环境科学  2025, Vol. 46 Issue (3): 1443-1449   PDF    
双波长紫外协同强化消毒及对光、暗复活影响
周添红1, 梁源夫1,2, 孙喆2, 李梦凯2, 王佳乐2, 李文涛2, 贲伟伟2, 张国珍1, 强志民2     
1. 兰州交通大学环境与市政工程学院, 兰州 730070;
2. 中国科学院生态环境研究中心环境水质学国家重点实验室, 北京 100085
摘要: C波段紫外线(UV-C)可有效灭活水中病原微生物, 远UV-C(200~230 nm)和常规UV-C(250~280 nm)可分别损伤病原微生物的蛋白质和核酸, 同时辐照有望实现病原微生物的协同灭活. 然而由于现有实验装置难以满足研究需求, 相关研究十分有限. 因此, 搭建了配装KrCl准分子灯和低压汞灯的细管流光反应系统, 可单独/同时输出稳定的222 nm(远UV-C)和254 nm(常规UV-C)辐照. 之后利用该装置探究了双波长UV-C对大肠杆菌(E. coli)的协同灭活作用, 以及对光、暗复活的影响. 结果表明, 双波长UV-C协同灭活E. coli作用显著, 协同系数最高可达2.2. 此外, 双波长UV-C辐照明显减弱E. coli的光复活作用, 最大对数复活率从254 nm单独辐照的50.8%降低为36.1%, 同时, 在黑暗条件下, 未发现复活现象且呈现暗凋零现象, 说明双波长UV-C辐照可降低光、暗复活风险, 确保水质生物安全, 研究可为高效和安全的水消毒技术研发提供理论依据.
关键词: 紫外线      消毒      双波长      协同作用      微生物复活     
Synergistic Disinfection Effects of Dual-wavelength Ultraviolet and Its Impact on Photoreactivation and Dark Repair
ZHOU Tian-hong1 , LIANG Yuan-fu1,2 , SUN Zhe2 , LI Meng-kai2 , WANG Jia-le2 , LI Wen-tao2 , BEN Wei-wei2 , ZHANG Guo-zhen1 , QIANG Zhi-min2     
1. School of Environment and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China;
2. State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
Abstract: Ultraviolet-C (UV-C) irradiation can effectively deactivate pathogenic microorganisms. The far UV-C (200-230 nm) and conventional UV-C (250-280 nm) can damage the proteins and nucleic acids of pathogenic microorganisms, respectively. The combination of far and conventional UV-C has the potential of synergistic inactivation. However, relevant studies remain limited owing to the lack of appropriate experimental setups. Therefore, this study established a mini-fluidic photoreaction system equipped with a KrCl excimer lamp and a low-pressure mercury lamp. This system could independently/simultaneously deliver stable 222 nm (far UV-C) and 254 nm (conventional UV-C) irradiations. Subsequently, the system was used to investigate the synergistic effect of dual-wavelength UV-C (the combination of 222 nm and 254 nm UV-C) on Escherichia coli (E. coli) inactivation and the subsequent impact on photo- and dark-reactivation. The results indicated that dual-wavelength UV-C had a significant synergistic effect on E. coli inactivation, with a synergistic coefficient up to 2.2. Additionally, comparing to 254 nm UV irradiation, the photo-reactivation of E. coli after dual-wavelength UV-C irradiation was weakened, with the maximum lg reactivation percentage reducing from 50.8% to 36.1%. Furthermore, E. coli after dual-wavelength UV-C irradiation exhibited dark decay, in which the inactivation efficiency was further enhanced during dark treatment. Therefore, these results suggest that dual-wavelength UV-C could inhibit the light reactivation and dark repair of E. coli, ensuring the water biosafety, as well as providing reference for the development of effective and safe water disinfection technologies.
Key words: ultraviolet      disinfection      dual-wavelength      synergistic effect      bacterial reactivation     

饮用水生物安全与人类的健康生活息息相关[1 ~ 3], 据世界卫生组织(WHO)的数据显示, 每年约数百万人死于介水疾病[4, 5]. 因此, 高效、可靠的消毒技术是人民健康的重要保障. 紫外线(UV)消毒是一种新型绿色消毒技术, 具有广谱高效、运维简单和不产生消毒副产物等优势[6], 可以有效的灭活水中绝大部分病原微生物, 目前已经广泛应用于饮用水与污水等消毒领域[7 ~ 11].

