 将清洁的薄膜称重. 失重率(%)计算为:100%×(初始薄膜质量-最终薄膜质量)/初始薄膜质量. 然后通过光学接触角测量仪测定塑料薄膜经不同塑料降解菌降解前后疏水性的变化情况.
1.5 数据分析采用RStudio(4.3.1)软件计算大麦虫幼虫存活率、塑料损失量和平均体重的平均值以及标准差, 并对PVC的FTIR和热重分析(thermogravimetric analysis, TGA)曲线进行拟合及图像处理, 利用ggplot2包绘制图片.
2 结果与讨论 2.1 大麦虫啮食PVC过程分析利用存活率、塑料质量损失和质量变化来评估PVC饲喂对幼虫生长和发育的影响(图 2). 结果表明麦麸与PVC共饲比PVC组存活率更高[图 2(a)], PVC作为唯一饮食大麦虫存活率为72.33%(30 d), 说明PVC可作为碳源维持大麦虫生命, 这与先前研究的结果相似[7, 21]. 但与已报道的能摄食PS、PE的黄粉虫和黑粉虫相比, 大麦虫的存活率较低, 这可能是由于大麦虫体形较大, 其自身基础代谢较高所致[21, 22].
![]() |
图 2 大麦虫在30 d内存活率、塑料损失量和平均体重 Fig. 2 Survival rate, plastic mass loss, and average weight of Z. atratus over the test period (30 d) |
由图2(b)和2(c)结果可见, 麦麸与PVC共饲可有效提高塑料消耗量以及幼虫平均体重, 喂养30 d后, 相比PVC喂养塑料消耗量提高12.07%, 幼虫平均体重提高57.78%. 说明相比单一PVC饲喂, 添加麦麸可以丰富食物结构, 更有效满足大麦虫自身基础代谢以及啮食塑料所需能量[7, 23, 24].
2.2 大麦虫对塑料的生物降解表征FTIR和TGA分析是广泛用于研究塑料生物降解的既定方法[25 ~ 28]. 结果显示, 与PVC塑料原样对比, 取食后大麦虫虫粪中的PVC化学结构发生了改变(图 3). 虫粪的FTIR光谱出现新的官能团[图 3(a)], 在1 700 cm-1(C=O伸展)出现峰值. 此外, 690 cm-1的峰值在虫粪中的强度比PVC弱得多, 表明—C—Cl伸展被抑制, 说明PVC确实发生了氧化或生物降解[25, 29, 30].
![]() |
图 3 大麦虫幼虫对PVC的生物降解特性 Fig. 3 Characterization of biodegradation of PVC in the Z. atratus larvae |
PVC在287~685 ℃范围内约有97.45%的质量损失[图 3(b)], 分别在322.26、482.27和657.83 ℃下出现了最大分解速率, 虫粪在97.1、292.26、463.53和529.88 ℃检测到4种不同的最大分解速率. 虫粪相比PVC分解阶段增多, 说明虫粪中出现新的组分, 在肠道中发生了热改性. 发生在100 ℃附近的分解部分被归类为挥发性有机物排放造成的质量损失. 其他阶段可能与生物废物、降解氯化产品和其他生物降解中间产物的排放有关[29, 31].
2.3 大麦虫肠道微生物分离与鉴定经PVC饲喂的大麦虫肠道中, 共筛选出3株可在PVC为唯一碳源的LM培养基上形成菌落的肠道细菌, 并进行分子生物学鉴定. 16S rRNA基因序列比对后3株菌属分别为粪肠球菌(Enterococcus faecalis)、霍氏肠杆菌(Enterobacter hormaechei)和枯草芽孢杆菌(Bacillus subtilis), 经BLAST比对其相似度的结果如表 1所示.
![]() |
表 1 分离大麦虫肠道中的细菌 Table 1 Isolation of bacteria from the gut of Z. atratus |
将这3株菌分别接种在以PVC为唯一碳源的LM培养基中培养20 d, 每隔48 h通过酶标仪测量其D600值的变化. 结果如图 4所示, C5-1(D600=1.724)、C6-1(D600=1.674)和C6-2(D600=1.768)均能在PVC塑料为唯一碳源的培养基中存活, 说明PVC可以提供大麦虫幼虫生长所需要的部分营养物质.
