2. 中国环境科学研究院环境基准与风险评估国家重点实验室, 北京 100012;
3. 海油环境科技(北京)有限公司, 北京 100027
2. State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China;
3. Offshore Environmental Technology & Services Limited, Beijing 100027, China
根据欧洲塑料协会报告, 全球塑料产量在2021年为3.907亿t, 预计2050年将达到340亿t, 因此, 塑料大量使用后产生的微塑料(microplastics, MPs, < 5 mm)污染问题值得关注[1]. 依据其来源, MPs可分为聚乙烯(PE)、聚丙烯(PP)、聚氯乙烯(PVC)、聚乳酸(PLA)和聚苯乙烯(PS)等众多类型. 由于土壤中MPs储存量远超海洋(高4~23倍)[2], 学者们逐渐注重研究土壤微塑料造成的污染. 鉴于MPs可通过污水灌溉、施用有机肥和地膜等方式进入土壤系统中, 并对土壤动植物产生不可忽视的影响[3], 因此需持续关注土壤中MPs的污染及其潜在危害.
陆生植物是生态系统中的重要生产者, 研究MPs对陆生植物的毒性效应至关重要. MPs暴露可对植物的生长、光合系统和抗氧化系统等产生直接影响, 也可从改变土壤性质和微生物组成以及影响其他污染物的生物有效性等方面间接影响植物[4]. 土壤动物是生态系统中的重要消费者和分解者, 例如蚯蚓、线虫、弹尾目和等足类动物等. 蚯蚓因其具有改良土壤结构、增强土壤肥力和富集并清除土壤污染物等功能而受到关注, 可作为土壤污染的主要指示生物[5], 本文以蚯蚓为主综述了MPs暴露对土壤动物的毒性影响. MPs对土壤动物的毒性效应主要有两种机制[6]:一是MPs被动物摄入体内, 对其生长与行为、器官与组织、抗氧化系统等造成损害;二是由于MPs所含添加剂以及所吸附其他污染物的释放使其具有生态毒理效应. 值得注意的是, 微塑料对土壤动植物的影响在方向和程度上存在差异, 这与动植物类型和MPs的粒径、形状、丰度和种类等因素密切相关.
近年来虽然有一定量的微塑料对土壤动植物毒性效应方面的研究, 为保护土壤生态系统提供了科学依据, 但还缺乏针对土壤动植物毒性效应方面的系统性综述, 因此, 本文对微塑料的相关研究进行系统梳理, 较全面综述微塑料对土壤动植物的作用机制及主要因素, 以期为土壤微塑料的生态风险评估提供科学依据.
1 土壤微塑料领域的研究现状2004年, 英国科学家首次在《Science》杂志上提出了微塑料这一概念. 检索英文数据库Web of Science(WOS)核心合集, 以“soil microplastic”或“soil micro plastic”为搜索主题词, 时间跨度设为2004~2023年, 最终获得了1 004篇文献作为分析数据. 中文数据来源于中国知网(CNKI), 以“土壤微塑料”为主题进行检索, 时间跨度为2004~2023年, 剔除学位论文和会议报告等共检索到605篇有效文献作为分析数据.
图 1统计了近20年“soil microplastic”相关英文研究文献的发表情况, 并与以“microplastic”为主题进行检索的论文发文量对比. 自2004~2016年, 微塑料相关的研究进入了探索阶段;2016年以后, 发文量呈现出快速上升的趋势. 同时, 土壤微塑料领域的关注度和研究热度也在不断提升, 这说明了土壤微塑料污染的严峻性和进行相关研究的必要性.
![]() |
红色数字表示相应年累计发文量 图 1 基于Web of Science数据库的微塑料研究领域发文量统计 Fig. 1 Statistics of papers published in the field of microplastics research based on Web of Science database |
中英文文献关键词图谱如图 2, 聚类时间线图如图 3. 从中发现当前土壤微塑料的研究热点集中于微塑料的迁移与分布、归趋与降解和生物毒性等方面. 图 2(a)中的关键词包括“生态效应”、“种子发芽”、“复合污染”、“抗氧化酶”及“蚯蚓”等, 而聚类关键词则包括“#3幼苗生长”、“#6微生物”及“#7重金属”等[图 3(a)]. 图 2(b)中包含“toxicity”、“growth”、“oxidative stress”及“microbial community”等关键词, 聚类关键词为“#5 gene expression”及“#16 soil biota”等[图 3(b)]. 关键词揭示了微塑料对生态系统的影响、复合污染以及对动植物的毒性效应等;聚类关键词突出了土壤微塑料对动植物的直接和间接毒性, 以及与其他污染物的交互作用. 具体来讲, 聚类关键词“#3幼苗生长”中出现种子发芽、植物毒性、农作物和光合色素等关键词, 体现了MPs对陆生植物的毒性影响, 涉及植物生物量和行为的变化等;“#6微生物”的出现说明了MPs对根际微生物和蚯蚓肠道菌群的影响是研究重点;“#7重金属”包括抗生素和复合污染等, 反映了MPs吸附-解吸特性对动植物中其他污染物积累和生物效能的影响. 同样, 英文文献中“gut microbiota”、“microbial degradation”、“Eisenia andrei”、“identification”、“plant growth”和“contaminant”等聚类中出现的关键词进一步加深了MPs对土壤动植物的毒性影响和机制研究.
