环境科学  2025, Vol. 46 Issue (1): 478-488   PDF    
有机肥代替氮肥对中国主要粮食产量的影响
朱银浩1, 尹娟1,2,3, 马正虎1, 杨莹攀1     
1. 宁夏大学土木与水利工程学院, 银川 750021;
2. 旱区现代农业水资源高效利用教育部工程中心, 银川 750021;
3. 宁夏节水灌溉与水资源调控工程技术研究中心, 银川 750021
摘要: 为了综合评估有机肥替代氮肥对中国主要粮食产量的变化规律, 以102篇文献为研究对象, 通过Meta分析定量探讨了土壤理化性质、气候条件及不同氮肥替代率和补施量的影响. 结果表明, 与单施氮肥相比, 有机肥替代氮肥可以提高作物产量, 土壤速效钾含量、pH值、年平均气温对3种主要粮食产量影响最显著, 当氮肥替代率和补施氮肥量分别为31.06%和241.78 kg·hm-2、26.52%和173.31 kg·hm-2、39.23%和149.17 kg·hm-2时, 玉米、小麦和水稻产量增幅比达到最优, 分别为3.31%、3.32%和1.08%. 研究结果可为今后作物生产合理施肥提供参考依据, 有助于促进绿色农业发展.
关键词: 氮肥      有机肥      Meta分析      产量      中国     
Effect of Organic Fertilizer Replacing Nitrogen Fertilizer on Major Grain Yield in China
ZHU Yin-hao1 , YIN Juan1,2,3 , MA Zheng-hu1 , YANG Ying-pan1     
1. School of Civil and Hydraulic Engineering, Ningxia University, Yinchuan 750021, China;
2. Engineering Research Center for Efficient Utilization of Modern Agricultural Water Resources in Arid Regions, Ministry of Education, Yinchuan 750021, China;
3. Engineering Technology Research Center of Water-Saving and Water Resource Regulation in Ningxia, Yinchuan 750021, China
Abstract: To comprehensively assess the changing pattern of organic fertilizer substitution with nitrogen fertilizer on the yield of major grains in China, with 102 literature as the research object, through Meta-analysis we quantitatively explored the impacts of soil physicochemical properties, climatic conditions, and different nitrogen fertilizer replacement rates and supplemental application amounts. The results showed that the replacement of nitrogen fertilizer by organic fertilizer could increase crop yields compared with those from the application of nitrogen fertilizer alone, and soil quick-acting potassium content, pH, and annual average temperature had the most significant effects on the yields of the three major grains. When the nitrogen fertilizer replacement rate and the amount of supplemental nitrogen fertilizer applied were 31.06% and 241.78 kg·hm-2, 26.52% and 173.31 kg·hm-2, and 39.23% and 149.17 kg·hm-2, the optimum yield increase ratios of 3.31%, 3.32%, and 1.08% were achieved for maize, wheat, and rice, respectively. Thus, the results of this study can provide a reference basis for rational fertilizer application in future crop production and help promote green agriculture.
Key words: nitrogen fertilizer      organic fertilizer      Meta-analysis      yield      China     

由于人口增加和全球气候变化, 对粮食的需求急剧增加, 给农业生产带来了巨大的挑战[1]. 在过去的几十年里, 追求作物高产一直是农业生产中的首要目标[2]. 施加氮肥是提高全球作物产量的常见做法之一, 然而过量施加氮肥不仅不会提高作物产量, 还会严重威胁环境和人类健康, 如:空气污染、水体富营养化、氮素流失和土壤酸化等[3 ~ 7]. 这些问题不利于维持作物土壤氮素供应和农业可持续发展. 为了解决这些问题, 中国自2015年以来实施了减少化肥使用的措施, 目标是到2020年实现化肥施用量的零增长. 此外, 氮肥成本的上涨增加了农业生产费用的压力. 因此, 为保证作物持续稳产和高产, 合理平衡化肥的使用, 贯彻绿色农业可持续发展方针是当前农业生产过程中亟需采取的措施[8].

有机肥通常是指各种动物、植物残体或代谢物组成, 如人畜粪便、秸秆、动物残体和屠宰场废弃物等, 它富含大量有益物质, 包括氮、磷、钾等丰富的营养元素. 近年来, 在绿色农业发展背景下, 我国出台了一系列化肥减量增效政策以推动化肥减施和有机肥替代, 实现绿色高效施肥[9]. 多数研究表明有机肥部分替代氮肥可以改善土壤性质, 降低土壤容重, 增加土壤微生物数量和细菌多样性, 缓解土壤酸化, 促进作物生长发育, 提高作物产量[10 ~ 15]. 上述研究结果仅仅是针对某一区域有机肥替代氮肥对作物产量的影响, 且都是单个案例的研究, 有机肥替代氮肥对中国区域主要粮食产量的影响目前仍没有确切的答案, 影响机制也尚不清楚.

基于此, 本文以我国已开展的有机肥替代氮肥对玉米、小麦和水稻产量的影响为研究基础, 通过提取相关试验结果, 进行数据整合分析, 量化了不同条件下施用有机肥后玉米、水稻和小麦产量差异的特征, 明确了玉米、水稻和小麦产量差异的主要驱动因素, 以期为有机肥替代氮肥在国内的推广应用提供参考依据, 同时也为今后作物生产可持续集约化发展和绿色农业的研究提供参考.

1 材料与方法 1.1 数据收集

图 1所示, 通过使用关键搜索词“氮肥” AND “有机肥” AND “中国” AND “玉米产量” or “小麦产量” or “水稻产量”, 从ISI web of science(https://apps.webofknowledge.com/), 中国国家知识基础设施(CNKI, http://www.cnki.net/)和Science Direct(https://www.sciencedirect.com/)中检索了2000年1月至2023年9月发表的文章.

