2. 云南省环境污染与食品安全及人体健康创新团队, 昆明 650224;
3. 云南省文山壮族苗族自治州农业科学院, 文山 663099;
4. 云南省通海县土壤肥料工作站, 通海 653199;
5. 云南省林下资源保护与利用重点实验室, 昆明 650244
2. Yunnan Provincial Innovative Team of Environmental Pollution, Food Safety and Human Health, Southwest Forestry University, Kunming 650224, China;
3. Wenshan Zhuang and Miao Autonomous Prefecture Academy of Agricultural Sciences, Wenshan 663099, China;
4. Soil and Fertilizer Workstation in Tonghai County, Tonghai 653199, China;
5. Yunnan Provincial Key Laboratory for Conservation and Utilization of In-forest Resource, Kunming 650224, China
近几十年来, 持续的塑料生产导致日益严重的环境污染, 联合国环境署统计数据显示, 1950~2017年全球范围内塑料制品累计总产量达92亿t, 预估到2050年将增加到330亿t[1, 2].以上塑料制品除了被回收利用外, 大多被排放到环境中, 经磨损、紫外线照射、水解和生物降解等作用形成微塑料(microplastics, MPs)[3].微塑料一词最早由Thompson于2004年提出, 以记录海洋中较小粒径的塑料[4], 现在大多数研究人员将MPs定义为直径 < 5 mm的非均匀混合塑料.MPs根据来源可分为初生微塑料和次级微塑料, 初生微塑料是指由工业直接生产释放到环境中的微小塑料颗粒, 如化妆品、洗涤剂、牙膏和一些具有磨蚀作用的抛光剂和具有着色作用的染色剂等, 通过污水灌溉和堆肥等方式进入农田土壤[5].次级微塑料是由于物理(如风和水的机械磨损作用)、化学(如光照降解、高温氧化)和生物(如生物降解)因素的驱动将大块塑料垃圾破碎成较小碎片的塑料废物(如滴灌管和农用薄膜的分解)[6].
MPs进入农田土壤后, 由于耕作和土壤生物群落的作用可在土壤孔隙中迁移, 高丰度的MPs会影响土壤化学性质、微生物群落组成以及植物群落功能等, 给土壤生态系统的结构和功能带来潜在的威胁[7]. MPs引起的土壤特性和健康状况改变可能会使得农作物形态和生理改变, 最终导致作物死亡和生物量减少等不利后果[8].此外, 大量的研究也报道了在食物、饮用水、其他环境甚至人体(经口摄入和呼吸吸入为主)中均检测到了不同类型和丰度的MPs[9, 10]. MPs粒径小、降解难和比表面积大, 可作为有毒污染物(如抗生素、重金属和持久性有机污染物等)以及微生物(如有害细菌, 病原微生物等)的吸附载体进入人体[11]. Conti等[12]在水果(苹果、梨)和蔬菜(胡萝卜、西兰花、生菜、马铃薯)中发现MPs, 土壤环境中的MPs会改变作物的存活率、生物量和根系形状等, 甚至富集在作物组织中引发生物转化效应, 进而对植物产生遗传毒性.综上, MPs在生物与环境、生物与生物之间的物质循环和能量流动过程中, 可能会威胁人体健康, 因此有必要厘清其在土壤-农作物的迁移和毒性作用, 从食源的角度减少人体暴露于MPs.
目前, 有关MPs如何影响陆地生态系统(尤其是农业土壤生态系统)的研究鲜见报道, 鉴于此, 本文结合土壤环境中的MPs来源、种类和分布特征对土壤生态系统的影响及土壤MPs对几种典型农作物的毒性作用和潜在机制进行深入探讨, 并在此基础上对当前研究存在的不足进行总结和讨论, 提出了未来的研究重点.
1 土壤微塑料的污染来源MPs在全球土壤基质中普遍存在, 可作为污染物(MP添加剂或从土壤基质中吸收的有毒物质)转移到土壤微生物群落, 进而对土壤生态系统构成潜在的影响和危害.据报道, MPs已经广泛存在于全球农田土壤中.例如, 波兰西南部93%的耕地中含有MPs, 施用污水污泥的土壤中含量最高[13].也有研究发现中国西南热带地区土壤中MPs主要是尺寸 < 1 mm的碎片和纤维, 大部分MPs是聚乙烯(polyethylene, PE, 59.6%)、人造丝(rayon, RY, 12.0%)和聚丙烯(polypropylene, PP, 10.9%)[14]. Zhang等[15]发现中国北部128个沿海滩涂土壤MPs中发现高丰度有机磷脂和邻苯二甲酸酯(phthalic acid esters, PAEs), 这可能与水生环境的扩散源定期接收MPs有关.因此, 推测土壤是MPs的主要储存地.
土壤生态系统中MPs的主要来源包括工业、农业和生产活动中的塑料残留废物、农业灌溉污水、污泥以及垃圾填埋场垃圾渗流、塑料废弃物和大气沉降(图 1).
![]() |
素材来源于https://www.freepik.com 图 1 土壤MPs的主要来源 Fig. 1 Main sources of soil MPs |
纺织业是土壤中塑料废弃物的主要工业来源, 小尺寸的塑料作为特定产品和家庭生活用品的原材料, 通常作为染色剂和研磨剂被添加到化妆品或洗护用品中[16].纺织微塑料(microfibers, MF)是一种微塑料亚类, 有研究表明微纤维类纺织成品服装中微纤维的脱落率高达175~560 MF·g-1[17]. 室内环境中的MPs主要来源于纺织品和地毯, 会发生不同丰度的微纤维沉积, 向空气中释放并扩散MPs, 扩散丰度与产品数量和气流湍流程度有关[18].非法倾倒塑料废物(如随意丢弃塑料制品)、塑料制品涂层脱落(如船舶的保护性塑料涂层和喷漆, 遭遇风化、磨损和刮蹭等作用产生MPs)、塑料喷砂和轮胎磨损(汽车刹车和加速使轮胎磨损将MPs释放到环境中)都是关键的MPs扩散源, 据统计, 每年约有9 450 t轮胎MPs进入环境中, 其中80%进入土壤, 直接导致土壤环境中MPs丰度上升[19, 20].比利时道路车流中每天MPs丰度为0.02~9.2 mg·L-1, 相当于每km车辆磨损释放10.8 mg塑料颗粒, 除了主要道路交通外, 飞机和其他车辆轮胎磨损也会导致MPs的产生[21].
1.2 农业废弃物农业活动是农用土壤MPs的主要来源, 不合理的农业废弃物管理会影响MPs的分配、积累和分布.农业土壤中MPs的主要来源有:农用地膜、受污染的农业用水、污水污泥、有机肥和堆肥.
(1)农用地膜 地膜覆盖和塑料大棚栽培技术加快了农业的发展, 但也带来了污染和残留问题, 不仅影响农作物的品质和产量, 也加重了农业环境MPs污染.有研究发现中国农田土壤中塑料残留量和覆盖使用量之间呈显著线性相关(R2=0.61, P < 0.001), 这表明地膜覆盖是我国农田中MPs的主要来源[22].近年来使用的极薄地膜厚度仅有8~50 μm, 地膜碎片很难从土壤中剥离, 导致农田生态系统中塑料残留物大量积累[23].Hossain等[24]在孟加拉国农田土壤中发现丰度为(2.13×104±0.13×104)n·kg-1的MPs, 其中透明和白色MPs占比较高.在石河子市, 随着连续覆盖周期的增加(从5~30 a), MPs丰度显著增加, 增加范围为10.10~61.05 mg·kg-1[25].这表明MPs丰度随着连续覆盖时间的增加而上升, 地膜覆盖时间是影响土壤MPs丰度的重要原因之一.此外, 渔业使用的渔网和鱼线等塑料工具也会产生大量的MPs汇入土壤环境中, 以上塑料残留废弃物在农业耕作、紫外线辐射、水和风的冲蚀以及微生物降解的作用下被分解为MPs, 最终导致严重的土壤MPs污染问题[26].