基于波长可将UV分为3类[12, 13]:UV-A(320~390 nm)、UV-B(280~320 nm)和UV-C(200~280 nm). 水消毒采用具有高灭活效果的UV-C, 低压汞灯是应用最为广泛的光源, 可输出254 nm UV(UV254). UV254属于常规UV-C波段(250~280 nm), 通过损伤病原微生物内部核酸, 使其无法正常完成复制, 进而失去活性[14 ~ 17]. 此外, 新型光源KrCl准分子灯可输出222 nm UV(UV222), 属于远UV-C波段(200~230 nm)[13, 18]. UV222可通过损伤病原微生物蛋白质(如细菌中的酶和病毒的蛋白衣壳)破坏其生理活动, 实现病原微生物消毒[16, 23]. 结合远UV-C和常规UV-C, 同时破坏病原微生物的蛋白质和核酸[24], 具有协同强化灭活的潜力, 但目前相关研究还十分有限[15, 23, 25].

此外, 病原微生物经常规UV-C灭活后, UV-C辐照受损的DNA会经光、暗复活[26 ~ 30]两种机制进行修复导致复活, 造成较高的饮用水消毒安全风险[31 ~ 36]. DNA修复酶是病原微生物复活不可或缺的部分[33], 其主要成分是蛋白质. 鉴于远UV-C可以对蛋白质进行破坏[29], 双波长UV-C存在抑制病原微生物复活的潜力, 但目前尚没有相关研究.

因此, 本研究搭建了一套配装了KrCl准分子灯和低压汞灯的细管流光反应系统, 可单独/同时输出UV222和UV254, 并进行准确的UV剂量测定;之后以大肠杆菌(Escherichia coli, E. coli)作为模式微生物探究了双波长UV-C对微生物的协同灭活作用, 以及对后续光、暗复活的影响, 并分析了相关机制, 以期为高效和安全水消毒技术的研发提供理论依据.

1 材料与方法 1.1 实验装置

由于传统的准平行光束仪难以安装多个UV光源, 本研究搭建了一套配装了KrCl准分子灯(输出UV222)和低压汞灯(输出UV254)的细管流光反应系统, 如图 1所示:KrCl准分子灯以及低压汞灯平行于石英管放置, 提供UV-C辐照, 并通过遮挡管调节实际辐照长度;荧光微探头[37](MFSD)实时监测各UV光源输出的稳定性;风扇控制装置内温度. 在实际实验过程中微生物悬浊液被蠕动泵输送至石英管中接受UV-C辐照, 通过调节泵流量和辐照长度控制辐照时间.

图 1 配装KrCl准分子灯和低压汞灯的细管流光反应系统 Fig. 1 Mini-fluidic photoreactor system equipped with KrCl excimer and low-pressure mercury lamps

装置搭建好后使用辐照计(ILT 960)测定UV222和UV254的输出光谱, 并用KI/KIO3化学感光剂测定相应波长下的UV剂量, 其中1 L的KI/KIO3感光剂的组成为99.6 g KI, 21.4 g KIO3和3.81 g Na2B4O7·10H2O, 测定KI/KIO3感光剂经过细管流光反应系统前后UV352的变化, 利用公式(1)计算得到细管反应器中UV222和UV254的剂量率[38].

(1)

式中, Eact为KI/KIO3感光剂测得的UV剂量率, mW·cm-2A'352A352分别为感光剂溶液在UV⁃C辐照t时间前后352 nm处的吸光度, cm-1V为溶液体积, mL;Uλ为相应波长下的UV光子的摩尔能量, U222U254分别为539 213 J·Einstein-1和471 527 J·Einstein-1ϕλ为KI/KIO3光化学反应的量子产率, ϕ222ϕ254分别为0.94 mol·Einstein-1和0.72 mol·Einstein-1ε352为产物I3-的摩尔吸光系数, ε352= 27 636 L·(mol·cm)-1Acs为辐照截面面积, cm2t为辐照时间, s;R为溶液界面对UV的反射率, (1–R)为溶液吸收的UV的比例.

1.2 微生物的培养和定量

本实验所用的菌种为E. coli(ATCC 11303), 购买自北京科展生物科技有限公司. 选取在含有营养琼脂平板上的E. coli, 将菌落接种至高压灭菌(121 ℃ 15 min)后的胰蛋白胨酵母膏葡萄糖肉汤(TYGB)中, 在37 ℃的恒温摇床中培养12 h后得到高浓度的E. coli悬浊液[37], 丰度约为107 CFU·mL-1.

将培养好的E. coli悬浊液离心(10 min, 3000 g)后弃去上清液, 用灭菌磷酸盐缓冲溶液(PBS, 0.01 mol·L-1, pH 7.2~7.4)清洗3次后重新悬浮于PBS中(丰度约为107 CFU·mL-1), 用于后续实验.