图 1 出版物选择流程 Fig. 1 Flow of the publication selection process

为了避免出版物选择过程中出现偏差, 应根据以下条件进行文献筛选.

①在中国的农田土壤中进行的田间试验, 作物包括小麦、玉米和水稻作物.

②试验方式为大田试验, 试验的对照组和试验组必须在同一试验条件下进行, 采用相同的管理措施, 以单施氮肥作为对照组, 有机肥替代氮肥处理作为试验组.

③排除材料和方法不明确、不完整或者缺少对照处理的文献.

④田间试验中对照组和试验组各处理必须是独立的, 每个处理必须重复3次或者3次以上.

⑤对照组和试验组各处理的平均值、标准差和样本量直接从表格、图片中直接提取或者使用WebPlotDigitizer[16]https://automeris.io/WebPlotDigitizer/)软件进行提取, 对于仅有标准误差(SE)、没有标准偏差(SD)的处理, 通过公式(1)进行转化, 其中n表示重复次数, 既没有SD也没有SE的研究则被排除.

(1)
1.2 数据分类

表 1所示, 本文将采样点分为7个区域, 通过对影响因素变量进行分组, 将作物类型分为3类, 将有机肥按照肥源分成3类, 将土壤质地分成3类. 各采样点的分布如图 2所示.

表 1 Meta分析变量分组1) Table 1 List of variables used in the Meta-analysis1)

图 2 Meta分析中试验点的位置 Fig. 2 Location of experimental sites in the Meta-analysis

1.3 数据分析

利用各研究中对照组和试验组的均值、重复次数和标准差计算反应比(R)、效应值(yi)和研究内方差(vi[17 ~ 19].

(2)

式中, Yt为试验组各处理的均值;Yc为对照组各处理的均值;St为试验组的标准差;Sc为对照组的标准差;Nt为试验组的重复次数;Nc为对照组的重复次数.

采用混合效应模型的限制性最大似然法(REML)计算累计效应值[20 ~ 23].

(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)

式中, wi'为单个研究的权重;wi为研究内方差的倒数;s2为研究内方差;τ2为研究间方差;y为累计效应值;Qt为效应值的总体异质性;SE为总体标准误;CI为累计效应值的95%置信区间.

本研究采用Microsoft Excel 2010软件建立数据库, R 4.3.1中的metafore包和Orchard包[24]以及Origin 2021进行分析绘图.

1.4 偏倚性检验

漏斗图可用于直观地评估是否存在发表偏倚. 在没有发表偏倚的情况下, 漏斗图将类似于倒置对称漏斗. 否则, 该图将是不对称漏斗[25 ~ 28]. 将有机肥替代氮肥对玉米、小麦和水稻产量的影响进行偏倚检验, 其中玉米、小麦和水稻产量的失安全系数分别为6 252、93 847和1 463, 均大于5n+10, 漏斗图对称性良好, 表明所搜集的文献不存在发表偏倚性(图 3).

图 3 文献偏差检验漏斗图 Fig. 3 Funnel plot of the publication bias test

2 结果与分析 2.1 作物类型和不同区域

图 4(a)是有机肥替代氮肥对中国主要粮食作物产量的影响. 与单施氮肥处理相比, 有机肥替代氮肥处理可以提高玉米和水稻的产量, 分别提高了2.21%和0.85%, 对小麦产量影响不显著. 图 4(b)是有机肥替代氮肥处理对中国不同区域粮食产量的影响, 与单施氮肥处理相比, 有机肥替代氮肥处理可以显著提高华中地区、华北地区和华南地区的粮食产量, 分别提高了4.35%、6.50%和2.67%, 对其他地区粮食产量没有显著影响.

图 4 有机肥代替氮肥对中国不同作物类型和不同地区作物产量的影响 Fig. 4 Effects of nitrogen fertilizer replacement on the grain yield of different crop types and in different regions of China

2.2 不同肥源和土壤质地

不同肥源下, 有机肥替代氮肥处理较单施氮肥处理可以提高中国主要粮食作物产量的影响, 平均而言, 植物源、动物源和混合源分别提高了3.99%、0.36%和0.92% [图 5(a)]. 黏土和壤土质地下, 有机肥替代氮肥处理较单施氮肥处理可以提高中国主要粮食作物产量的影响, 分别提高了1.57%和1.23%, 砂土质地下有机肥替代氮肥处理较单施氮肥处理对中国主要粮食作物产量无明显影响[图 5(b)].

图 5 不同肥源类型和土壤质地对作物产量的影响 Fig. 5 Effects of different fertilizer types and soil texture on crop yield

2.3 土壤理化性质

与单施氮肥处理相比, 不同有机肥替代氮肥处理的作物产量变化与土壤有机质含量、有效磷含量、速效钾含量、总氮含量和pH的变化关系如图 6所示. 当土壤有机质含量超过17.44 g·kg-1时, 对玉米产量有显著的积极影响, 对小麦和水稻而言, 随着土壤有机质含量增加, 小麦和水稻的产量变化呈下降趋势[图 6(a)~6(c)]. 当土壤ω(有效磷)达到59.06 mg·kg-1时, 对玉米产量影响最大, 当土壤ω(有效磷)超过19.17 mg·kg-1时, 对小麦产量有显著的积极影响, 而水稻产量则随着土壤有效磷含量增加而增加[图 6(d)~6(f)]. 土壤速效钾含量对玉米和小麦产量的影响具有相同的变化趋势, 均呈现先增加后减小的趋势, 当土壤ω(速效钾)达到68.97 mg·kg-1和214.9 mg·kg-1时, 对玉米和小麦产量影响最大. 当土壤ω(速效钾)超过117.12 mg·kg-1时, 水稻产量趋于增加趋势[图 6(g)~6(i)]. 土壤总氮含量对玉米和水稻产量均呈增加趋势, 当土壤ω(全氮)超过1.0 g·kg-1和1.18 g·kg-1时, 对玉米和水稻产量有显著的积极影响[图 6(j), 6(l)]. 当土壤pH值为6.62时, 对玉米产量影响最大, 当土壤pH值超过7.56和6.72时, 对小麦和水稻产量有显著的积极影响[图 6(m)~6(o)].