(2)污水、污泥和灌溉用水 MPs会随着污水的大面积使用和污泥的重复利用在土壤环境中积累.MPs在污水处理过程中流动和沉淀, 少部分从污水处理系统中排出, 而大多数MPs通过污水处理的沉淀过程分离, 最终滞留在污泥中, 约高达99%的MPs留存在污泥中[27].虽然在污水处理的过程中可以去除大量塑料杂质, 但目前污水处理设备不能将MPs全部去除, 尤其是粒径较小的颗粒和较细的纤维, 因此处理后的污水中仍被检出高丰度的MPs[28]. Hooge等[29]发现农业用地施用城市污水污泥会加重MPs污染, 其中MPs负荷最高的是土壤犁底层(总负荷为14.6 n·g-1), 污泥作为污水处理厂的最终产品, 通常作为土壤改良剂和肥料应用于农田生产中[30].北美洲每年约有4.4万~30万t污泥施用于农田土壤, 已经超过海洋环境MPs的总负荷量[31].污水污泥中的MPs成分复杂, 带来的农业土壤污染形式不一, 用于农田会造成MPs污染形势严峻.此外, 有多项研究广泛而详细地报道了湖泊、河流、水库和地下水中均存在高丰度的MPs, 灌溉后会导致农田土壤MPs丰度增加[32].在水资源缺乏的国家和地区, 污水也常被用于农业灌溉, 隐藏在农业用水中的MPs通过灌溉途径转移到土壤中, 也成为了土壤MPs的来源.
(3)有机肥和堆肥 堆肥在农业中被广泛用作肥料, 同时作为MPs进入土壤环境的载体[33].来自家庭和工业等有机废物经过堆肥处理和生物发酵后产生的营养成分应用于农田, 来实现养分、微量元素和腐殖质的再利用;同时, 有机肥中的塑料垃圾在物理化学和生物协同作用下分解为具有更大潜在生态风险的小碎片[34].Wu等[35]发现施用猪粪和家禽类粪便可能是一种MPs进入农业土壤的途径, 长期施用会增加农业土壤中MPs的污染风险. Guo等[36]利用条件碎片模型发现, 北京农用土壤中MPs的主要来源是有机肥和灌溉用水, 长期堆肥积累的MPs丰度为3.63×109~4.99×109 n·hm-2, 比堆肥投入量高约3~4倍[37].堆肥改良土壤是一种环境友好型农业生产方法, 但由于废物处理不当和分类不充分导致堆肥中含有塑料成分, 施用后会造成土壤MPs污染.在德国波恩某堆肥厂, 肉眼可见(直径 > 2 mm)的塑料碎片丰度高达2.38~180 mg·kg-1, 表明MPs存在于有机堆肥中[38]. Zhang等[39]发现每年施用15 t·hm-2和30 t·hm-2堆肥后, 土壤中MPs总丰度分别为87.6 n·kg-1和545.9 n·kg-1, 丰度显著高于未施用堆肥的土壤.这表明有机肥料和堆肥是土壤MPs的来源之一, 具有潜在的生态风险.
1.3 其他来源(1)生活废弃物 个人护理用品(牙膏、洗面奶和洗发露等)中通常添加塑料微珠作为清洁剂或去角质剂, 以上产品被使用过后大多会被洗掉当作废水处理, 余下部分则被直接丢弃, 经过一系列过程最终汇集到土壤中.有报道指出我国大陆每年约有209万亿颗塑料微珠被排放到环境中, 总质量高达306.9 t[40].日常生活中衣物洗涤也会导致塑料纤维或颗粒的大量脱落, 随后进入废水中[41].塑料碎片和纤维是室内大气沉积的主要类型, 家庭室内环境空气中的MPs来源很复杂, 包括服饰、家具和装饰材料等(例如纤维沙发、毛绒玩具和窗帘等)[42].
(2)医疗废弃物 部分医疗工作中使用的一次性防护用具为塑料制品, 新冠病毒的出现加剧了MPs在环境中积累.如新冠肺炎疫情以来, 一次性医用口罩、防护服、一次性手套和护目镜等个人防护装备的使用在全球范围内迅速增长, 约45%的医疗废弃物都是塑料制品[43].全球范围内最常见的医疗废弃物管理方法是焚烧和卫生填埋, 焚烧会导致温室气体以及有毒气体的排放, 卫生填埋医疗废弃物会释放MPs进入土壤中[44].由不同聚合材料制成的一次性医用口罩在医疗废弃物中占比很高, 有研究表明医用旧口罩比新口罩产生更多塑料颗粒, 一个完全老化的口罩会向环境中释放数十亿个MPs[45].因此, 医疗废弃物的增加以及废物处理方式导致MPs暴露风险升高, 增加了土壤MPs污染的潜在生态风险.
(3)大气沉降 大气沉降释放的MPs通常呈粒径较小的颗粒状, 是土壤生态系统中MPs的重要来源.有报道指出伦敦市中心和巴黎的大气中MPs平均每天沉积速率分别高达575~1 008 n·m-2和14~206 n·m-2, 其中主要成分是塑料纤维[46].也有研究发现武汉市大气MPs主要源自纺织品的磨损脱落、农用地膜老化和塑料废弃物, 年沉积通量约为308 t[47]. Allen等[48]基于法国比斯牛斯山脉的研究通过气团轨迹分析显示MPs在大气中的运输距离高达95 km, 降雨和降雪可能是影响MPs从大气沉降到土壤中的重要因素, 风和大气环流对不同地区的远程输出有重要贡献.因此推测MPs能通过大气运输、到达并影响人烟稀少的地区, 大气沉降MPs落在农田和作物叶片上, 对农田土壤和人类造成潜在的健康风险.
2 微塑料对农作物的影响及毒性机制已有大量研究表明, 土壤MPs在土壤-作物系统中的持久性和迁移对农作物各项生理指标均有影响, 主要包括根生长和发芽率、株高和生物量、酶活性及抗氧化系统等方面(表 1).例如, Colzi等[49]发现南瓜植株在含有PP、PE、PVC和PET土壤中生长, 其叶片大小、叶绿素含量和光合速率均低于空白对照组, 其中PVC毒性最强, PE毒性较弱.Li等[50]将大豆种子栽培于含有PE和Bio的土壤后, 发现MPs会抑制种子发芽活力、株高、总生物量和叶面积, 其中PE处理组株高、叶面积和根茎比均显著低于Bio处理组.MPs的植物毒性取决于MPs特征和类型、作物种类和生长阶段, MPs富集并侵入作物根系细胞孔隙中, 进而转移到其他器官, 从而诱导其表现出遗传毒性和细胞毒性, MPs对农作物的危害可简化为直接影响和间接影响(图 2).目前, 有关MPs在作物体内影响机制尚不清楚.因此, 厘清MPs对农作物的毒理学效应对保障作物产量和食物链安全等方面十分重要.
![]() |
表 1 不同类型、大小和丰度的MPs对农作物生理生化指标的影响1) Table 1 Effects of different types, sizes, and abundance of MPs on various physiological and biochemical indicators of crops |
![]() |
素材来源于https://www.freepik.com;实线箭头表示直接影响, 虚线箭头表示间接影响 图 2 MPs对作物的危害和抑制机制 Fig. 2 Harm and inhibition mechanism of MPs on crops |
农用地膜因其可提高水分利用率和作物产量而被广泛应用于全球农业生产, 同时也造成了土壤MPs的积累.MPs附着于种皮、根毛和细胞壁孔隙上造成物理阻碍, 进而抑制种子发芽、根系伸长, 阻碍水和养分的摄取, MPs还可以通过吸水和细胞内吞作用被根系吸收, 最终抑制植物生长[58].
De Silva等[59]利用光学相干断层扫描(biospeckle optical coherence tomography, bOCT)对扁豆(Lens culinaris)种子发芽和幼苗生长的研究, 首次证明了MPs会阻碍种子发芽, 这可能是由于细胞孔隙物理堵塞造成的. Pignattelli等[60]评估了4种不同MPs对花园水芹(Lepidium sativum L.)的毒性, 该研究发现:急性毒性试验(暴露6 d)种子发芽抑制率分别平均高达22.4%(聚氯乙烯:PVC)、33%(PP)、55%(PE)和55.3%(PE+PVC);慢性毒性试验(暴露21 d)种子发芽抑制率PP和PE抑制率最高, 分别为14.3%和7.1%.有研究表明粒径小于3 μm的MPs可被高等植物根系吸收, 可认为粒径较小的MPs更容易穿透植物组织[61], MPs穿过细胞间隙, 通过质外体和同质体途径转运到地上部分后进入维管系统内并富集[62].由此可推断出MPs对种子发芽的毒性可能与MPs粒径有关, 小于细胞壁孔隙的MPs可以进入植物组织, 较大尺寸的MPs不易进入植物, 附着于根尖导致细胞连接阻断或细胞孔壁堵塞, 必需营养元素以及水分的吸收被阻断, 进而抑制根系生长.相反, 一定丰度MPs可能促进根生长, 例如有研究发现PS可以促进水稻侧根的生长, 培养于MPs(50 nm)颗粒的花园水芹根系生物量高于对照组[63, 64].因此, MPs提高根系生物量可能是植物对环境胁迫做出的应对, 通过扩大根系侧根数量和增加根冠比来维持根系的生长并加速对水分和养分的吸收.