E. coli的定量采用平板计数法[39]:采用无菌PBS对UV-C辐照后的水样进行梯度稀释, 将100 μL稀释后的悬浊液接种在营养琼脂平板上, 平板凝固后倒置放入37℃恒温培养箱中培养12 h, 记录形成的菌落数. 营养琼脂平板成分:胰蛋白胨10 g·L-1, 氯化钠8 g·L-1, 氯化钙0. 294 g·L-1, 维生素B1 10 mg·L-1, 酵母抽提物1 g·L-1, 葡萄糖1 g·L-1, 琼脂粉15 g·L-1, 实验均使用超纯水.

1.3 协同机制的研究

为验证双波长辐照协同灭活机制, 使用2, 7-Dichlorodihydrofluorescein diacetate(DCFH-DA)作为探针, 检测细胞内活性氧(ROS)[23, 40, 41]. 取10 mL的E. coli悬浮液于离心管中, 加入20 μL的DCFH-DA, 37℃恒温培育10 min, 于5000 g离心5 min后弃上清液, 用PBS清洗2次去除多余的染料, 将E. coli重新悬浮于PBS中, 使用荧光分光光度计测定488 nm激发波长、525 nm发射波长下的荧光强度, 即可得到细胞内ROS的水平.

1.4 实验过程 1.4.1 实验步骤

在UV灭活实验中, 首先预热UV光源(低压汞灯20 min, 准分子灯5 min)至MFSD信号稳定, 将微生物悬浊液泵入细管反应器, 并调整遮光管和泵流量以达到目标辐照时间. 在出水中微生物浓度达到稳定, 即出水体积达到3倍系统管路内液体体积(75 mL)后进行采样, 测定E. coli丰度. 灭活实验中采用的UV波长分别为UV222+254、UV254和UV222, 辐照时间分别为5、10、15、20和25 s, 实验重复3次.

对于复活实验, 分别采集20 mL UV-C辐照后的样品于培养皿和50 mL离心管中, 其中培养皿置于两组荧光灯(15 W, Phillips)下20 cm, 于4.2×103 lx光强下进行光复活, 离心管置于黑箱中进行暗复活, 经1、2、4、6和8 h复活后的样品通过平板计数法测定E. coli丰度. 复活实验中采用的UV波长分别为UV222+254、UV254和UV222, 辐照时间为15 s, 实验重复3次.

1.4.2 灭活速率常数的计算

使用Chick-watson模型拟合计算反应系统中单波长与多波长UV-C消毒后的灭活速率常数[26, 42], 对数lg(灭活率)采用公式(2)计算.

(2)

式中, N0为UV消毒前的E. coli丰度, CFU·mL-1N为UV消毒后的E. coli丰度, CFU·mL-1kE. coli的灭活速率常数, cm2·mJ-1, F为UV剂量, mJ·cm-2.

1.4.3 协同系数的计算

使用公式(3)计算不同UV-C辐照时间下灭活的协同系数[15].

(3)
1.4.4 光、暗复活的定量评估

为评估光、暗复活的效果[27, 43], 采用公式(4)计算lg(修复率), 用于评估已失活(lgN0-lgN)细菌中的复活(lgNt-lgN)程度.

(4)

式中, Nt为光复活后的E. coli丰度, CFU·mL-1.

1.4.5 统计学分析

通过t检验比较E. coli在不同光、暗处理下是否存在复活现象[23, 27], 通过协方差分析(ANCOVA)[44]比较不同波长UV-C辐照后E. coli的lg(修复率)是否存在显著差异, P < 0.05为显著不同.

2 结果与讨论 2.1 细管流光反应系统表征

细管流光反应系统中配装的KrCl准分子灯和低压汞灯的输出光谱如图 2所示, 输出波长的峰值分别在222 nm和254 nm处, 表明该系统中可以同时输出远UV-C和常规UV-C.

图 2 KrCl准分子灯和低压汞灯的输出光谱 Fig. 2 Emission spectra for KrCl excimer lamp and low-pressure mercury lamp

为了表征细管流光反应系统不同UV光源输出的稳定性, 测定了各光源单独/同时开启时的相对辐照强度和系统温度变化(图 3). KrCl准分子灯和低压汞灯分别在开启5 min和20 min后输出达到稳定. 当KrCl准分子灯和低压汞灯分别单独开启时, 体系温度最终稳定在20.6 ℃±0.3 ℃和20.3 ℃±0.5 ℃, 而当双UV光源同时开启时, 由于产生的热量较高, 体系内温度略微升高, 最终稳定在21.4 ℃±0.4 ℃. 结果表明搭建的细管流光反应系统可以提供稳定的KrCl准分子灯和低压汞灯的单独/同时辐照.