![]() |
图 4 降解菌20 d内 D600 变化 Fig. 4 Changes in D600 of degrading bacteria within 20 d |
对3株降解菌接种在以PVC为唯一碳源的LM固体培养基上培养21 d后, 在培养基上滴加碘-碘化钾-硼酸溶液测量透明圈大小, 初步判断菌株降解能力(图 5). 根据表 2结果来看, C5-1对PVC的降解能力最强, 其D2/D1的值为2.30 ± 0.75;其次为C6-1, 其D2/D1的值为1.71 ± 0.74.
![]() |
图 5 降解菌的透明圈大小 Fig. 5 Size of the transparent circle formed by the degrading bacteria |
![]() |
表 2 透明圈D2/D1值 Table 2 Value of the D2/D1 in the transparent circle |
2.4.2 降解菌对PVC薄膜的侵蚀能力测定
为进一步明确菌株对PVC的降解能力, 将3株降解菌于LM固体培养基中培养, 发现其可以有效地在PVC薄膜上定殖, 同时可明显看到PVC薄膜边缘发生明显侵蚀(图 6). 相关研究表明, 微生物在降解聚乙烯时, 会分泌胞外聚合物;不管是酶类还是胞外聚合物, 都有助于微生物侵蚀塑料表面[32, 33].
![]() |
图 6 降解菌在PVC薄膜上的定殖情况 Fig. 6 Colonization of degrading bacteria on PVC film |
图 7结果显示了经50 d侵蚀后PVC薄膜质量的损失. 其中以C5-1质量损失最为明显, 共损失(6.19 ± 0.14)mg(失重率约为9.08%), 低于已报道的聚乙烯(polyethylene, PE)塑料降解菌, 例如皮特不动杆菌Acinetobacter pitti IRN19在紫外光预处理方式下, 28 d PE减重率为26.80%[34];添加矿物油改变疏水性后, 菌株Pseudomonas sp. AKS2 45 d内可降解14%的PE[35]. 这可能是因为PVC骨架中引入了氯离子, 增加了生物降解的难度, 另外, 上述研究均采用不同的预处理方式才达到较高降解效果, 这也为后续研究提供了思路. 有研究表明细菌菌株对聚合物中的添加剂降解较PVC更为显著, 利用高密度PE和PVC对比发现菌株对PE的降解效率更为明显, 30 d减重率仅为0.26%[36, 37], 推测氯离子使PVC的微生物降解存在不确定性. 此外, Peng等[38]研究结果显示, 黄粉虫与黑粉虫的肠道微生物群落都发生了与PS生物降解有关的显著变化, 包括螺原体科(Spiroplasmataceae)、肠球菌科(Enterococcaceae)和肠杆菌科Enterobacteriaceae, 而大麦虫为黑粉虫与黄粉虫的杂交种, 且粪肠球菌(E. faecalis)、霍氏肠杆菌(E. hormaechei)分别属于肠球菌科(Enterococcaceae)和肠杆菌科Enterobacteriaceae, 猜测其对不同塑料材料均有一定降解能力, 这一发现仍需后续试验进行验证.
![]() |
图 7 PVC薄膜质量损失 Fig. 7 Weight loss of PVC film |
采用WCA验证降解菌对聚合物表面疏水性的影响(图 8). 结果表明原始PVC薄膜WCA为(101.5 ± 0.3)°, 经3株降解菌侵蚀后其WCA分别为(92.1 ± 0.7)°(C5-1)、(94.0 ± 1.3)°(C6-1)和(98.4 ± 1.0)°(C6-2), 明显低于原始PVC薄膜, 说明经降解菌株侵蚀后PVC的疏水性降低, 亲水性得到增强从而减弱其耐微生物侵蚀的能力, 这与之前的研究结果相似[13, 39]. 可能是接种细菌对PVC侵蚀后产生的裂纹所致[40, 41]. 此外, 有研究表明对聚合物进行紫外光或热氧化预处理可导致碳基、羧基和酯官能团的形成, 从而增加亲水性[42, 43];添加表面活性剂可以增强亲水酶和疏水聚合物之间的表面相互作用, 从而提高生物降解性[44 ~ 46]. 综上所述, 经筛选鉴定出具备降解聚合物能力的菌株后, 可根据各菌株的特异性选择适应的预处理从而达到提高降解能力的目的.