尽管粒径较大的MPs不能被植物根系吸收, 但会在根表面附着并积累, MPs(尤其是表面粗糙、边缘锋利的塑料碎片)会对植物根系和嫩芽造成机械损伤, 进而抑制植物根系活性、营养物质的吸收和阻碍根系生长伸长[65]. Dong等[51]发现PS和PTFE会对水稻根系造成物理损伤, 导致细胞产生应激反应, 产生过量活性氧(reactive oxygen species, ROS)导致抗氧化酶表达受到抑制并引起植物氧化损伤甚至毒性作用.一些土壤改良剂(如生物炭)可以有效抑制MPs的附着, Wang等[66]进行了浸出柱测试, 发现生物炭过滤器对粒径为10 μm的MPs具有显著的去除和固定能力(95%以上). Kumar等[67]发现水溶液温度升高会达到更高的吸附效果, 较高的pH值导致吸附能力降低, 与其他物理、化学和生物方法相比, 柱式试验中的生物炭改良砂滤器在去除MPs更有效果, 去除率高达90%.因此, 可认为当存在土壤改良剂时(要同时考虑土壤酸碱性等情况), MPs对植物根系的抑制作用可能会减弱.
叶绿素是植物进行光合作用必须的参与者, MPs可以通过影响叶绿素和光合产物的产生来抑制光合速率, 从根系向地上部分运输到达作物茎叶中的MPs会堵塞细胞连接或细胞孔壁, 还会抑制水分和营养物质的吸收、运输和分配, 进而阻碍茎叶的生长和组织发育[68]. MPs影响光合作用的内部机制主要包括植物细胞中ROS的积累、叶绿素合成相关酶的限制、光合电子的转移、二氧化碳的产生、水和营养物质的吸收等[69]. Zhuang等[70]发现PS导致黄瓜叶片叶绿素含量显著降低, 并通过改变腺嘌呤核苷三磷酸(adenosine triphosphate, ATP)合成所需酶基因的表达来影响光合途径, 从而降低叶片光合能力.因此, MPs在一定程度上可以通过抑制光合产物的形成、降低养分吸收来抑制作物的生长和组织发育.
2.2 MPs影响作物代谢和基因表达 2.2.1 MPs影响作物氧化损伤和营养代谢氧化损伤被认为是主要的细胞学效应, 是评估和比较环境中不同污染物毒性的公认方法[71].当作物暴露于MPs时, 可能会产生过量的ROS, 比如过氧化氢(H2O2)、羟基自由基(·OH)和氧化物阴离子(O2-)等, 会造成严重的损伤并阻碍作物生长、发育和代谢过程[68, 72].ROS的积累和抗氧化酶活性的变化是用于评估MPs对植物毒性大小的重要指标, 为了应对MPs胁迫, 作物进化出相应的耐受系统, 会采取分泌更多的抗氧化酶来形成保护机制, 减少氧化应激造成的损伤[73].
在土壤MPs中对PS的研究最为广泛, 故表 2总结了不同丰度、形状和大小的PS对不同农作物生理生化指标的影响.例如, Qiu等[74]发现PS直接诱导大豆显著增加了根系中的H2O2和O2-含量, 提高了抗氧化酶活性.Jiang等[75]发现蚕豆根尖暴露于PS后SOD活性显著增加, 并且暴露于粒径为100 nm的PS颗粒比5 μm表现出更高的氧化损伤.植物受到胁迫导致ROS生成量增加, 植物分泌更多抗氧化酶来清除过量的ROS来保护植物减少损伤, 这种代谢过程中对细胞产生的物理损伤可能会损伤细胞的功能和完整性, 进而在作物体内引起各类连锁反应.此外, 有研究表明, 在拟南芥体内带正电荷的聚苯乙烯-氨基比带负电荷的导致更多ROS积累, 对植物生长和幼苗发育干扰程度更高[76].以上研究表明MPs会对农作物造成氧化损伤, 诱导ROS过量产生与MPs粒径大小、暴露丰度和表面电荷有关.
![]() |
表 2 不同类型、大小和丰度的PS对农作物生理生化指标的影响1) Table 2 Effects of different types, sizes, and abundance of PS on various physiological and biochemical indicators of crops |
不同类型、大小和丰度的MPs通过影响植物激素平衡、营养吸收和新陈代谢来干扰植物生长或引起植物毒性(表 1和表 2).据报道, PS会抑制谷物物质积累的相关代谢途径和能量消耗代谢途径, 同时50.44%的代谢产物会影响谷物品质(直链淀粉含量和蛋白质含量等), 显著影响了作物的新陈代谢, 表明MPs诱导作物氧化应激反应[86]. Wu等[81]发现PS(< 50 μm)颗粒显著干扰了水稻叶片的代谢途径, PS丰度越高水稻叶片生物量越低.在一些农作物中发现MPs导致半乳糖、淀粉和蔗糖等代谢显著不平衡, 如Fu等[87]发现玉米可以刺激半乳糖产生来提高对PE颗粒引起的外部耐受性;同样的, 有报道称暴露于PS和PMMA的大麦叶片中含有比对照组更高含量的反式玉米素, 同时淀粉生物合成相关酶的活性也显著升高, 而吲哚-3-乙酸、吲哚-3-丁酸和二氢玉米素的含量降低, 酶活性和植物激素含量之间存在显著的相关性, 表明MPs会影响植物能量摄入和生物量积累[53];植物激素是调节植物生长和减轻压力的生物信号分子, Li等[53]证实了2 g·mL-1的PS微球会影响大麦碳水化合物代谢和激素调节网络.随着MPs丰度的升高, 植物初级和次级代谢产物的组成变化均呈下降趋势, 这可能会破坏细胞壁结构并损害作物抗胁迫能力[81].因此, 代谢过程的变化与作物抗氧化防御系统、生物合成和生物产量等途径相互作用, 从而对作物生长、组织发育方面等产生潜在的影响.
2.2.2 基因毒性遗传毒性作为检测细胞功能障碍的指标, 是环境中物理和化学因素对生物体作用引起的毒性效应, 会在染色体、碱基水平等对遗传物质造成损害.例如, Sun等[76]发现PS会增强根系中过氧化物酶的表达, 同时可以下调拟南芥抗病基因表达来降低植物的抗病性. Maity等[72]发现PS下调了洋葱细胞周期蛋白依赖性激酶编码基因, 并通过增加ROS的产生和抑制cdc2(细胞周期调节剂)表达来阻碍植物细胞有丝分裂, 引起植物细胞染色体和细胞核畸变, 与阴性对照组相比有丝分裂指数显著下降[MI:(23.855±5.336)%;最低MI:(3.88±1.042)%]. Li等[88]发现, PS能上调棉花幼苗抗氧化活性相关的基因, 并激活苯丙烷生物合成途径, 使木质素沉积和类黄酮积累, 达到清除根系中过量的ROS和维持细胞稳态的效果, 进而缓解MPs诱导的损伤.此外, MPs还能通过影响水稻的基因表达来抑制木质素和茉莉酸的生物合成[63].综上, MPs可以通过干扰和修饰某些基因的表达来发挥毒性作用.
2.3 土壤MPs对作物的间接影响MPs通过影响土壤性质和养分循环、改变土壤酶、破坏根际微生物群落及与有毒物质产生联合毒性等方式间接对作物产生负面影响(图 3), 引起食品安全问题, 最终威胁到人类健康.
![]() |
素材来源于https://www.freepik.com 图 3 土壤MPs对作物潜在影响机制 Fig. 3 Potential impact mechanism of soil MPs on crops |
MPs对土壤物理环境的改变深入土壤微观结构中, MPs会阻止微团聚体和大团聚体的结合以及改变土壤容重、持水能力和孔隙率等[89]. MPs纤维会显著降低土壤容重、提高土壤持水能力, 有助于提高植物根系蓄水能力, 促进根系生长发育.但MPs对根系生长的负面影响更大, 不同形状的MPs会减少约25%的土壤聚集, 从而加大土壤水分蒸发和土壤缺氧, 间接对植物产生不利影响[90].