(a)UV222辐照强度和系统温度变化, (b)UV254辐照强度和系统温度变化, (c)UV222+254辐照强度和系统温度变化 图 3 KrCl准分子灯和低压汞灯单独/同时开启时的相对输出和系统温度变化 Fig. 3 Variations in relative output and system temperature under individual/simultaneous UV exposure by KrCl excimer lamp and low-pressure mercury lamp

通过KI/KIO3感光剂分别测定了UV222和UV254在辐照时间为5、10、15、20和25 s时的剂量, 并绘制成图 4. 根据公式(1)计算得到UV222和UV254Eact分别为0.731 mW·cm-2和0.671 mW·cm-2, R2分别为0.999和0.995. 这表明, 该系统可以获得准确的Eact测定结果, 以及基本一致的UV222和UV254辐照剂量. 此外, UV222+254Eact值等于UV222+UV254[45], 因此UV222+254的UV辐照强度为1.402 mW·cm-2.

图 4 UV222、UV254和UV222+254的剂量 Fig. 4 Fluence rates of UV222, UV254, and UV222+254

2.2 双波长的协同灭活效果探究

单波长与双波长UV-C对E. coli的灭活情况如图 5所示. E. coli在单波长UV-C下的灭活剂量响应如图 5(a)所示, 图中横坐标为不同的UV剂量, 纵坐标为E. coli的lg(灭活率), UV222的灭活效果略低于UV254, 灭活速率常数k分别为0.067 3 cm2·mJ-1和0.098 1 cm2·mJ-1. 这表明较UV222而言E. coli更容易被UV254灭活. 此外, 由于初始悬浊液E. coli丰度约为107 CFU·mL-1, 因此E. coli的lg(灭活率)检测限约为7.

(a)单波长UV-C对E. coli的灭活动力学, (b)双波长UV-C对E. coli的协同灭活效果 图 5 单/双波长UV-C对E. coli的灭活效果 Fig. 5 Inactivation of E. coli by single- and dual-wavelength UV-C

双波长UV-C对E. coli的协同灭活如图 5(b)所示, 其中横坐标为不同的辐照时间, 左侧纵坐标为lg(灭活率), 不同辐照时间下左侧的数据柱是UV222、UV254的lg(灭活率)叠加, 右侧的数据柱为UV222+254的lg(灭活率);右侧纵坐标为不同辐照时间下双波长UV-C灭活E. coli的协同系数, 虚线为实验中细管流光反应系统的检测限. 从图 5(b)中可以看出, 当辐照时间超过10 s后UV222+254的消毒效果优于UV222和UV254灭活率的相加, lg(灭活率)提高了约1倍, 最大协同系数为2.2, 表明双波长UV-C对E. coli具有明显的协同灭活作用, 这与Kang[15]和Ramsay等[46]观测到的现象一致.

2.3 单/双波长UV-C对光复活的影响

选取单/双波长UV-C辐照15 s后的E. coli样品进行不同时间的光复活实验, 结果如图 6所示, 图 6(a)中横坐标为UV-C辐照后E. coli光复活的时间, 左侧纵坐标为E. coli经不同复活时间后的lg灭活率, 不同光复活时间下左侧的数据柱是UV222、UV254的lg灭活率叠加, 右侧的数据柱为UV222+254的lg(灭活率);右侧纵坐标为经不同复活时间后的协同系数. 从图 6(a)中可以看出:经过UV222辐照后的E. coli并未出现明显的光复活现象, 对数灭活率在0.33~0.43之间波动;经过UV254辐照后的E. coli均表现出了明显的光复活作用, 在复活8 h后共修复了0.39;经UV222+254辐照后的E. coli光复活更为明显, 在8 h后共修复0.9. 此外, 双波长UV-C的协同灭活系数在1.71~2.23之间, 经过光复活后并未出现明显下降, 表明光复活并未对双波长UV-C的协同灭活效果产生明显影响.

(a)对数灭活率和协同系数, (b)对数修复率 图 6 单/双波长UV-C对E. coli光复活的影响 Fig. 6 Effects of single- and dual-wavelength UV-C on the subsequent photoreactivation of E. coli