图 6 不同土壤理化性质对作物产量的影响 Fig. 6 Effects of different physical and chemical properties of soil on crop yield

2.4 气候条件

在不同气候条件下, 与单施氮肥处理相比, 不同有机肥替代氮肥处理对中国主要粮食产量的影响如图 7所示. 玉米产量随着海拔高度增加而降低, 当海拔高度大于342.70 m时, 对小麦产量具有显著的积极影响, 对水稻而言, 在海拔高度达到283.30 m时产量变化最显著[图 7(a)~7(c)]. 玉米和水稻的产量随着年均温度升高而增加, 当年均温度超过12.55 ℃和14.56 ℃时, 对玉米和水稻产量具有显著的影响, 对小麦而言, 当年平均气温达到4.69 ℃时产量变化最明显[图 7(d)~7(f)]. 在年平均降雨量超过925.78 mm和1 143.46 mm时, 对玉米和水稻产量具有显著的积极影响, 相反, 小麦的产量则随着降雨量的增加而减小[图 7(g)~7(i)].

图 7 不同气候条件对作物产量的影响 Fig. 7 Effects of different climatic conditions on crop yield

2.5 不同氮肥替代率和补施量

图 8为氮肥替代率、补施氮肥量和产量增幅比之间的关系, 当氮肥替代率和补施氮肥量分别为31.06%和241.78 kg·hm-2时, 玉米产量增幅比达到最高, 为3.31% [图 8(a)]. 当氮肥替代率为26.52%, 补施氮肥量为173.31 kg·hm-2时, 小麦产量增幅比达到最优, 为3.32% [图 8(b)]. 对水稻而言, 产量增幅比最优为1.08%, 此时的氮肥替代率为39.23%, 补施氮肥量为149.17 kg·hm-2 [图 8(c)].

图 8 氮肥替代率和补施量对作物产量的影响 Fig. 8 Effects of nitrogen fertilizer replacement rate and supplemental nitrogen fertilizer application on crop yield

3 讨论 3.1 有机肥替代氮肥对产量的影响

氮肥是保证作物产量的基本元素, 过量施用氮肥会造成产量降低, 品质变差[29]. 本研究发现, 与单施氮肥相比, 有机肥部分替代氮肥可使中国主要粮食产量增产0.85%~2.21%. 相关研究也得出了相同的结论[30 ~ 32], 主要原因是:①与化肥中的氮素相比, 有机肥中的氮素具有缓效作用, 因此有机氮和无机氮的适当配比, 既能减少化肥中氮素的损失, 还能为作物提供充足的养分[33];②与施用氮肥相比, 施用有机肥能进一步改善土壤孔隙度、有机质和养分等土壤理化性状, 能有效促进作物生长, 增加根系分泌物, 为作物生产提供良好的生长条件[34]. 然而, 有机肥替代氮肥对小麦增产不显著, 可能的原因是土壤本身具有较高的养分供应能力, 不同的小麦品种对养分的需求和利用效率存在差异, 导致土壤养分的消耗和恢复不平衡[35]. 从区域上来看, 有机肥替代氮肥对西南、西北、东北和华东地区粮食产量影响不显著, 其原因是:①西南地区降雨量相对较高, 湿度较大, 导致有机肥的分解速度加快, 增加了养分流失, 然而该地区土壤类型以酸性或中性为主, 会对养分的吸收和利用存在限制, 从而限制了有机肥替代氮肥的增产效果[36, 37];②西北地区以干旱和半干旱气候为主, 降雨量较少且分布不均, 会使土壤中微生物活动受到抑制, 减慢有机肥分解速度, 同时该地区存在土壤贫瘠问题, 土壤中缺乏必要的有机质和养分, 使得作物对有机肥的响应较弱, 导致作物养分供应不足[38];③东北地区土壤类型多为黑土和黑钙土, 这些土壤本身具有较高的有机质含量和养分供应能力, 即使不施用有机肥和氮肥, 作物也能获得足够的养分, 这可能是有机肥替代氮肥增产不显著的原因[39];④华东地区多为湿润的季风气候和高温多雨的气候, 这些气候可能导致肥料养分淋溶和流失, 从而降低肥料效果, 影响作物生长[40].