MPs会增加土壤有机碳含量, 并与微生物分泌物结合, 进而影响土壤碳循环.如农膜残留物作为一种难以降解的惰性碳源, 增加碳会使土壤中的碳氮比悬殊, 会对作物根际微生物产生不利影响.长期农膜覆盖试验发现, 农膜残留污染降低了土壤总氮含量, 进而影响土壤氮循环并降低土壤肥力[91].还有研究证实PLA会降低土壤pH值、土壤NH4+-N含量和优势真菌类群丰度进而影响土壤氮的转化[92].此外, MPs的添加不仅会显著增加可溶性有机碳含量和土壤电导率, 还会影响土壤pH值和CO2排放量等[93].综上, 土壤中大量积累的MPs可能会降低土壤氮含量, 并对土壤氮循环产生影响, MPs引起的土壤化学性质改变均可能改变土壤肥力和质量, 进而影响植物的生长发育.
2.3.2 MPs影响土壤微生物和酶MPs可以降低土壤中微生物活性并抑制土壤酶活性, 由于微生物对土壤性质的变化具有适应性, 因此会对MPs很敏感.Lian等[57]发现暴露于PP的生菜根际土壤植酸酶活性显著降低, 脱氢酶活性显著升高;在土壤中添加膜状PE和纤维状PP, 经过一段时间后观察发现, 与对照组相比脲酶分别减少了31%和41%[94].同样的, Zhang等[95]发现农用地膜残留导致土壤微生物多样性和酶活性显著降低, 多年残留在土壤中的MPs也会导致微生物碳氮养分流失.相反, Zhou等[96]发现, 添加了聚羟基脂肪酸酯的土壤中β-葡萄糖苷酶和亮氨酸氨基肽酶活性显著(P < 0.05)高于大块土壤, 微生物群落α多样性也更丰富.因此, MPs对土壤微生物和酶活性的影响是不确定的, 可能还与地形、气候和土壤条件等有关, 也可能与MPs的类别、粒径大小和剂量有关, 应该从多个角度来研究MPs如何通过影响土壤微生物和酶活性来影响植物的机制.
2.3.3 土壤MPs与有毒物质的综合作用MPs本身含有大量有毒物质, 如阻燃剂、抗氧化剂、增塑剂和着色剂等[97].土壤中的MPs因物理[紫外线(UV)照射、热降解]、化学(氧化降解)和生物(微生物降解)作用而老化降解, 导致释放多种潜在的有毒物质. 刘晓丹等[98]发现, 增塑剂显著抑制小麦发芽率并影响其抗氧化酶活性, 还能通过改变基因表达触发种子细胞程序性死亡;MPs还能通过与其他土壤污染物(如重金属, 抗生素等有机污染物)交互作用来增加土壤的潜在毒性, 可能引发联合毒性效应(表 3).
![]() |
表 3 MPs和污染物对农作物的联合毒性效应 Table 3 Joint toxic effects of MPs and pollutants on crops |
Guan等[99]证实了PS容易吸附在各种重金属(Co、Ni、Cu、Zn、Cd和Ag)上.有研究发现, PS单一暴露会导致玉米总干重降低, Cd存在时, PS对玉米的生长抑制作用进一步增强;单独使用HDPE未表现出显著的植物毒性, 但高剂量HDPE(10%)与Cd联合暴露时, 增强了Cd的植物毒性[100]. PE和邻苯二甲酸二丁酯共同暴露加剧了生菜根系细胞壁分离, 根系各项生长发育指标(根系活力、平均根径、根毛数、总根长、总根表面积)均受到抑制[101].此外, Xu等[83]发现MPs与菲(phenanthrene, Phe)共同暴露会抑制根际土壤中细菌蛋白酶的丰度, 并对大豆产生较高的植物毒性和遗传毒性.MPs与抗生素抗性基因(antibiotic resistance genes, ARGs)在农业用地中广泛共存, 长期种植蔬菜后的土壤MPs会吸附更多的ARGs和重金属(在设施蔬菜土壤中种植10 a后, MPs上吸附的ARGs比种了3 a的高25%~148%)[102]. MPs与土壤有害物质相互作用不仅会导致塑料表面性质发生改变, 还可能进一步加剧对作物的毒害作用, 与单一暴露相比, MPs与多种有害物质联合暴露能够产生更强烈的毒性.
综上所述, MPs可以增加重金属的生物积累并与有机污染物产生复杂的毒性作用, 这与MPs的形状、大小、降解特征和作物类型、土壤特征等有关.但是有关MPs和其他污染物的联合毒性作用规律和机制等需要进一步研究, 以明确MPs在土壤系统中的潜在效应, 为评估农田MPs污染风险管控和治理提供科学依据.
3 防治措施由于MPs的稳定性和难降解性, 大量MPs排放和积累将会永久性滞留在环境中, 因此可能对土壤生态系统构成潜在危害.基于此, 减少土壤MPs污染迫在眉睫, 目前主要防治措施包括污染源控制与微生物降解.
3.1 MPs污染源控制污染源治理是减少土壤MPs污染的重要措施.地膜覆盖是土壤MPs积累的重要来源, 所以加强农用地膜的回收和减少不可生物降解塑料的使用是减少农业生态系统MPs污染源的重要途径.污水、污泥和有机堆肥可作为MPs进入土壤环境的载体并在农业土壤中积累, 因此有关污水污泥排放的法律法规的制定不仅要包括对重金属等污染物的限制, 也要考虑对MPs的限制[113].此外, 减少一次性塑料制品(如餐具、塑料袋和饮料瓶等)的使用也可减少MPs的污染, 对垃圾进行分类管理, 经回收利用再填埋, 可以提高塑料垃圾回收率, 进而减轻MPs的污染.总之, MPs需要从生产源头进行监管和控制, 加强对有机肥质量控制及垃圾的合理处理、改进回收技术和发展循环经济等有利于从源头上减少土壤MPs污染.
3.2 MPs生物降解措施微生物在不损害环境的情况下有效降解MPs, 这也是目前较为环保的修复策略.大量微生物(细菌和真菌)被证实可降解MPs, 其中具有高水解性的微生物对MPs的生物降解效果较明显, 如PET和PA内含易水解结构, 可被微生物分泌的相关水解酶切割, 引发一系列氧化反应来破坏聚合物内部结构, 最终被微生物同化利用[114].此外, Chen等[115]利用高温堆肥技术使污泥中MPs去除率高达43.7%, 归因于嗜热菌在高温条件下破坏塑料结构, 产生高效的生物氧化和生物降解.同时, Ni等[116]首次揭示了污水污泥的热降解温度应达到450℃时便于污泥中大部分MPs(99.7%)分解.
特定微生物可以增强MPs的生物降解, 复合微生物群比单一微生物群的降解效率高.Skariyachan等[117]将单一菌株和按比例混合的复合菌株(IS1、IS2、IS3和IS4)与PE共培养120 d发现, 复合菌株降解PE的效率是单一菌株降解的4倍.然而, 塑料聚合物降解过程受到生物因素(酶活性、中间产物释放)、非生物因素(形态形貌、表面疏水性、表面电荷分布)和其他因素(温度、pH值和氧气水平等)的影响[57, 118].目前对许多MPs(如PVC、PP等)生物降解途径尚不明确, 对于聚醚型和聚氨酯的降解机制的了解更匮乏.同时, 现有的微生物降解研究是居于实验室理想条件下进行, 因此探索实际土壤中MPs微生物降解过程和机制至关重要.
4 展望土壤MPs污染作为一个全球性热点问题, 然而, 关于MPs在土壤⁃作物系统中的环境行为规律和对农作物的影响及降解机制的数据仍然比水系统少很多, 针对当前研究的局限性, 为了确保农作物的品质和安全, 未来需重点关注以下4个方面:
(1)研究MPs在土壤⁃植物体系中的吸附、转运和分布, 尤其是不同植物对不同MPs(类型、大小和形状)的吸收途径和影响机制, 为MPs对植物的毒性提供可靠数据支撑.