![]() |
图 8 降解菌侵蚀前后WCA对比 Fig. 8 Comparison of WCA before and after degrading bacteria erosion |
前期试验证明大麦虫幼虫具有降解PVC的能力, FTIR和TGA分析证实PVC在幼虫肠道内发生解聚. 基于此, 本研究从PVC饲喂的幼虫肠道内分离出3株菌:经鉴定分别为粪肠球菌(E. faecalis)、霍氏肠杆菌(E. hormaechei)和枯草芽孢杆菌(B. subtilis). 通过固体平板的降解试验和WCA检测, 发现经菌株侵蚀后PVC薄膜质量有所损失和疏水性降低, 以C5-1(粪肠球菌, E. faecalis)降解能力最强(失重率约为9.08%, WCA降低9.4°). 表明大麦虫幼虫肠道所分离菌株对PVC具备降解能力, 为PVC生物降解提供新的方法.
[1] | Borrelle S B, Ringma J, Law K L, et al. Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution[J]. Science, 2020, 369(6510): 1515-1518. DOI:10.1126/science.aba3656 |
[2] | Zhang Z, Peng H R, Yang D C, et al. Polyvinyl chloride degradation by a bacterium isolated from the gut of insect larvae[J]. Nature Communications, 2022, 13(1). DOI:10.1038/s41467-022-32903-y |
[3] | Xu Y, Xian Z N, Yue W L, et al. Degradation of polyvinyl chloride by a bacterial consortium enriched from the gut of Tenebrio molitor larvae[J]. Chemosphere, 2023, 318. DOI:10.1016/j.chemosphere.2023.137944 |
[4] | Peixoto J, Silva L P, Krüger R H. Brazilian cerrado soil reveals an untapped microbial potential for unpretreated polyethylene biodegradation[J]. Journal of Hazardous Materials, 2017, 324: 634-644. DOI:10.1016/j.jhazmat.2016.11.037 |
[5] | Yin C F, Xu Y, Zhou N Y. Biodegradation of polyethylene mulching films by a co-culture of Acinetobacter sp. strain NyZ450 and Bacillus sp. strain NyZ451 isolated from Tenebrio molitor larvae[J]. International Biodeterioration & Biodegradation, 2020, 155. DOI:10.1016/j.ibiod.2020.105089 |
[6] | Barnes D K A, Galgani F, Thompson R C, et al. Accumulation and fragmentation of plastic debris in global environments[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009, 364(1526): 1985-1998. DOI:10.1098/rstb.2008.0205 |
[7] | Brandon A M, Gao S H, Tian R M, et al. Biodegradation of polyethylene and plastic mixtures in mealworms (larvae of Tenebrio molitor) and effects on the gut microbiome[J]. Environmental Science & Technology, 2018, 52(11): 6526-6533. |
[8] | Peng B Y, Sun Y, Wu Z Y, et al. Biodegradation of polystyrene and low-density polyethylene by Zophobas atratus larvae: fragmentation into microplastics, gut microbiota shift, and microbial functional enzymes[J]. Journal of Cleaner Production, 2022, 367. DOI:10.1016/j.jclepro.2022.132987 |
[9] | Wu Q Q, Tao H C, Wong M H. Feeding and metabolism effects of three common microplastics on Tenebrio molitor L.[J]. Environmental Geochemistry and Health, 2019, 41(1): 17-26. DOI:10.1007/s10653-018-0161-5 |
[10] | Yang S S, Ding M Q, He L, et al. Biodegradation of polypropylene by yellow mealworms (Tenebrio molitor) and superworms (Zophobas atratus) via gut-microbe-dependent depolymerization[J]. Science of the Total Environment, 2021, 756. DOI:10.1016/j.scitotenv.2020.144087 |
[11] | Yang Y, Wang J L, Xia M L. Biodegradation and mineralization of polystyrene by plastic-eating superworms Zophobas atratus [J]. Science of the Total Environment, 2020, 708. DOI:10.1016/j.scitotenv.2019.135233 |
[12] |
殷涛, 周祥, 王艳斌, 等. 泡沫塑料的取食对黄粉虫和大麦虫生长的影响[J]. 甘肃农业大学学报, 2018, 53(2): 74-79. Yin T, Zhou X, Wang Y B, et al. Effects of plastic foam feeding on the growth of Tenebrio molitor L. and Zophobas morio Fabricius[J]. Journal of Gansu Agricultural University, 2018, 53(2): 74-79. |
[13] | Yang J, Yang Y, Wu W M, et al. Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating waxworms[J]. Environmental Science & Technology, 2014, 48(23): 13776-13784. |
[14] | Ru J K, Huo Y X, Yang Y. Microbial degradation and valorization of plastic wastes[J]. Frontiers in Microbiology, 2020, 11. DOI:10.3389/fmicb.2020.00442 |