3.2 气候条件对作物产量的影响

作物生长速度通常受温度、降雨量和海拔等地理空间参数控制[41]. 最佳的气候条件能为作物生长提供充足的养分, 从而为作物稳产高产提供保障[42]. 本研究发现, 在海拔高度小于500 m种植作物可以显著提高作物产量, 玉米和水稻产量与年平均气温和年平均降雨量呈正相关, 当年平均气温低于4.9 ℃时, 小麦产量与年平均气温呈正相关. 许多研究也得出了类似的结论, 认为海拔高度超过1 000 m不利于作物生长, 会对作物产量产生不利影响, 而海拔高度不超过600 m则有利于作物生长, 从而确保作物增产[43, 44]. 主要原因如下:①与低海拔作物相比, 高海拔作物表现为生长季缩短, 同时生物量和叶面积呈现降低趋势, 不仅会影响作物产量, 还会导致品质下降[45, 46];②降雨会影响土壤含水量, 适量的降雨可以满足作物对水分的需求, 促进作物生长发育, 进而影响作物产量[47];③在适宜的温度范围内, 作物生长快、生育期短和产量高[48]. Adjei等[49]研究表明年降雨量、温度和海拔高度的变化与作物产量之间存在很强的相关性. 温度、降雨量和海拔高度的变化占全球粮食产量变化的30%~50%, 这3个因素协同作用可提高作物产量[50 ~ 52]. 此外, 高温不仅会导致作物蒸腾作用加强, 水分散失加快, 使作物易受干旱影响, 还会导致作物呼吸作用加强, 使养分消耗过多, 导致产量下降, 温度过低会导致作物生长减缓, 生育期延长, 也会导致产量下降. 降雨过少会导致作物缺水, 使其生长速度减慢, 生育期延长, 降雨过多会导致农田积水过多, 造成作物根系缺氧, 影响其生长发育, 长时间的阴雨天气会导致日照时间减少, 造成作物无法进行光合作用, 最终导致产量下降[53 ~ 55]. 不同气候条件下, 玉米、小麦和水稻的产量存在差异, 主要是由于它们的生长习性和适应性不同[56]. 玉米是一种喜温作物, 对光照和温度的要求较高, 在海拔较低的地区, 气温较高, 光照充足, 有利于玉米的生长和产量的提高, 而在海拔较高的地区, 气温较低, 光照不足, 可能会影响玉米的生长速度和产量[57]. 小麦也是一种喜温作物, 但与玉米相比, 它对温度的适应性更强, 对降雨量的要求也较高, 在年平均气温适中、降雨充足的地区, 小麦的生长和产量较好, 而在气温过高或过低、降雨不足的地区, 小麦的生长和产量可能会受到影响[58]. 水稻是一种水生作物, 它对水分的要求非常高, 在年平均降雨量充足、水资源丰富的地区, 水稻的生长和产量表现较好, 而在降雨不足、水资源缺乏的地区, 水稻的生长和产量会受到严重的影响[59]. 因此, 适当的气候条件是作物生长和提高产量的必要条件.

3.3 土壤理化性质对产量的影响

有机肥可以改善土壤结构, 提高土壤养分含量, 促进土壤有机碳的固存, 有利于农业可持续发展[60]. 本研究发现, 土壤有机质含量对玉米产量有积极影响, 土壤有效磷含量在一定程度上对玉米、小麦和水稻产量都有显著影响.当土壤ω(速效钾)达到68.97 mg·kg-1和214.9 mg·kg-1时, 对玉米和小麦产量影响最大, ω(速效钾)超过117.12 mg·kg-1时, 水稻产量呈逐渐增高趋势.玉米和水稻产量随着土壤全氮含量增加而增加;当土壤pH值超过7.56和6.72时, 对小麦和水稻产量有显著的积极影响. 相关研究都得出了类似的结论[61, 62], 其主要原因如下:①有机肥含有作物所需的养分和各种有益元素, 能促进作物生长, 提高作物产量[63];②有机肥具有很强的阳离子置换能力, 能防止水土流失, 提高土壤保肥能力, 为作物生长提供良好的土壤环境[64];③有机肥中含有大量有机质, 有利于各种微生物的生长和繁殖, 能显著改善土壤的理化性质, 有利于作物根系的生长[65, 66]. 不同土壤理化性质下, 玉米、小麦和水稻的产量存在差异, 一方面可能是玉米和小麦主要利用土壤中的矿质养分, 水稻则更多地利用土壤中的有机养分, 另一方面可能是玉米、小麦和水稻对土壤氮、磷、钾元素的需求时期存在差异, 玉米在拔节期、抽雄期和灌浆期对氮、磷、钾元素的需求较大, 而小麦和水稻在分蘖期和穗形成期对氮、磷、钾元素的需求较大, 然而, 不同土壤pH值可能导致作物对养分吸收和利用效率不同, 进而导致产量存在差异[67 ~ 70]. 因此, 有机肥替代氮肥能有效改善土壤理化性质, 为作物生长提供良好的土壤环境, 为提高粮食产量奠定良好基础.

3.4 不同有机肥替代率和土壤质地对产量的影响

适量的有机肥替代氮肥可以提高作物的产量, 而过高的替代率则可能导致产量下降, 主要是由于适量的有机肥替代氮肥可以为作物生长提供多种营养元素, 改善土壤结构, 提高土壤肥力, 同时, 还可以调节土壤酸碱度、增强土壤保水能力、改善土壤微生物环境, 对作物的生长和产量有积极的影响[71]. 过高的有机肥替代率可能导致产量下降, 这可能是因为有机肥的养分释放速度较慢, 不能满足作物生长的需求, 尤其是在作物生长的关键期. 此外, 过高的有机肥替代率还可能导致土壤中的微生物数量和酶活性增加, 消耗过多的土壤养分, 进而影响作物的生长和产量, 因此, 适当的有机肥替代氮肥可以提高作物产量, 有利于农业的可持续发展[72]. 不同土壤质地对玉米、小麦和水稻的产量也存在差异, 可能原因是壤土质地适中, 具有良好的透水性和保水保肥能力, 有利于作物根系的生长和养分的吸收, 从而提高作物的产量[73]. 砂土颗粒较大, 土质疏松, 具有良好的透水性, 有利于作物根系呼吸和生长, 促进作物根系的发育, 但砂土保水保肥能力较差, 因此, 在砂土使用有机肥替代氮肥可以提高土壤养分含量, 以满足作物的生长需求[74]. 黏土具有较强的保水保肥能力, 能够保持土壤湿度和养分, 有利于作物生长和发育, 但黏土颗粒较小, 土壤紧密, 通气透水性较差, 可能导致土壤板结和根系生长受阻, 影响作物生长和产量[75]. 因此, 在黏土使用有机肥替代氮肥可以促进养分的快速释放和供应, 为作物生长和增产提供良好的土壤环境.