为更好对比单/双波长UV-C对光复活的影响, 根据公式(4)计算了E. coli在不同复活时间后的lg(修复率), 如图 6(b)所示:图中横坐标为E. coli光复活时间, 纵坐标为lg(修复率). 为明确E. coli是否存在光复活, 通过t检验对E. coli在不同光复活时间下的修复率和初始修复率进行了对比分析, 发现UV222辐照后的E. coli未出现光复活(P > 0.05);UV254和UV222+254辐照后E. coli出现明显的光复活(P < 0.05), 在1、2、4、6和8 h时UV222+254的lg(修复率)均小于UV254, lg(修复率)随复活时间的延长而上升, 最终在8 h后lg(修复率)达到50.8%±11.0%;UV222+254辐照后的E. coli也展现出了明显的光复活现象, 且随复活时间的延长而增长, 但增长速率低于UV254, 在8 h后lg(修复率)达到36.1%±3.8%. 其次, 为明确E. coli在UV254以及UV222+254辐照后的光复活是否存在差异, 采用一阶线性关系拟合了lg(修复率)随时间的变化, 修复率分别为5.98 h-1(UV254)和4.75 h-1(UV222+254), ANCOVA的分析结果表明二者之间存在显著性差异(P < 0.01), UV254的光复活现象相较于UV222+254更为明显. 因此, 当UV222和UV254剂量大致相同时, 双波长UV-C会对E. coli的光复活过程产生抑制作用, 削弱光复活的效果.

2.4 单/双波长UV-C对暗复活的影响

选取单/双波长UV-C辐照15 s后的E. coli样品进行不同时间的暗复活实验, 结果如图 7(a)所示, 图中横坐标为UV-C辐照后E. coli暗复活的时间, 左侧纵坐标为E. coli经不同复活时间后的lg(灭活率), 不同光复活时间下左侧的数据柱是UV222、UV254的lg(灭活率)叠加, 右侧的数据柱为UV222+254的lg(灭活率);右侧纵坐标为经不同复活时间后的协同系数. 结果表明单/双波长UV-C辐照后的E. coli均未出现明显的暗复活, 其中UV222+254的对数灭活率进一步从2.48升高至2.80, 呈现暗凋零现象. 此外, 双波长UV-C的协同系数经过暗复活后从2.09上升至了2.47, 表明协同效应在暗复活过程中进一步加强, 这可能是由于暗凋零现象导致的, 这与Quek等[43]观测到的现象一致.

(a)对数灭活率和协同系数, (b)对数修复率 图 7 单/双波长UV-C对E. coli暗复活的影响 Fig. 7 Effects of single- and dual-wavelength UV-C on the subsequent dark repair of E. coli

E. coli在不同暗复活时间后的lg(修复率)如图 7(b)所示. 由于单波长UV-C对E. coli的灭活率较低, 导致lg(修复率)波动范围较大, 为明确E. coli是否存在暗复活, 通过t检验对E. coli在不同暗复活时间下的修复率和初始修复率进行了对比分析, 发现单波长UV-C辐照后的E. coli未出现暗复活(P > 0.05). 而UV222+254辐照后E. coli的lg(修复率)随复活时间呈负增长趋势, 在4 h后下降至约-10%, 经t检验分析后发现暗处理 > 1 h的E. coli均存在暗凋零现象(P < 0.05).

2.5 双波长UV-C协同灭活与抑制复活的机制

通过DCFH-DA染色剂测定了细胞胞内ROS, 经UV222、UV254和UV222+254辐照和未经UV-C辐照的E. coli内部荧光强度(a.u.)分别为38.07±0.29、3.18±0.23、46.85±0.6和2.75±0.24. 可以看出, 双波长UV-C辐照后的E. coli内部荧光强度大于单波长UV-C辐照后的荧光强度之和, 表明双波长UV-C辐照可导致胞内ROS水平上升, 机制为UV222抑制了抗ROS氧化酶的活性[15], 导致UV254光子额外产生的ROS无法被抗ROS氧化酶消耗, 进而对微生物组织(如细胞膜和酶)造成损伤, 从而实现协同灭活. 而这些额外产生的ROS可以对E. coli内部的DNA光修复酶造成损伤, 减少光复活过程中对DNA损伤的修复[47, 48], 进而实现对光复活的抑制. 此外, 这些额外产生的ROS还可以对E. coli内部的细胞组织(如细胞器和酶)等进行破坏, 可能会产生延迟性突变效应[43], 或者在缺少营养来源(PBS无法为E. coli提供营养物质)或光线的情况下逐渐失去活性[48], 最终呈现出暗凋零现象.

2.6 环境应用

随着新型UV光源(如准分子灯和UV发光二极管等)的不断发展和应用, 传统准平行光束仪难以安装多个UV光源, 无法满足多光源协同消毒的研究需求. 配装多个UV光源细管流光反应系统可单独/同时输出不同波长的UV-C辐照, 输出稳定且可以获得准确的剂量测试结果, 可以用于多UV光源协同消毒研究. 此外, 双波长UV-C可同时对病原微生物的核酸和蛋白质造成损伤, 实现对病原微生物的协同强化灭活, 但远UV-C易被水中的杂质吸收, 因此双波长UV-C更适合应用于较为洁净的水体(如饮用水)消毒, 以及空气消毒. 最后, 双波长UV-C可以削弱微生物在可见光下进行光复活的能力, 而在黑暗条件下则会呈现暗凋零现象. 因此, 饮用水由于消毒后的输送均在黑暗条件下进行, 经双波长UV-C消毒后可以获得更好的消毒效果.