(2)结合盆栽和田间试验, 加强长期暴露研究.现有许多研究都是短期暴露试验, 对MPs具有高暴露性, 只能提供植物对MPs的急性反应, MPs对连作和轮作植物的影响仍未知, 这需要通过长期暴露试验来解释.
(3)深入探讨土壤MPs与多种有害物质共同暴露对不同植物的毒性作用.MPs是土壤中许多有害物质的载体, 如重金属、有机污染物等, 现有研究缺乏关于共同暴露对植物影响的相关数据.
(4)已有研究表明植物对MPs具有积累效应, 但MPs是否会通过食物链进入并对人体产生健康风险尚未明确, 因此亟需建立完善的MPs健康风险评估方法和模型为人类健康防护提供参考.
5 结论本文总结了土壤⁃作物系统中MPs的研究现状, 包括土壤MPs的来源、分布、对作物的影响、植物毒性、潜在影响机制以及土壤MPs的防治措施.土壤MPs来源多种多样, 主要是工业、农业和生活废弃物以及大气沉降.土壤MPs会直接在根系表面积累损害作物根系和影响养分吸收, 甚至造成细胞死亡.作物还可以通过根系吸收土壤MPs, 对植物造成负面影响, 如降低发芽率、抑制植物生长发育、抑制光合速率、造成氧化损伤和产生细胞毒性等.对此, 作物面对外界胁迫进化出相应的防御系统, 可以有效防御MPs造成的植物毒性.最后, 本文指出污染源控制和加强立法以及生物降解是作为减轻土壤MPs污染的重要防治措施.
[1] |
蓝敏怡, 李会茹, 胡立新, 等. 塑料食品包装材料的环境污染综述[J]. 生态毒理学报, 2021, 16(5): 186-210. Lan M Y, Li H R, Hu L X, et al. A review of the environmental pollution of food plastic packaging materials[J]. Asian Journal of Ecotoxicology, 2021, 16(5): 186-210. |
[2] | Cincinelli A, Martellini T, Guerranti C, et al. A potpourri of microplastics in the sea surface and water column of the Mediterranean Sea[J]. TrAC Trends in Analytical Chemistry, 2019, 110: 321-326. DOI:10.1016/j.trac.2018.10.026 |
[3] | Mitrano D M, Wohlleben W. Microplastic regulation should be more precise to incentivize both innovation and environmental safety[J]. Nature Communications, 2020, 11(1). DOI:10.1038/s41467-020-19069-1 |
[4] | Thompson R C, Olsen Y, Mitchell R P, et al. Lost at sea: where is all the plastic?[J]. Science, 2004, 304(5672): 838-838. DOI:10.1126/science.1094559 |
[5] | Koelmans A A, Redondo-Hasselerharm P E, Nor N H M, et al. Risk assessment of microplastic particles[J]. Nature Reviews Materials, 2022, 7(2): 138-152. DOI:10.1038/s41578-021-00411-y |
[6] | Wang C H, Tang J H, Yu H X, et al. Microplastic pollution in the soil environment: characteristics, influencing factors, and risks[J]. Sustainability, 2022, 14(20). DOI:10.3390/su142013405 |
[7] | Yang H R, Yumeng Y, Yu Y K, et al. Distribution, sources, migration, influence and analytical methods of microplastics in soil ecosystems[J]. Ecotoxicology and Environmental Safety, 2022, 243. DOI:10.1016/j.ecoenv.2022.114009 |
[8] | Dong Y M, Bao Q L, Gao M L, et al. A novel mechanism study of microplastic and As co-contamination on Indica rice (Oryza sativa L.)[J]. Journal of Hazardous Materials, 2022, 421. DOI:10.1016/j.jhazmat.2021.126694 |
[9] | Vethaak A D, Legler J. Microplastics and human health[J]. Science, 2021, 371(6530): 672-674. DOI:10.1126/science.abe5041 |
[10] | Ragusa A, Svelato A, Santacroce C, et al. Plasticenta: first evidence of microplastics in human placenta[J]. Environment International, 2021, 146. DOI:10.1016/j.envint.2020.106274 |
[11] | Wang J, Liu X H, Li Y, et al. Microplastics as contaminants in the soil environment: a mini-review[J]. Science of the Total Environment, 2019, 691: 848-857. DOI:10.1016/j.scitotenv.2019.07.209 |
[12] | Conti G O, Ferrante M, Banni M, et al. Micro-and Nano-plastics in edible fruit and vegetables. The first diet risks assessment for the general population[J]. Environmental Research, 2020, 187. DOI:10.1016/j.envres.2020.109677 |
[13] | Medyńska-Juraszek A, Szczepańska A. Microplastic pollution in EU farmland soils: preliminary findings from agricultural soils (southwestern Poland)[J]. Agriculture, 2023, 13(9). DOI:10.3390/agriculture13091733 |
[14] | Xu G R, Yang L, Xu L, et al. Soil microplastic pollution under different land uses in tropics, Southwestern China[J]. Chemosphere, 2022, 289. DOI:10.1016/j.chemosphere.2021.133176 |
[15] | Zhang H B, Zhou Q, Xie Z Y, et al. Occurrences of organophosphorus esters and phthalates in the microplastics from the coastal beaches in North China[J]. Science of the Total Environment, 2018, 616⁃617: 1505-1512. |
[16] | Kalčíková G, Alič B, Skalar T, et al. Wastewater treatment plant effluents as source of cosmetic polyethylene microbeads to freshwater[J]. Chemosphere, 2017, 188: 25-31. DOI:10.1016/j.chemosphere.2017.08.131 |
[17] | Belzagui F, Crespi M, Álvarez A, et al. Microplastics' emissions: microfibers' detachment from textile garments[J]. Environmental Pollution, 2019, 248: 1028-1035. DOI:10.1016/j.envpol.2019.02.059 |
[18] | Dahal Y, Babel S. Atmospheric microplastics in outdoor and indoor environments[A]. In: Wang C Q, Babel S, Lichtfouse E (Eds. ). OccurrenceMicroplastic, Fate, Impact, and Remediation[M]. Cham: Springer, 2023. |
[19] | Galafassi S, Nizzetto L, Volta P. Plastic sources: a survey across scientific and grey literature for their inventory and relative contribution to microplastics pollution in natural environments, with an emphasis on surface water[J]. Science of the Total Environment, 2019, 693. DOI:10.1016/j.scitotenv.2019.07.305 |
[20] | Hoeke S, Van Wijnen J, Krikke H, et al. Mapping the tire supply chain and its microplastics emissions using a multi-stakeholder approach[J]. Resources, Conservation and Recycling, 2024, 203. DOI:10.1016/j.resconrec.2023.107389 |
[21] | Vercauteren M, Semmouri I, Van Acker E, et al. Assessment of road run-off and domestic wastewater contribution to microplastic pollution in a densely populated area (Flanders, Belgium)[J]. Environmental Pollution, 2023, 333. DOI:10.1016/j.envpol.2023.122090 |
[22] | Huang B, Sun L Y, Liu M R, et al. Abundance and distribution characteristics of microplastic in plateau cultivated land of Yunnan Province, China[J]. Environmental Science and Pollution Research, 2021, 28(2): 1675-1688. DOI:10.1007/s11356-020-10527-3 |
[23] | Abduwaiti A, Liu X W, Yan C R, et al. Testing biodegradable films as alternatives to plastic-film mulching for enhancing the yield and economic benefits of processed tomato in Xinjiang Region[J]. Sustainability, 2021, 13(6). DOI:10.3390/su13063093 |
[24] | Hossain M N, Rahman M M, Afrin S, et al. Identification and quantification of microplastics in agricultural farmland soil and textile sludge in Bangladesh[J]. Science of the Total Environment, 2023, 858. DOI:10.1016/j.scitotenv.2022.160118 |
[25] | Li W F, Wufuer R, Duo J, et al. Microplastics in agricultural soils: extraction and characterization after different periods of polythene film mulching in an arid region[J]. Science of the Total Environment, 2020, 749. DOI:10.1016/j.scitotenv.2020.141420 |
[26] | Petersen F, Hubbart J A. The occurrence and transport of microplastics: the state of the science[J]. Science of the Total Environment, 2021, 758. DOI:10.1016/j.scitotenv.2020.143936 |
[27] | Lofty J, Muhawenimana V, Wilson C A M E, et al. Microplastics removal from a primary settler tank in a wastewater treatment plant and estimations of contamination onto European agricultural land via sewage sludge recycling[J]. Environmental Pollution, 2022, 304. DOI:10.1016/j.envpol.2022.119198 |
[28] | Casella C, Sol D, Laca A, et al. Microplastics in sewage sludge: a review[J]. Environmental Science and Pollution Research, 2023, 30(23): 63382-63415. DOI:10.1007/s11356-023-27151-6 |