4 结论

(1)与单施氮肥相比, 有机肥替代氮肥可以提高玉米和和水稻产量, 其中华中、华北和华南地区增产显著.

(2)氮肥替代率和补施氮肥量分别为31.06%和241.78 kg·hm-2、26.52%和173.31 kg·hm-2、39.23%和149.17 kg·hm-2时, 玉米、小麦、水稻产量增幅比达到最优.

(3)本研究可为今后中国作物生产合理施肥提供参考依据, 但有机肥替代氮肥对温室气体的减排效应有待进一步研究.

参考文献
[1] Hoover D L, Abendroth L J, Browning D M, et al. Indicators of water use efficiency across diverse agroecosystems and spatiotemporal scales[J]. Science of the Total Environment, 2023, 864. DOI:10.1016/j.scitotenv.2022.160992
[2] Liu T, Yang J H, Wang H Y, et al. Effects of molecular weight of polyaspartic acid on nitrogen use efficiency and crop yield[J]. Journal of the Science of Food and Agriculture, 2022, 102(15): 7343-7352. DOI:10.1002/jsfa.12101
[3] Trost B, Prochnow A, Meyer-Aurich A, et al. Effects of irrigation and nitrogen fertilization on the greenhouse gas emissions of a cropping system on a sandy soil in northeast Germany[J]. European Journal of Agronomy, 2016, 81: 117-128. DOI:10.1016/j.eja.2016.09.008
[4] Ahmed M, Rauf M, Mukhtar Z, et al. Excessive use of nitrogenous fertilizers: an unawareness causing serious threats to environment and human health[J]. Environmental Science and Pollution Research, 2017, 24(35): 26983-26987. DOI:10.1007/s11356-017-0589-7
[5] Zhang M, Yao Y L, Tian Y H, et al. Increasing yield and N use efficiency with organic fertilizer in Chinese intensive rice cropping systems[J]. Field Crops Research, 2018, 227: 102-109. DOI:10.1016/j.fcr.2018.08.010
[6] Lutes K, Oelbermann M, Thevathasan N V, et al. Effect of nitrogen fertilizer on greenhouse gas emissions in two willow clones (Salix miyabeana and S. dasyclados) in southern Ontario, Canada[J]. Agroforestry Systems, 2016, 90(5): 785-796. DOI:10.1007/s10457-016-9897-z
[7] De Vries W, Kros J, Kroeze C, et al. Assessing planetary and regional nitrogen boundaries related to food security and adverse environmental impacts[J]. Current Opinion in Environmental Sustainability, 2013, 5(3-4): 392-402. DOI:10.1016/j.cosust.2013.07.004
[8] Cao T N D, Mukhtar H, Le L T, et al. Roles of microalgae-based biofertilizer in sustainability of green agriculture and food-water-energy security nexus[J]. Science of the Total Environment, 2023, 870. DOI:10.1016/j.scitotenv.2023.161927
[9] Zhao J, Ni T, Li J, et al. Effects of organic-inorganic compound fertilizer with reduced chemical fertilizer application on crop yields, soil biological activity and bacterial community structure in a rice-wheat cropping system[J]. Applied soil ecology, 2016, 99: 1-12. DOI:10.1016/j.apsoil.2015.11.006
[10] Hou X Q, Wang X J, Li R, et al. Effects of different manure application rates on soil properties, nutrient use, and crop yield during dryland maize farming[J]. Soil Research, 2012, 50(6): 507-514. DOI:10.1071/SR11339
[11] Zhai L C, Wang Z B, Zhai Y C, et al. Partial substitution of chemical fertilizer by organic fertilizer benefits grain yield, water use efficiency, and economic return of summer maize[J]. Soil and Tillage Research, 2022, 217. DOI:10.1016/j.still.2021.105287
[12] Chen D M, Yuan L, Liu Y R, et al. Long-term application of manures plus chemical fertilizers sustained high rice yield and improved soil chemical and bacterial properties[J]. European Journal of Agronomy, 2017, 90: 34-42. DOI:10.1016/j.eja.2017.07.007
[13] Yang C, Du W B, Zhang L L, et al. Effects of sheep manure combined with chemical fertilizers on maize yield and quality and spatial and temporal distribution of soil inorganic nitrogen[J]. Complexity, 2021, 2021. DOI:10.1155/2021/4330666
[14] Li C X, Ma S C, Shao Y, et al. Effects of long-term organic fertilization on soil microbiologic characteristics, yield and sustainable production of winter wheat[J]. Journal of Integrative Agriculture, 2018, 17(1): 210-219. DOI:10.1016/S2095-3119(17)61740-4
[15] Tian X F, Li C L, Zhang M, et al. Biochar derived from corn straw affected availability and distribution of soil nutrients and cotton yield[J]. PLoS One, 2018, 13(1). DOI:10.1371/iournal.pone.0189924
[16] Burda B U, O'Connor E A, Webber E M, et al. Estimating data from figures with a Web‐based program: considerations for a systematic review[J]. Research Synthesis Methods, 2017, 8(3): 258-262. DOI:10.1002/jrsm.1232
[17] Hedges L V, Gurevitch J, Curtis P S. The meta‐analysis of response ratios in experimental ecology[J]. Ecology, 1999, 80(4): 1150-1156. DOI:10.1890/0012-9658(1999)080[1150:TMAORR]2.0.CO;2
[18] Osenberg C W, Sarnelle O, Cooper S D, et al. Resolving ecological questions through meta‐analysis: goals, metrics, and models[J]. Ecology, 1999, 80(4): 1105-1117. DOI:10.1890/0012-9658(1999)080[1105:REQTMA]2.0.CO;2