3 结论

(1)配装了KrCl准分子灯和低压汞灯的细管流光反应系统可以单独/同时输出222 nm和254 nm的UV-C辐照, 且保持输出的UV剂量率和系统内温度稳定. 通过化学感光剂标定的UV222和UV254Eact分别为0.731 mW·cm-2和0.671 mW·cm-2.

(2)双波长UV-C灭活存在明显的协同效应, 协同系数最高可达2.2. 协同机制为:UV222+254中的UV222可以有效抑制E. coli中的抗ROS氧化酶, 导致UV254光子产生的ROS无法被消耗, 进而损伤E. coli细胞组织致使其失活.

(3)UV222+254辐照后的E. coli较UV254辐照后的光复活作用被削弱, 最大对数复活率分别为36.1%±3.8%和50.8%±11.0%, 表明双波长UV-C可以抑制E. coli的光复活作用. 而双波长UV-C辐照后的E. coli在黑暗条件下则会出现暗凋零现象, 进一步强化消毒效果.

参考文献
[1] Boretti A, Rosa L. Reassessing the projections of the world water development report[J]. npj Clean Water, 2019, 2(1). DOI:10.1038/s41545-019-0039-9
[2] Harris A R, Daly S W, Pickering A J, et al. Safe today, unsafe tomorrow: Tanzanian households experience variability in drinking water quality[J]. Environmental Science & Technology, 2023, 57(45): 17481-17489.
[3] Li B, Li X N, Saingam P, et al. Understanding the microbiological quality of drinking water at the point of consumption with citizen science[J]. ACS ES & T Water, 2023, 3(8): 2691-2699.
[4] Lambertini E, Borchardt M A, Kieke B A Jr, et al. Risk of viral acute gastrointestinal illness from nondisinfected drinking water distribution systems[J]. Environmental Science & Technology, 2012, 46(17): 9299-9307.
[5] Song W, Zheng Z L, Alawadhi A H, et al. MOF water harvester produces water from death valley desert air in ambient sunlight[J]. Nature Water, 2023, 1(7): 626-634. DOI:10.1038/s44221-023-00103-7
[6] Huang R X, Ma C X, Huangfu X L, et al. Preparing for the next pandemic: predicting UV inactivation of coronaviruses with machine learning[J]. Environmental Science & Technology, 2023, 57(37): 13767-13777.
[7] Song K, Mohseni M, Taghipour F. Application of ultraviolet light-emitting diodes (UV-LEDs) for water disinfection: a review[J]. Water Research, 2016, 94: 341-349. DOI:10.1016/j.watres.2016.03.003
[8] Sun Z, Blatchley E R. Tetraselmis as a challenge organism for validation of ballast water UV systems[J]. Water Research, 2017, 121: 311-319. DOI:10.1016/j.watres.2017.05.052
[9] Linden K G, Hull N, Speight V. Thinking outside the treatment plant: UV for water distribution system disinfection[J]. Accounts of Chemical Research, 2019, 52(5): 1226-1233. DOI:10.1021/acs.accounts.9b00060
[10] Ma B, Linden Y S, Gundy P M, et al. Inactivation of coronaviruses and phage Phi6 from irradiation across UVC wavelengths[J]. Environmental Science & Technology Letters, 2021, 8(5): 425-430.
[11] 徐丽梅, 张崇淼, 王晓昌, 等. 紫外线和次氯酸钠对Escherichia coli和Poliovirus的消毒作用[J]. 环境科学, 2017, 38(5): 1928-1935.
Xu L M, Zhang C M, Wang X C, et al. Disinfection action of ultraviolet radiation and chlorination on Escherichia coli and Poliovirus[J]. Environmental Science, 2017, 38(5): 1928-1935.
[12] Moreno-Andrés J, Tierno-Galán M, Romero-Martínez L, et al. Inactivation of the waterborne marine pathogen Vibrio alginolyticus by photo-chemical processes driven by UV-A, UV-B, or UV-C LED combined with H2O2 or HSO5-[J]. Water Research, 2023, 232. DOI:10.1016/j.watres.2023.119686
[13] Blatchley III E R, Brenner D J, Claus H, et al. Far UV-C radiation: an emerging tool for pandemic control[J]. Critical Reviews in Environmental Science and Technology, 2023, 53(6): 733-753. DOI:10.1080/10643389.2022.2084315
[14] 李静, 王大宁, 曲红梅, 等. 紫外线对大肠杆菌的损伤机制研究[J]. 军事医学, 2016, 40(9): 725-728.
Li J, Wang D N, Qu H M, et al. Mechanism of Escherichia coli injury under UV disinfection[J]. Military Medical Sciences, 2016, 40(9): 725-728.
[15] Kang J W, Kim W J, Kang D H. Synergistic effect of 222-nm krypton-chlorine excilamp and mild heating combined treatment on inactivation of Escherichia coli O157:H7 and Salmonella Typhimurium in apple juice[J]. International Journal of Food Microbiology, 2020, 329. DOI:10.1016/j.ijfoodmicro.2020.108665