[29] | Hooge A, Hauggaard-Nielsen H, Heinze W M, et al. Fate of microplastics in sewage sludge and in agricultural soils[J]. TrAC Trends in Analytical Chemistry, 2023, 166. DOI:10.1016/j.trac.2023.117184 |
[30] | Li Z L, Yang Y F, Chen X M, et al. A discussion of microplastics in soil and risks for ecosystems and food chains[J]. Chemosphere, 2023, 313. DOI:10.1016/j.chemosphere.2022.137637 |
[31] | Sajjad M, Huang Q, Khan S, et al. Microplastics in the soil environment: a critical review[J]. Environmental Technology & Innovation, 2022, 27. DOI:10.1016/j.eti.2022.102408 |
[32] | Nirmala K, Rangasamy G, Ramya M, et al. A critical review on recent research progress on microplastic pollutants in drinking water[J]. Environmental Research, 2023, 222. DOI:10.1016/j.envres.2023.115312 |
[33] | Le V R, Nguyen M K, Nguyen H L, et al. Organic composts as a vehicle for the entry of microplastics into the environment: a comprehensive review[J]. Science of the Total Environment, 2023, 892. DOI:10.1016/j.scitotenv.2023.164758 |
[34] | Tan M Y, Sun Y, Gui J X, et al. Distribution characteristics of microplastics in typical organic solid wastes and their biologically treated products[J]. Science of the Total Environment, 2022, 852. DOI:10.1016/j.scitotenv.2022.158440 |
[35] | Wu R T, Cai Y F, Chen Y X, et al. Occurrence of microplastic in livestock and poultry manure in South China[J]. Environmental Pollution, 2021, 277. DOI:10.1016/j.envpol.2021.116790 |
[36] | Guo S, Zhang J J, Liu J W, et al. Organic fertilizer and irrigation water are the primary sources of microplastics in the facility soil, Beijing[J]. Science of the Total Environment, 2023, 895. DOI:10.1016/j.scitotenv.2023.165005 |
[37] | Zhang J J, Wang X X, Xue W T, et al. Microplastics pollution in soil increases dramatically with long-term application of organic composts in a wheat–maize rotation[J]. Journal of Cleaner Production, 2022, 356. DOI:10.1016/j.jclepro.2022.131889 |
[38] | Bläsing M, Amelung W. Plastics in soil: analytical methods and possible sources[J]. Science of the Total Environment, 2018, 612: 422-435. DOI:10.1016/j.scitotenv.2017.08.086 |
[39] | Zhang L S, Xie Y S, Liu J Y, et al. An overlooked entry pathway of microplastics into agricultural soils from application of sludge-based fertilizers[J]. Environmental Science & Technology, 2020, 54(7): 4248-4255. |
[40] | Cheung P K, Fok L. Characterisation of plastic microbeads in facial scrubs and their estimated emissions in Mainland China[J]. Water Research, 2017, 122: 53-61. DOI:10.1016/j.watres.2017.05.053 |
[41] |
李大凤. 滇池表层水体微塑料空间分布特征及影响因素[D]. 昆明: 云南师范大学, 2023. Li D F. Spatial distribution characteristics and influencing factors of microplastics in surface water of Dianchi Lake[D]. Kunming: Yunnan Normal University, 2023. |
[42] | Cui J W, Chen C, Gan Q, et al. Indoor microplastics and bacteria in the atmospheric fallout in urban homes[J]. Science of the Total Environment, 2022, 852. DOI:10.1016/j.scitotenv.2022.158233 |
[43] | Siwal S S, Chaudhary G, Saini A K, et al. Key ingredients and recycling strategy of personal protective equipment (PPE): towards sustainable solution for the COVID-19 like pandemics[J]. Journal of Environmental Chemical Engineering, 2021, 9(5). DOI:10.1016/j.jece.2021.106284 |
[44] | Liu F, Liu H Q, Wei G X, et al. Characteristics and treatment methods of medical waste incinerator fly ash: a review[J]. Processes, 2018, 6(10). DOI:10.3390/pr6100173 |
[45] | Shen M C, Zeng Z T, Song B, et al. Neglected microplastics pollution in global COVID-19: disposable surgical masks[J]. Science of the Total Environment, 2021, 790. DOI:10.1016/j.scitotenv.2021.148130 |
[46] | Wright S L, Ulke J, Font A, et al. Atmospheric microplastic deposition in an urban environment and an evaluation of transport[J]. Environment International, 2020, 136. DOI:10.1016/j.envint.2019.105411 |
[47] | Zhu J X, Xu A, Shi M M, et al. Atmospheric deposition is an important pathway for inputting microplastics: insight into the spatiotemporal distribution and deposition flux in a mega city[J]. Environmental Pollution, 2024, 341. DOI:10.1016/j.envpol.2023.123012 |
[48] | Allen S, Allen D, Phoenix V R, et al. Atmospheric transport and deposition of microplastics in a remote mountain catchment[J]. Nature Geoscience, 2019, 12(5): 339-344. DOI:10.1038/s41561-019-0335-5 |
[49] | Colzi I, Renna L, Bianchi E, et al. Impact of microplastics on growth, photosynthesis and essential elements in Cucurbita pepo L[J]. Journal of Hazardous Materials, 2022, 423. DOI:10.1016/j.jhazmat.2021.127238 |
[50] | Li B T, Huang S, Wang H M, et al. Effects of plastic particles on germination and growth of soybean (Glycine max): a pot experiment under field condition[J]. Environmental Pollution, 2021, 272. DOI:10.1016/j.envpol.2020.116418 |
[51] | Dong Y M, Gao M L, Song Z G, et al. Microplastic particles increase arsenic toxicity to rice seedlings[J]. Environmental Pollution, 2020, 259. DOI:10.1016/j.envpol.2019.113892 |
[52] | De Souza Machado A A, Lau C W, Kloas W, et al. Microplastics can change soil properties and affect plant performance[J]. Environmental Science & Technology, 2019, 53(10): 6044-6052. |
[53] | Li S X, Wang T Y, Guo J H, et al. Polystyrene microplastics disturb the redox homeostasis, carbohydrate metabolism and phytohormone regulatory network in barley[J]. Journal of Hazardous Materials, 2021, 415. DOI:10.1016/j.jhazmat.2021.125614 |
[54] | Wang F Y, Zhang X Q, Zhang S Q, et al. Interactions of microplastics and cadmium on plant growth and arbuscular mycorrhizal fungal communities in an agricultural soil[J]. Chemosphere, 2020, 254. DOI:10.1016/j.chemosphere.2020.126791 |
[55] | Esterhuizen M, Kim Y J. Effects of polypropylene, polyvinyl chloride, polyethylene terephthalate, polyurethane, high-density polyethylene, and polystyrene microplastic on Nelumbo nucifera (Lotus) in water and sediment[J]. Environmental Science and Pollution Research, 2022, 29(12): 17580-17590. DOI:10.1007/s11356-021-17033-0 |
[56] | Lee T Y, Kim L, Kim D, et al. Microplastics from shoe sole fragments cause oxidative stress in a plant (Vigna radiata) and impair soil environment[J]. Journal of Hazardous Materials, 2022, 429. DOI:10.1016/j.jhazmat.2022.128306 |
[57] | Lian Y H, Shi R Y, Liu J Z, et al. Effects of polystyrene, polyethylene, and polypropylene microplastics on the soil-rhizosphere-plant system: phytotoxicity, enzyme activity, and microbial community[J]. Journal of Hazardous Materials, 2024, 465. DOI:10.1016/j.jhazmat.2023.133417 |
[58] | Wang F Y, Feng X Y, Liu Y Y, et al. Micro (nano) plastics and terrestrial plants: up-to-date knowledge on uptake, translocation, and phytotoxicity[J]. Resources, Conservation and Recycling, 2022, 185. DOI:10.1016/j.resconrec.2022.106503 |
[59] | De Silva Y S K, Rajagopalan U M, Kadono H, et al. Effects of microplastics on lentil (Lens culinaris) seed germination and seedling growth[J]. Chemosphere, 2022, 303. DOI:10.1016/j.chemosphere.2022.135162 |