[15] | Yoshida S, Hiraga K, Takehana T, et al. A bacterium that degrades and assimilates poly (ethylene terephthalate)[J]. Science, 2016, 351(6278): 1196-1199. DOI:10.1126/science.aad6359 |
[16] | Tournier V, Topham C M, Gilles A, et al. An engineered PET depolymerase to break down and recycle plastic bottles[J]. Nature, 2020, 580(7802): 216-219. DOI:10.1038/s41586-020-2149-4 |
[17] | Peng B Y, Li Y R, Fan R, et al. Biodegradation of low-density polyethylene and polystyrene in superworms, larvae of Zophobas atratus (Coleoptera: Tenebrionidae): broad and limited extent depolymerization[J]. Environmental Pollution, 2020, 266. DOI:10.1016/j.envpol.2020.115206 |
[18] | Quan Z L, Zhao Z X, Liu Z M, et al. Biodegradation of polystyrene microplastics by superworms (larve of Zophobas atratus): gut microbiota transition, and putative metabolic ways[J]. Chemosphere, 2023, 343. DOI:10.1016/j.chemosphere.2023.140246 |
[19] | Sumathi T, Viswanath B, Lakshmi A S, et al. Production of laccase by Cochliobolus sp. isolated from plastic dumped soils and their ability to degrade low molecular weight PVC[J]. Biochemistry Research International, 2016, 2016. DOI:10.1155/2016/9519527 |
[20] | Ali M I, Ahmed S, Robson G, et al. Isolation and molecular characterization of polyvinyl chloride (PVC) plastic degrading fungal isolates[J]. Journal of Basic Microbiology, 2014, 54(1): 18-27. DOI:10.1002/jobm.201200496 |
[21] | Yang S S, Chen Y D, Kang J H, et al. Generation of high-efficient biochar for dye adsorption using frass of yellow mealworms (larvae of Tenebrio molitor Linnaeus) fed with wheat straw for insect biomass production[J]. Journal of Cleaner Production, 2019, 227: 33-47. DOI:10.1016/j.jclepro.2019.04.005 |
[22] |
杨莉, 刘颖, 高婕, 等. 大麦虫幼虫肠道菌群对聚苯乙烯泡沫塑料降解[J]. 环境科学, 2020, 41(12): 5609-5616. Yang L, Liu Y, Gao J, et al. Biodegradation of expanded polystyrene foams in Zophobas morio: effects of gut microbiota[J]. Environmental Science, 2020, 41(12): 5609-5616. |
[23] | Yang S S, Wu W M. Biodegradation of plastics in Tenebrio genus (mealworms)[A]. In: He D F, Luo Y M (Eds.). Microplastics in Terrestrial Environments: Emerging Contaminants and Major Challenges[M]. Cham: Springer, 2020. 385-422. |
[24] | Peng B Y, Chen Z B, Chen J B, et al. Biodegradation of polylactic acid by yellow mealworms (larvae of Tenebrio molitor) via resource recovery: a sustainable approach for waste management[J]. Journal of Hazardous Materials, 2021, 416. DOI:10.1016/j.jhazmat.2021.125803 |
[25] | Wu J L, Chen T J, Luo X T, et al. TG/FTIR analysis on co-pyrolysis behavior of PE, PVC and PS[J]. Waste Management, 2014, 34(3): 676-682. DOI:10.1016/j.wasman.2013.12.005 |
[26] | Majewsky M, Bitter H, Eiche E, et al. Determination of microplastic polyethylene (PE) and polypropylene (PP) in environmental samples using thermal analysis (TGA-DSC)[J]. Science of the Total Environment, 2016, 568: 507-511. DOI:10.1016/j.scitotenv.2016.06.017 |
[27] | Zhu H M, Jiang X G, Yan J H, et al. TG-FTIR analysis of PVC thermal degradation and HCl removal[J]. Journal of Analytical and Applied Pyrolysis, 2008, 82(1): 1-9. DOI:10.1016/j.jaap.2007.11.011 |
[28] | Mansa R, Zou S. Thermogravimetric analysis of microplastics: a mini review[J]. Environmental Advances, 2021, 5. DOI:10.1016/j.envadv.2021.100117 |
[29] | Peng B Y, Chen Z B, Chen J B, et al. Biodegradation of polyvinyl chloride (PVC) in Tenebrio molitor (Coleoptera: Tenebrionidae) larvae[J]. Environment International, 2020, 145. DOI:10.1016/j.envint.2020.106106 |