[19] Luo Y Q, Hui D F, Zhang D Q. Elevated CO2 stimulates net accumulations of carbon and nitrogen in land ecosystems: a meta‐analysis[J]. Ecology, 2006, 87(1): 53-63. DOI:10.1890/04-1724
[20] Kinlock N L, Prowant L, Herstoff E M, et al. Explaining global variation in the latitudinal diversity gradient: meta‐analysis confirms known patterns and uncovers new ones[J]. Global Ecology and Biogeography, 2018, 27(1): 125-141. DOI:10.1111/geb.12665
[21] Borenstein M, Hedges L V, Higgins J P T, et al. A basic introduction to fixed‐effect and random‐effects models for meta‐analysis[J]. Research Synthesis Methods, 2010, 1(2): 97-111. DOI:10.1002/jrsm.12
[22] 王晓娇, 张仁陟, 齐鹏, 等. Meta分析有机肥施用对中国北方农田土壤CO2排放的影响[J]. 农业工程学报, 2019, 35(10): 99-107.
Wang X J, Zhang R Z, Qi P, et al. Meta-analysis on farmland soil CO2 emission in Northern China affected by organic fertilizer[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(10): 99-107. DOI:10.11975/j.issn.1002-6819.2019.10.013
[23] Higgins J P T, Thompson S G, Deeks J J, et al. Measuring inconsistency in meta-analyses[J]. BMJ, 2003, 327(7414): 557-560. DOI:10.1136/bmj.327.7414.557
[24] Nakagawa S, Lagisz M, O'Dea R E, et al. The orchard plot: cultivating a forest plot for use in ecology, evolution, and beyond[J]. Research Synthesis Methods, 2021, 12(1): 4-12. DOI:10.1002/jrsm.1424
[25] Mi W H, Sun Y, Xia S Q, et al. Effect of inorganic fertilizers with organic amendments on soil chemical properties and rice yield in a low-productivity paddy soil[J]. Geoderma, 2018, 320: 23-29. DOI:10.1016/j.geoderma.2018.01.016
[26] Wang J B, Zhang X M, Yuan M M, et al. Effects of partial replacement of nitrogen fertilizer with organic fertilizer on rice growth, nitrogen utilization efficiency and soil properties in the Yangtze River Basin[J]. Life, 2023, 13(3). DOI:10.3390/life13030624
[27] Zhang L, Hou K, Zhang Q, et al. Partial substitution of chemical fertilizers with maize straw: Seeking long‐term improvement of rice yield by raising quality indicators of a red paddy soil[J]. Land Degradation & Development, 2022, 33(18): 3748-3760.
[28] Flavel T C, Murphy D V. Carbon and nitrogen mineralization rates after application of organic amendments to soil[J]. Journal of Environmental Quality, 2006, 35(1): 183-193. DOI:10.2134/jeq2005.0022
[29] Li C J, Hoffland E, Kuyper T W, et al. Syndromes of production in intercropping impact yield gains[J]. Nature Plants, 2020, 6(6): 653-660. DOI:10.1038/s41477-020-0680-9
[30] Adu M O, Yawson D O, Armah F A, et al. Meta-analysis of crop yields of full, deficit, and partial root-zone drying irrigation[J]. Agricultural Water Management, 2018, 197: 79-90. DOI:10.1016/j.agwat.2017.11.019
[31] Duval S, Tweedie R. Trim and fill: a simple funnel‐plot–based method of testing and adjusting for publication bias in meta‐analysis[J]. Biometrics, 2000, 56(2): 455-463. DOI:10.1111/j.0006-341X.2000.00455.x
[32] Ferreira V, Koricheva J, Duarte S, et al. Effects of anthropogenic heavy metal contamination on litter decomposition in streams–a meta-analysis[J]. Environmental Pollution, 2016, 210: 261-270. DOI:10.1016/j.envpol.2015.12.060
[33] Muhammed M, Qayyum M F, Alotaibi F, et al. Organic nitrogen fertilization minimizes requirement of inorganic fertilizers and improves growth and yield attributes of superior grapevines[J]. Journal of Plant Nutrition, 2023, 46(17): 4171-4187. DOI:10.1080/01904167.2023.2222148
[34] Shi M F, Guo A X, Kang Y C, et al. Partial substitution of chemical fertilizer with organic manure enhances yield attributes and tuber quality in potato[J]. Journal of Soil Science and Plant Nutrition, 2023, 23(3): 3932-3943. DOI:10.1007/s42729-023-01312-5
[35] Cui H, He C, Zheng W W, et al. Effects of nitrogen addition on rhizosphere priming: the role of stoichiometric imbalance[J]. Science of the Total Environment, 2024, 914. DOI:10.1016/j.scitotenv.2023.169731
[36] 葛晓改, 曾立雄, 肖文发, 等. 模拟N沉降下不同林龄马尾松林凋落叶分解-土壤C、N化学计量特征[J]. 生态学报, 2017, 37(4): 1147-1158.
Ge X G, Zeng L X, Xiao W F, et al. Relationship between leaf litter decomposition and soil C, N stoichiometry in different-aged Pinus massioniana stands exposed to simulated nitrogen deposition[J]. Acta Ecologica Sinica, 2017, 37(4): 1147-1158.
[37] Lu W D, Hao Z Q, Ma X L, et al. Effects of different proportions of organic fertilizer replacing chemical fertilizer on soil nutrients and fertilizer utilization in gray desert soil[J]. Agronomy, 2024, 14(1). DOI:10.3390/agronomy14010228