[60] | Pignattelli S, Broccoli A, Renzi M. Physiological responses of garden cress (L. sativum) to different types of microplastics[J]. Science of the Total Environment, 2020, 727. DOI:10.1016/j.scitotenv.2020.138609 |
[61] | Li L Z, Luo Y M, Li R J, et al. Effective uptake of submicrometre plastics by crop plants via a crack-entry mode[J]. Nature Sustainability, 2020, 3(11): 929-937. DOI:10.1038/s41893-020-0567-9 |
[62] | Liu Y Q, Ben Y, Che R J, et al. Uptake, transport and accumulation of micro-and Nano-plastics in terrestrial plants and health risk associated with their transfer to food chain-a mini review[J]. Science of the Total Environment, 2023, 902. DOI:10.1016/j.scitotenv.2023.166045 |
[63] | Zhou C Q, Lu C H, Mai L, et al. Response of rice (Oryza sativa L.) roots to nanoplastic treatment at seedling stage[J]. Journal of Hazardous Materials, 2021, 401. DOI:10.1016/j.jhazmat.2020.123412 |
[64] | Bosker T, Bouwman L J, Brun N R, et al. Microplastics accumulate on pores in seed capsule and delay germination and root growth of the terrestrial vascular plant Lepidium sativum [J]. Chemosphere, 2019, 226: 774-781. DOI:10.1016/j.chemosphere.2019.03.163 |
[65] | Gao M L, Xu Y L, Liu Y, et al. Effect of polystyrene on di-butyl phthalate (DBP) bioavailability and DBP-induced phytotoxicity in lettuce[J]. Environmental Pollution, 2021, 268. DOI:10.1016/j.envpol.2020.115870 |
[66] | Wang Z H, Sedighi M, Lea-Langton A. Filtration of microplastic spheres by biochar: removal efficiency and immobilisation mechanisms[J]. Water Research, 2020, 184. DOI:10.1016/j.watres.2020.116165 |
[67] | Kumar R, Verma A, Rakib M R J, et al. Adsorptive behavior of micro(Nano)plastics through biochar: co-existence, consequences, and challenges in contaminated ecosystems[J]. Science of the Total Environment, 2023, 856. DOI:10.1016/j.scitotenv.2022.159097 |
[68] | Chen G L, Li Y Z, Liu S L, et al. Effects of micro(Nano)plastics on higher plants and the rhizosphere environment[J]. Science of the Total Environment, 2022, 807. DOI:10.1016/j.scitotenv.2021.150841 |
[69] | Gao M L, Liu Y, Song Z G. Effects of polyethylene microplastic on the phytotoxicity of di-n-butyl phthalate in lettuce (Lactuca sativa L. var. ramosa Hort)[J]. Chemosphere, 2019, 237. DOI:10.1016/j.chemosphere.2019.124482 |
[70] | Zhuang H R, Qin M R, Liu B, et al. Combination of transcriptomics, metabolomics and physiological traits reveals the effects of polystyrene microplastics on photosynthesis, carbon and nitrogen metabolism in cucumber (Cucumis sativus L.)[J]. Plant Physiology and Biochemistry, 2023, 205. DOI:10.1016/j.plaphy.2023.108201 |
[71] | Liang X M, Nie X P, Ying G G, et al. Assessment of toxic effects of triclosan on the swordtail fish (Xiphophorus helleri) by a multi-biomarker approach[J]. Chemosphere, 2013, 90(3): 1281-1288. DOI:10.1016/j.chemosphere.2012.09.087 |
[72] | Maity S, Chatterjee A, Guchhait R, et al. Cytogenotoxic potential of a hazardous material, polystyrene microparticles on Allium cepa L[J]. Journal of Hazardous Materials, 2020, 385. DOI:10.1016/j.jhazmat.2019.121560 |
[73] | Yue Y H, Li X H, Wei Z G, et al. Recent advances on multilevel effects of micro(Nano)plastics and coexisting pollutants on terrestrial soil-plants system[J]. Sustainability, 2023, 15(5). DOI:10.3390/su15054504 |
[74] | Qiu G K, Han Z M, Wang Q Y, et al. Toxicity effects of nanoplastics on soybean (Glycine max L.): mechanisms and transcriptomic analysis[J]. Chemosphere, 2023, 313. DOI:10.1016/j.chemosphere.2022.137571 |
[75] | Jiang X F, Chen H, Liao Y C, et al. Ecotoxicity and genotoxicity of polystyrene microplastics on higher plant Vicia faba [J]. Environmental Pollution, 2019, 250: 831-838. DOI:10.1016/j.envpol.2019.04.055 |
[76] | Sun X D, Yuan X Z, Jia Y B, et al. Differentially charged nanoplastics demonstrate distinct accumulation in Arabidopsis thaliana [J]. Nature Nanotechnology, 2020, 15(9): 755-760. DOI:10.1038/s41565-020-0707-4 |
[77] | Li Z X, Li Q F, Li R J, et al. The distribution and impact of polystyrene nanoplastics on cucumber plants[J]. Environmental Science and Pollution Research, 2021, 28(13): 16042-16053. DOI:10.1007/s11356-020-11702-2 |
[78] | Shen L Q, Zhang P, Lin Y Y, et al. Polystyrene microplastic attenuated the toxic effects of florfenicol on rice (Oryza sativa L.) seedlings in hydroponics: from the perspective of oxidative response, phototoxicity and molecular metabolism[J]. Journal of Hazardous Materials, 2023, 459. DOI:10.1016/j.jhazmat.2023.132176 |
[79] | Lu Y, Ma Q, Xu X L, et al. RETRACTED: cytotoxicity and genotoxicity evaluation of polystyrene microplastics on Vicia faba roots[J]. Environmental Pollution, 2021, 288. DOI:10.1016/j.envpol.2021.117821 |
[80] | Sun H F, Lei C L, Xu J H, et al. Foliar uptake and leaf-to-root translocation of nanoplastics with different coating charge in maize plants[J]. Journal of Hazardous Materials, 2021, 416. DOI:10.1016/j.jhazmat.2021.125854 |
[81] | Wu X, Liu Y, Yin S S, et al. Metabolomics revealing the response of rice (Oryza sativa L.) exposed to polystyrene microplastics[J]. Environmental Pollution, 2020, 266. DOI:10.1016/j.envpol.2020.115159 |
[82] | López M D, Toro M T, Riveros G, et al. Brassica sprouts exposed to microplastics: effects on phytochemical constituents[J]. Science of the Total Environment, 2022, 823. DOI:10.1016/j.scitotenv.2022.153796 |
[83] | Xu G H, Liu Y, Yu Y. Effects of polystyrene microplastics on uptake and toxicity of phenanthrene in soybean[J]. Science of the Total Environment, 2021, 783. DOI:10.1016/j.scitotenv.2021.147016 |
[84] | Giorgetti L, Spanò C, Muccifora S, et al. Exploring the interaction between polystyrene nanoplastics and Allium cepa during germination: internalization in root cells, induction of toxicity and oxidative stress[J]. Plant Physiology and Biochemistry, 2020, 149: 170-177. DOI:10.1016/j.plaphy.2020.02.014 |
[85] | Li R J, Tu C, Li L Z, et al. Visual tracking of label-free microplastics in wheat seedlings and their effects on crop growth and physiology[J]. Journal of Hazardous Materials, 2023, 456. DOI:10.1016/j.jhazmat.2023.131675 |
[86] | Wu X, Hou H J, Liu Y, et al. Microplastics affect rice (Oryza sativa L.) quality by interfering metabolite accumulation and energy expenditure pathways: a field study[J]. Journal of Hazardous Materials, 2022, 422. DOI:10.1016/j.jhazmat.2021.126834 |
[87] | Fu Q, Lai J L, Ji X H, et al. Alterations of the rhizosphere soil microbial community composition and metabolite profiles of Zea mays by polyethylene-particles of different molecular weights[J]. Journal of Hazardous Materials, 2022, 423. DOI:10.1016/j.jhazmat.2021.127062 |
[88] | Li W, Zhao J J, Zhang Z Q, et al. Uptake and effect of carboxyl-modified polystyrene microplastics on cotton plants[J]. Journal of Hazardous Materials, 2024, 466. DOI:10.1016/j.jhazmat.2024.133581 |