[16] Kang J W, Kim S S, Kang D H. Inactivation dynamics of 222 nm krypton-chlorine excilamp irradiation on Gram-positive and Gram-negative foodborne pathogenic bacteria[J]. Food Research International, 2018, 109: 325-333. DOI:10.1016/j.foodres.2018.04.018
[17] Vazquez-Bravo B, Gonçalves K, Shisler J L, et al. Adenovirus replication cycle disruption from exposure to polychromatic ultraviolet irradiation[J]. Environmental Science & Technology, 2018, 52(6): 3652-3659.
[18] Buonanno M, Welch D, Shuryak I, et al. Far-UVC light (222 nm) efficiently and safely inactivates airborne human coronaviruses[J]. Scientific Reports, 2020, 10(1). DOI:10.1038/s41598-020-67211-2
[19] Sliney D H, Stuck B E. A need to revise human exposure limits for ultraviolet UV-C radiation[J]. Photochemistry and Photobiology, 2021, 97(3): 485-492. DOI:10.1111/php.13402
[20] Matafonova G, Batoev V. Dual-wavelength light radiation for synergistic water disinfection[J]. Science of the Total Environment, 2022, 806. DOI:10.1016/j.scitotenv.2021.151233
[21] Keil J N, Kätker H, Wegh R T, et al. Novel bandpass filter for far UV-C emitting radiation sources[J]. Optical Materials, 2023, 140. DOI:10.1016/j.optmat.2023.113866
[22] Li T, Zhang Y Z, Gan J M, et al. Superiority of UV222 radiation by in situ aquatic electrode KrCl excimer in disinfecting waterborne pathogens: mechanism and efficacy[J]. Journal of Hazardous Materials, 2023, 452. DOI:10.1016/j.jhazmat.2023.131292
[23] Kang J W, Kang D H. The synergistic bactericidal mechanism of simultaneous treatment with a 222-nanometer krypton-chlorine excilamp and a 254-nanometer low-pressure mercury lamp[J]. Applied and Environmental Microbiology, 2019, 85(1). DOI:10.1128/aem.01952-18
[24] Hull N M, Linden K G. Synergy of MS2 disinfection by sequential exposure to tailored UV wavelengths[J]. Water Research, 2018, 143: 292-300. DOI:10.1016/j.watres.2018.06.017
[25] Qiao Y, Chen D Y, Wen D Y. Use of coupled wavelength ultraviolet light-emitting diodes for inactivation of bacteria in subsea oil-field injection water[J]. Science of the Total Environment, 2018, 640⁃641: 757-763.
[26] Li M K, Qiang Z M, Li T G, et al. In situ measurement of UV fluence rate distribution by use of a micro fluorescent silica detector[J]. Environmental Science & Technology, 2011, 45(7): 3034-3039.
[27] Song K, Mohseni M, Taghipour F. Mechanisms investigation on bacterial inactivation through combinations of UV wavelengths[J]. Water Research, 2019, 163. DOI:10.1016/j.watres.2019.114875
[28] 陆海, 李雪琪, 冯伟豪. 复活光强对大肠杆菌光复活影响的研究进展[J]. 长春工程学院学报(自然科学版), 2021, 22(3): 99-103.
Lu H, Li X Q, Feng W H. The research progress on the influence of light resurrection by photoractivation light Intensity to Escherichia coli[J]. Journal of Changchun Institute of Technology (Natural Sciences Edition), 2021, 22(3): 99-103.
[29] Jing Z B, Wang W L, Nong Y J, et al. Suppression of photoreactivation of E. coli by excimer far-UV light (222 nm) via damage to multiple targets[J]. Water Research, 2024, 255. DOI:10.1016/j.watres.2024.121533
[30] Cheng L H, Wei X H, Gao A L, et al. Performance and mechanism of sequential UV-NaClO disinfection: inactivation and reactivation of antibiotic-resistant bacteria, disinfection byproduct formation and microbial community variation[J]. Journal of Water Process Engineering, 2024, 58. DOI:10.1016/j.jwpe.2024.104824
[31] Hijnen W A M, Beerendonk E F, Medema G J. Inactivation credit of UV radiation for viruses, bacteria and protozoan (oo)cysts in water: a review[J]. Water Research, 2006, 40(1): 3-22.