[38] Bu R Y, Li M, Cheng W L, et al. Subsoil tillage and organic fertilization benefit rice root growth and yield by ameliorating soil compaction and fertility[J]. Journal of Soil Science and Plant Nutrition, 2023, 23(4): 6114-6124. DOI:10.1007/s42729-023-01468-0
[39] He Y Y, Zhang C, Xue T T, et al. Effects of land‐use changes on soil organic nitrogen fractions in the black soil region of Northeast China[J]. Soil Use and Management, 2023, 39(2): 805-816. DOI:10.1111/sum.12887
[40] 李梦月, 胡田田, 崔晓路, 等. 不同释放期控释肥和水氮用量对冬小麦产量的综合影响[J]. 农业工程学报, 2020, 36(23): 153-161.
Li M Y, Hu T T, Cui X L, et al. Comprehensive effects of irrigation water and nitrogen levels for controlled release fertilizer with different release periods on winter wheat yield[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(23): 153-161.
[41] Vitasse Y, Lenz A, Kollas C, et al. Genetic vs. non‐genetic responses of leaf morphology and growth to elevation in temperate tree species[J]. Functional Ecology, 2014, 28(1): 243-252. DOI:10.1111/1365-2435.12161
[42] Guo L Y, Wu G L, Li Y, et al. Effects of cattle manure compost combined with chemical fertilizer on topsoil organic matter, bulk density and earthworm activity in a wheat–maize rotation system in Eastern China[J]. Soil and Tillage Research, 2016, 156: 140-147. DOI:10.1016/j.still.2015.10.010
[43] Bhandari A K, Baunthiyal M, Bisht V K, et al. Baseline information on physico-taxonomical characteristics of Amomum subulatum Roxb. cultivars grown in Uttarakhand, India[J]. National Academy Science Letters, 2020, 43(7): 655-658. DOI:10.1007/s40009-020-00927-x
[44] Subedi S. Climate change effects of Nepalese fruit production[J]. Advances in Plant & Agriculture Research, 2019, 9(1): 141-145.
[45] Zhang C X, Yi H F, Gao X Y, et al. Effect of different altitudes on morpho-physiological attributes associated with mango quality[J]. Diversity, 2022, 14(10). DOI:10.3390/d14100876
[46] Zhou Q, Shi H, Zhang Q F, et al. Global patterns of mobile carbon partitioning in mountain trees in response to elevation[J]. Environmental and Experimental Botany, 2023, 208. DOI:10.1016/j.envexpbot.2023.105248
[47] Baffour-Ata F, Tabi J S, Sangber-Dery A, et al. Effect of rainfall and temperature variability on maize yield in the Asante Akim North District, Ghana[J]. Current Research in Environmental Sustainability, 2023, 5. DOI:10.1016/j.crsust.2023.100222
[48] Zhao S X, Schmidt S, Gao H J, et al. A precision compost strategy aligning composts and application methods with target crops and growth environments can increase global food production[J]. Nature Food, 2022, 3(9): 741-752. DOI:10.1038/s43016-022-00584-x
[49] Adjei V, Kyerematen R. Impacts of changing climate on maize production in the transitional zone of Ghana[J]. American Journal of Climate Change, 2018, 7(3): 463-476. DOI:10.4236/ajcc.2018.73028
[50] Kyaw Y, Nguyen T P L, Winijkul E, et al. The effect of climate variability on cultivated Crops' yield and farm income in Chiang Mai Province, Thailand[J]. Climate, 2023, 11(10). DOI:10.3390/cli11100204
[51] Shrestha B B, Kawasaki A, Inoue T, et al. Exploration of spatial and temporal variability of rainfall and their impact on rice production in Burma in 1901-1939 during the colonial period[J]. Progress in Earth and Planetary Science, 2022, 9(1). DOI:10.1186/S40645-022-00506-2
[52] Ye J, Gao Z, Wu X H, et al. Impact of increased temperature on spring wheat yield in northern China[J]. Food and Energy Security, 2021, 10(2): 368-378. DOI:10.1002/fes3.283
[53] Dietz K J, Zörb C, Geilfus C M. Drought and crop yield[J]. Plant Biology, 2021, 23(6): 881-893. DOI:10.1111/plb.13304
[54] Ishaque W, Osman R, Hafiza B S, et al. Quantifying the impacts of climate change on wheat phenology, yield, and evapotranspiration under irrigated and rainfed conditions[J]. Agricultural Water Management, 2023, 275. DOI:10.1016/j.agwat.2022.108017
[55] Mulungu K, Tembo G, Bett H, et al. Climate change and crop yields in Zambia: historical effects and future projections[J]. Environment, Development and Sustainability, 2021, 23(8): 11859-11880. DOI:10.1007/s10668-020-01146-6
[56] Waldhoff S T, Wing I S, Edmonds J, et al. Future climate impacts on global agricultural yields over the 21st century[J]. Environmental Research Letters, 2020, 15(11). DOI:10.1088/1748-9326/abadcb
[57] Walne C H, Reddy K R. Temperature effects on the shoot and root growth, development, and biomass accumulation of corn (Zea mays L.)[J]. Agriculture, 2022, 12(4). DOI:10.3390/agriculture12040443
[58] Wang Z B, Meng C S, Chen J, et al. Risk assessment of crop production amid climate change based on the principle of maximum entropy: a case study of winter wheat production on the North China Plain[J]. International Journal of Plant Production, 2019, 13(4): 275-284. DOI:10.1007/s42106-019-00053-9