[89] | Yang X Y, Zhang Z M, Guo X T. Impact of soil structure and texture on occurrence of microplastics in agricultural soils of karst areas[J]. Science of the Total Environment, 2023, 902. DOI:10.1016/j.scitotenv.2023.166189 |
[90] | Lozano Y M, Lehnert T, Linck L T, et al. Microplastic shape, polymer type, and concentration affect soil properties and plant biomass[J]. Frontiers in Plant Science, 2021, 12. DOI:10.3389/fpls.2021.616645 |
[91] | Qian H F, Zhang M, Liu G F, et al. Effects of soil residual plastic film on soil microbial community structure and fertility[J]. Water, 2018, 229(8). DOI:10.1007/s11270-018-3916-9 |
[92] | Liu R, Liang J W, Yang Y H, et al. Effect of polylactic acid microplastics on soil properties, soil microbials and plant growth[J]. Chemosphere, 2023, 329. DOI:10.1016/j.chemosphere.2023.138504 |
[93] | Shi J, Wang J, Lv J F, et al. Microplastic additions alter soil organic matter stability and bacterial community under varying temperature in two contrasting soils[J]. Science of the Total Environment, 2022, 838. DOI:10.1016/j.scitotenv.2022.156471 |
[94] | Yi M L, Zhou S H, Zhang L L, et al. The effects of three different microplastics on enzyme activities and microbial communities in soil[J]. Water Environment Research, 2021, 93(1): 24-32. DOI:10.1002/wer.1327 |
[95] | Zhang Z Q, Peng W X, Duan C J, et al. Microplastics pollution from different plastic mulching years accentuate soil microbial nutrient limitations[J]. Gondwana Research, 2022, 108: 91-101. DOI:10.1016/j.gr.2021.07.028 |
[96] | Zhou J, Gui H, Banfield C C, et al. The microplastisphere: biodegradable microplastics addition alters soil microbial community structure and function[J]. Soil Biology and Biochemistry, 2021, 156. DOI:10.1016/j.soilbio.2021.108211 |
[97] | Ge J H, Li H, Liu P, et al. Review of the toxic effect of microplastics on terrestrial and aquatic plants[J]. Science of the Total Environment, 2021, 791. DOI:10.1016/j.scitotenv.2021.148333 |
[98] |
刘晓丹, 龚一富, 李军, 等. 增塑剂对小麦种子萌发过程中细胞程序性死亡指标的影响[J]. 麦类作物学报, 2013, 33(2): 350-356. Liu X D, Gong Y F, Li J, et al. Mechanism of the programmed cell death triggered by plasticizers in the germination process of wheat seeds[J]. Journal of Triticeae Crops, 2013, 33(2): 350-356. |
[99] | Guan J N, Qi K, Wang J Y, et al. Microplastics as an emerging anthropogenic vector of trace metals in freshwater: significance of biofilms and comparison with natural substrates[J]. Water Research, 2020, 184. DOI:10.1016/j.watres.2020.116205 |
[100] | Wang F Y, Zhang X Q, Zhang S Q, et al. Effects of co-contamination of microplastics and Cd on plant growth and Cd accumulation[J]. Toxics, 2020, 8(2). DOI:10.3390/toxics8020036 |
[101] | Gao M L, Liu Y, Dong Y M, et al. Effect of polyethylene particles on dibutyl phthalate toxicity in lettuce (Lactuca sativa L.)[J]. Journal of Hazardous Materials, 2021, 401. DOI:10.1016/j.jhazmat.2020.123422 |
[102] | Lu X M, Lu P Z, Liu X P. Fate and abundance of antibiotic resistance genes on microplastics in facility vegetable soil[J]. Science of the Total Environment, 2020, 709. DOI:10.1016/j.scitotenv.2019.136276 |
[103] | Kim D, An S, Kim L, et al. Translocation and chronic effects of microplastics on pea plants (Pisum sativum) in copper-contaminated soil[J]. Journal of Hazardous Materials, 2022, 436. DOI:10.1016/j.jhazmat.2022.129194 |
[104] | Liu Y Q, Chen Y, Ren X M, et al. Plant growth-promoting bacteria modulate gene expression and induce antioxidant tolerance to alleviate synergistic toxicity from combined microplastic and Cd pollution in sorghum[J]. Ecotoxicology and Environmental Safety, 2023, 264. DOI:10.1016/j.ecoenv.2023.115439 |
[105] | Ma J, Chen F, Zhu Y F, et al. Joint effects of microplastics and ciprofloxacin on their toxicity and fates in wheat: a hydroponic study[J]. Chemosphere, 2022, 303. DOI:10.1016/j.chemosphere.2022.135023 |
[106] | Zhang Z Q, Li Y, Qiu T Y, et al. Microplastics addition reduced the toxicity and uptake of cadmium to Brassica chinensis L[J]. Science of the Total Environment, 2022, 852. DOI:10.1016/j.scitotenv.2022.158353 |
[107] | Dong Y M, Gao M L, Qiu W W, et al. Uptake of microplastics by carrots in presence of As (Ⅲ): combined toxic effects[J]. Journal of Hazardous Materials, 2021, 411. DOI:10.1016/j.jhazmat.2021.125055 |
[108] | Li Y, Feng H Y, Xian S T, et al. Phytotoxic effects of polyethylene microplastics combined with cadmium on the photosynthetic performance of maize (Zea mays L.)[J]. Plant Physiology and Biochemistry, 2023, 203. DOI:10.1016/j.plaphy.2023.108065 |
[109] | Xu C C, Wang H Q, Zhou L, et al. Phenotypic and transcriptomic shifts in roots and leaves of rice under the joint stress from microplastic and arsenic[J]. Journal of Hazardous Materials, 2023, 447. DOI:10.1016/j.jhazmat.2023.130770 |
[110] | Liu S Q, Wang J W, Zhu J H, et al. The joint toxicity of polyethylene microplastic and phenanthrene to wheat seedlings[J]. Chemosphere, 2021, 282. DOI:10.1016/j.chemosphere.2021.130967 |
[111] | Dong R Y, Liu R L, Xu Y M, et al. Single and joint toxicity of polymethyl methacrylate microplastics and As (Ⅴ) on rapeseed (Brassia campestris L.)[J]. Chemosphere, 2022, 291. DOI:10.1016/j.chemosphere.2021.133066 |
[112] |
胡晓玥, 滑紫微, 姚伦广, 等. 高密度聚乙烯微塑料与氯嘧磺隆对大豆生长和根际细菌群落的复合胁迫效应[J]. 环境科学, 2024, 45(2): 1161-1172. Hu X Y, Hua Z W, Yao L G, et al. Effects of combined stress of high density polyethylene microplastics and chlorimuron-ethyl on soybean growth and rhizosphere bacterial community[J]. Environmental Science, 2024, 45(2): 1161-1172. |
[113] | Surendran U, Jayakumar M, Raja P, et al. Microplastics in terrestrial ecosystem: sources and migration in soil environment[J]. Chemosphere, 2023, 318. DOI:10.1016/j.chemosphere.2023.137946 |
[114] | Yuan J H, Ma J, Sun Y R, et al. Microbial degradation and other environmental aspects of microplastics/plastics[J]. Science of the Total Environment, 2020, 715. DOI:10.1016/j.scitotenv.2020.136968 |
[115] | Chen Z, Zhao W Q, Xing R Z, et al. Enhanced in situ biodegradation of microplastics in sewage sludge using hyperthermophilic composting technology[J]. Journal of Hazardous Materials, 2020, 384. DOI:10.1016/j.jhazmat.2019.121271 |
[116] | Ni B J, Zhu Z R, Li W H, et al. Microplastics mitigation in sewage sludge through pyrolysis: the role of pyrolysis temperature[J]. Environmental Science & Technology Letters, 2020, 7(12): 961-967. |
[117] | Skariyachan S, Setlur A S, Naik S Y, et al. Enhanced biodegradation of low and high-density polyethylene by novel bacterial consortia formulated from plastic-contaminated cow dung under thermophilic conditions[J]. Environmental Science and Pollution Research, 2017, 24(9): 8443-8457. DOI:10.1007/s11356-017-8537-0 |
[118] | Lin Z Y, Jin T, Zou T, et al. Current progress on plastic/microplastic degradation: fact influences and mechanism[J]. Environmental Pollution, 2022, 304. DOI:10.1016/j.envpol.2022.119159 |