[30] | Singh B, Sharma N. Mechanistic implications of plastic degradation[J]. Polymer Degradation and Stability, 2008, 93(3): 561-584. DOI:10.1016/j.polymdegradstab.2007.11.008 |
[31] | Nyamjav I, Jang Y J, Lee Y E, et al. Biodegradation of polyvinyl chloride by Citrobacter koseri isolated from superworms (Zophobas atratus larvae)[J]. Frontiers in Microbiology, 2023, 14. DOI:10.3389/fmicb.2023.1175249 |
[32] | Volke-Sepúlveda T, Saucedo-Castañeda G, Gutiérrez-Rojas M, et al. Thermally treated low density polyethylene biodegradation by Penicillium pinophilum and Aspergillus niger [J]. Journal of Applied Polymer Science, 2002, 83(2): 305-314. DOI:10.1002/app.2245 |
[33] | Amaral-Zettler L A, Zettler E R, Mincer T J. Ecology of the plastisphere[J]. Nature Reviews Microbiology, 2020, 18(3): 139-151. DOI:10.1038/s41579-019-0308-0 |
[34] | Montazer Z, Habibi-Najafi M B, Mohebbi M, et al. Microbial degradation of UV-pretreated low-density polyethylene films by novel polyethylene-degrading bacteria isolated from plastic-dump soil[J]. Journal of Polymers and the Environment, 2018, 26(9): 3613-3625. DOI:10.1007/s10924-018-1245-0 |
[35] | Tribedi P, Sil A K. Low-density polyethylene degradation by Pseudomonas sp. AKS2 biofilm[J]. Environmental Science and Pollution Research, 2013, 20(6): 4146-4153. |
[36] | Kumari A, Chaudhary D R, Jha B. Destabilization of polyethylene and polyvinylchloride structure by marine bacterial strain[J]. Environmental Science and Pollution Research, 2019, 26(2): 1507-1516. |
[37] | Giacomucci L, Raddadi N, Soccio M, et al. Polyvinyl chloride biodegradation by Pseudomonas citronellolis and Bacillus flexus [J]. New Biotechnology, 2019, 52: 35-41. |
[38] | Peng B Y, Su Y M, Chen Z B, et al. Biodegradation of polystyrene by dark (Tenebrio obscurus) and yellow (Tenebrio molitor) mealworms (Coleoptera: Tenebrionidae)[J]. Environmental Science & Technology, 2019, 53(9): 5256-5265. |
[39] | Hou L J, Xi J, Liu J X, et al. Biodegradability of polyethylene mulching film by two Pseudomonas bacteria and their potential degradation mechanism[J]. Chemosphere, 2022, 286. DOI:10.1016/j.chemosphere.2021.131758 |
[40] | Woo S, Song I, Cha H J. Fast and facile biodegradation of polystyrene by the gut microbial flora of Plesiophthalmus davidis larvae[J]. Applied and Environmental Microbiology, 2020, 86(18). DOI:10.1128/AEM.01361-20 |
[41] | Yue W L, Yin C F, Sun L M, et al. Biodegradation of bisphenol-A polycarbonate plastic by Pseudoxanthomonas sp. strain NyZ600[J]. Journal of Hazardous Materials, 2021, 416. DOI:10.1016/j.jhazmat.2021.125775 |
[42] | Jia Y K, Chen J X, Asahara H, et al. Polymer surface oxidation by light-activated chlorine dioxide radical for metal-plastics adhesion[J]. ACS Applied Polymer Materials, 2019, 1(12): 3452-3458. |
[43] | Chamas A, Moon H, Zheng J J, et al. Degradation rates of plastics in the environment[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(9): 3494-3511. |
[44] | Bhardwaj H, Gupta R, Tiwari A. Communities of microbial enzymes associated with biodegradation of plastics[J]. Journal of Polymers and the Environment, 2013, 21(2): 575-579. |
[45] | Amobonye A, Bhagwat P, Singh S, et al. Plastic biodegradation: frontline microbes and their enzymes[J]. Science of the Total Environment, 2021, 759. DOI:10.1016/j.scitotenv.2020.143536 |
[46] | Han Y N, Wei M, Han F, et al. Greater biofilm formation and increased biodegradation of polyethylene film by a microbial consortium of Arthrobacter sp. and Streptomyces sp[J]. Microorganisms, 2020, 8(12). DOI:10.3390/microorganisms8121979 |