[59] Mboyerwa P A, Kibret K, Mtakwa P W, et al. Evaluation of growth, yield, and water productivity of paddy rice with water-saving irrigation and optimization of nitrogen fertilization[J]. Agronomy, 2021, 11(8). DOI:10.3390/agronomy11081629
[60] He H, Peng M W, Lu W D, et al. Organic fertilizer substitution promotes soil organic carbon sequestration by regulating permanganate oxidizable carbon fractions transformation in oasis wheat fields[J]. CATENA, 2023, 221. DOI:10.1016/j.catena.2022.106784
[61] Gao P, Zhang T, Lei X Y, et al. Improvement of soil fertility and rice yield after long-term application of cow manure combined with inorganic fertilizers[J]. Journal of Integrative Agriculture, 2023, 22(7): 2221-2232. DOI:10.1016/j.jia.2023.02.037
[62] Wu W J, Lin Z, Zhu X P, et al. Improved tomato yield and quality by altering soil physicochemical properties and nitrification processes in the combined use of organic-inorganic fertilizers[J]. European Journal of Soil Biology, 2022, 109. DOI:10.1016/j.ejsobi.2022.103384
[63] Nobile C M, Bravin M N, Becquer T, et al. Phosphorus sorption and availability in an andosol after a decade of organic or mineral fertilizer applications: importance of pH and organic carbon modifications in soil as compared to phosphorus accumulation[J]. Chemosphere, 2020, 239. DOI:10.1016/j.chemosphere.2019.124709
[64] Karami A, Homaee M, Afzalinia S, et al. Organic resource management: Impacts on soil aggregate stability and other soil physico-chemical properties[J]. Agriculture, 2012, 148: 22-28.
[65] Wang Z H, Yang T J, Mei X L, et al. Bio-organic fertilizer promotes pear yield by shaping the rhizosphere microbiome composition and functions[J]. Microbiology Spectrum, 2022, 10(6). DOI:10.1128/spectrum.03572-22
[66] Wu J Q, Sha C Y, Wang M, et al. Effect of organic fertilizer on soil bacteria in maize fields[J]. Land, 2021, 10(3). DOI:10.3390/land10030328
[67] Arif M, Ikramullah N, Jan T, et al. Biochar and leguminous cover crops as an alternative to summer fallowing for soil organic carbon and nutrient management in the wheat-maize-wheat cropping system under semiarid climate[J]. Journal of Soils and Sediments, 2021, 21(3): 1395-1407. DOI:10.1007/s11368-020-02866-y
[68] Zhou C C, Jia B Y, Wang S, et al. Effects of nitrogen fertilizer applications on photosynthetic production and yield of Japonica rice[J]. International Journal of Plant Production, 2021, 15(4): 599-613. DOI:10.1007/s42106-021-00156-2
[69] Liu Q H, Ma H, Sun Z W, et al. Translocation efficiencies and allocation of nitrogen, phosphorous and potassium in rice as affected by silicon fertilizer under high daytime temperature[J]. Journal of Agronomy and Crop Science, 2019, 205(2): 188-201. DOI:10.1111/jac.12313
[70] 甘元炜, 冯小杰, 李永华, 等. 施用微生物肥料对我国玉米产量影响的Meta分析[J]. 植物营养与肥料学报, 2023, 29(12): 2247-2257.
Gan Y W, Feng X J, Li Y H, et al. Effects of microbial fertilizer application on maize yield in China: a meta-analysis[J]. Journal of Plant Nutrition and Fertilizers, 2023, 29(12): 2247-2257.
[71] Zhang K, Wei H Y, Chai Q, et al. Biological soil conditioner with reduced rates of chemical fertilization improves soil functionality and enhances rice production in vegetable-rice rotation[J]. Applied Soil Ecology, 2024, 195. DOI:10.1016/j.apsoil.2023.105242
[72] Li Y, Wei J L, Ma L, et al. Enhancing wheat yield through microbial organic fertilizer substitution for partial chemical fertilization: regulation of nitrogen conversion and utilization[J]. Journal of Soil Science and Plant Nutrition, 2024, 24(1): 935-943. DOI:10.1007/s42729-023-01597-6
[73] 李秀秀, 涂田华, 柳开楼, 等. 红壤丘陵区稻田土壤剖面肥力特征及其与产量的关系[J]. 植物营养与肥料学报, 2023, 29(8): 1390-1399.
Li X X, Tu T H, Liu K L, et al. The profile fertility characteristics of paddy fields and their relationship with yields in red soil hilly region[J]. Journal of Plant Nutrition and Fertilizers, 2023, 29(8): 1390-1399.
[74] Han S, Li H B, Rengel Z, et al. Biochar application promotes crops yield through regulating root development and the community structure of root endophytic fungi in wheat-maize rotation[J]. Soil and Tillage Research, 2023, 234. DOI:10.1016/j.still.2023.105827
[75] 张健利, 王振华, 陈睿, 等. 灌水量和生物有机肥对滴灌枣田水盐动态及土壤养分属性的影响[J]. 水土保持学报, 2023, 37(1): 323-331.
Zhang J L, Wang Z H, Chen R, et al. Effects of irrigation amount and bio-organic fertilizer on water and salt dynamics and soil nutrient properties of jujube field under drip irrigation[J]. Journal of Soil and Water Conservation, 2023, 37(1): 323-331.