[32] Sanz E N, Dávila I S, Balao J A A, et al. Modelling of reactivation after UV disinfection: effect of UV-C dose on subsequent photoreactivation and dark repair[J]. Water Research, 2007, 41(14): 3141-3151.
[33] Li G Q, Wang W L, Huo Z Y, et al. Comparison of UV-LED and low pressure UV for water disinfection: photoreactivation and dark repair of Escherichia coli[J]. Water Research, 2017, 126: 134-143.
[34] Wang D, Oppenländer T, El-Din M G, et al. Comparison of the disinfection effects of vacuum-UV (VUV) and UV light on Bacillus subtilis spores in aqueous suspensions at 172, 222 and 254 nm[J]. Photochemistry and Photobiology, 2010, 86(1): 176-181.
[35] Ha J W, Kang D H. Effect of intermittent 222 nm krypton-chlorine excilamp irradiation on microbial inactivation in water[J]. Food Control, 2018, 90: 146-151.
[36] 竹涛, 付顺江, 谢蔚, 等. 短波紫外线的消杀机制与影响因素[J]. 中国激光, 2023, 50(9): 169-180.
Zhu T, Fu S J, Xie W, et al. UVC sterilization mechanism and influencing factors[J]. Chinese Journal of Lasers, 2023, 50(9): 169-180.
[37] 王佳乐, 李梦凯, 孙喆, 等. 生物剂量法与模型模拟法测定紫外消毒器剂量的对比[J]. 中国给水排水, 2023, 39(9): 33-38.
Wang J L, Li M K, Sun Z, et al. Comparison between biodosimetry and model simulation for determining fluence of UV disinfector[J]. China Water & Wastewater, 2023, 39(9): 33-38.
[38] Bolton J R, Stefan M I, Shaw P S, et al. Determination of the quantum yields of the potassium ferrioxalate and potassium iodide–iodate actinometers and a method for the calibration of radiometer detectors[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2011, 222(1): 166-169.
[39] Wang Y Y, Yin R, Tang Z Y, et al. Reactive nitrogen species mediated inactivation of pathogenic microorganisms during UVA photolysis of nitrite at surface water levels[J]. Environmental Science & Technology, 2022, 56(17): 12542-12552.
[40] Wojtala A, Bonora M, Malinska D, et al. Methods to monitor ROS production by fluorescence microscopy and fluorometry[J]. Methods in Enzymology, 2014, 542: 243-262.
[41] Kalyanaraman B, Darley-Usmar V, Davies K J A, et al. Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limitations[J]. Free Radical Biology and Medicine, 2012, 52(1): 1-6.
[42] Wen G, Xu X Q, Zhu H, et al. Inactivation of four genera of dominant fungal spores in groundwater using UV and UV/PMS: efficiency and mechanisms[J]. Chemical Engineering Journal, 2017, 328: 619-628.
[43] Quek P H, Hu J. Influence of photoreactivating light intensity and incubation temperature on photoreactivation of Escherichia coli following LP and MP UV disinfection[J]. Journal of Applied Microbiology, 2008, 105(1): 124-133.
[44] Sun Z, Fu J N, Li X, et al. Using Algal Virus Paramecium bursaria chlorella virus as a human adenovirus surrogate for validation of UV treatment systems[J]. Environmental Science & Technology, 2020, 54(23): 15507-15515.
[45] Li M K, Qiang Z M, Wang C, et al. Experimental assessment of photon fluence rate distributions in a medium-pressure UV photoreactor[J]. Environmental Science & Technology, 2017, 51(6): 3453-3460.
[46] Ramsay I A, Niedziela J C, Ogden I D. The synergistic effect of excimer and low-pressure mercury lamps on the disinfection of flowing water[J]. Journal of Food Protection, 2000, 63(11): 1529-1533.
[47] Sinha R P, Häder D P. UV-induced DNA damage and repair: a review[J]. Photochemical & Photobiological Sciences, 2002, 1(4): 225-236.
[48] Nyangaresi P O, Qin Y, Chen G L, et al. Effects of single and combined UV-LEDs on inactivation and subsequent reactivation of E. coli in water disinfection[J]. Water Research, 2018, 147: 331-341.