![]() |
中文关键词阈值为5, 英文关键词阈值为15, 关键词出现次数与节点大小成正比;节点的年轮环颜色对应出现时间, 年轮环厚度与对应时间内出现的次数成正比 图 2 土壤微塑料污染领域研究的关键词共现网络图谱 Fig. 2 Keyword co-occurrence network map in the field of soil microplastic pollution |
![]() |
2004~2016年检索到相关文章极少, 故时间线图谱从2016年起标注;中文关键词阈值为5, 英文关键词阈值为15, 关键词出现次数与节点大小成正比;节点的年轮环颜色对应出现时间, 年轮环厚度与对应时间内出现的次数成正比 图 3 土壤微塑料污染领域研究的聚类时间线图谱 Fig. 3 Cluster time line map of soil microplastic pollution research |
不同研究方向之间存在着交叉, 并且聚类之间也存在重叠, 关键词的数量和范围随着时间的推移而增加. 2016年前, 该领域还处于起步阶段, 关键词较少. 随着人们越来越关注MPs的环境行为带来的生态效应, MPs与动植物生长发育、氧化应激的相关生物标志物、对其他污染物的吸附与解吸特性等关键词逐渐出现. 以上研究主题发展良好, 是过去3 a的主导研究方向之一, 就已发表研究分析表明, 对于土壤动植物而言, 研究微塑料的毒性效应具有重要的意义.
2 微塑料对陆生植物的影响MPs可被植物根系吸收、积累并运输到地上组织. Kim等[7]提供了MPs通过土壤介质从豌豆植株的根向茎转运的证据, 并发现MPs可以通过食物链影响植物的生长与繁殖, 危害土壤生态系统. MPs对于陆生植物的毒性主要表现为直接毒性、间接毒性以及与其他污染物的联合毒性等方面, 如图 4所示. 本节综述了MPs对陆生植物的毒性作用, 以便更全面地了解其影响机制.
![]() |
图 4 微塑料对陆生植物的毒性效应 Fig. 4 Toxic effects of microplastics on terrestrial plants |
MPs对植物个体水平上的影响主要表现在种子萌发(包括发芽率、活力指数、平均发芽时间等)和植物生长参数(根、生物量等)方面[8]. 有研究发现植物受MPs影响最显著的是根部, 其次是叶子、嫩枝和茎[9];MPs作用于植物的第一步是在种子和根系上进行吸附[10], 阻塞根毛毛孔改变植物对水分等的吸收, 进而通过根系进入植物体内影响株高和生物量等. 具体表现为:10 g·kg-1 PVC暴露降低了两种杂草(Senecio inaequidens和Centaurea cyanus)的株高[11], 抑制了玉米幼苗的地上部生物量[12], PP和PE暴露则抑制了白菜的生长[13], 并且发现小尺寸(26.5 μm)的MPs对植物的毒性更大. 并非所有的研究都显示MPs对植物生长有负面影响, 0.1 mg·L-1 PS显著提高了小麦地上部生物量[14]. MPs对植物生长和组织发育的作用通常表现为“低促高抑”, 如:PE在10 mg·kg-1时对蚕豆的生长、物质积累和光合效率具有促进作用, 但在100 mg·kg-1和500 mg·kg-1时有显著抑制效果[15]. MPs对植物萌发与生长的相关影响可参见表 1.
![]() |
表 1 MPs对植物的毒性效应1) Table 1 Toxic effects of microplastics on plants |
2.2 MPs对光合作用的影响
光合作用是植物生长发育的重要过程, MPs暴露能否对植物光合作用产生影响引起学者的普遍关注. Pignattelli等[16]的研究表明, MPs的存在可以增强植物(Lepidium sativum)对光的合成能力, 可能是因为它们刺激了植物对营养物质的吸收和转化, 从而促进了光合碳反应的速率. 许学慧等[19]的研究表明MPs对大豆叶片叶绿素含量没有明显影响. 更多的研究发现MPs通过多种方式抑制了光合作用, 包括植物细胞中活性氧(ROS)物质的积累、叶绿素合成相关蛋白酶的限制、光合电子转移的影响以及水分和营养物质的吸收受阻等[1]. 如:10 g·kg-1 PVC的存在降低了两种杂草(S. inaequidens和C. cyanus)的营养活力、光合效率和叶片物候[11];20 g·kg-1 PBAT(聚己二酸/对苯二甲酸丁二酯)损害了拟南芥的光合作用相关基因表达, 从而抑制了光合作用. 此外, PE降低了烟草叶片中4.3%~14.0%的叶绿素含量和4.23%~30.9%的Rubisco(加氧酶)活性, 抑制了光利用效率, 阻止了暗呼吸, 从而降低了光饱和光合速率[24];多种类型的MPs暴露均降低了西葫芦叶绿素含量和光合效率, 并且这种影响与MPs的丰度正相关[23]. 因此, 大多数研究表明MPs抑制植物的光合作用, 影响效果取决于MPs的特性和植物种类, MPs含量越高抑制程度越大, 与其他MPs类型相比PE对光合作用的毒性效应较低.
2.3 MPs影响植物的氧化应激与基因表达ROS可引起细胞结构和功能的损害, 导致植物的营养失衡、异常生长和氧化应激. 植物的抗氧化系统通过产生超氧化物歧化酶(SOD)、过氧化氢酶(CAT)和过氧化物酶(POD)等抗氧化酶来对抗氧化损伤[25]. 如:PE暴露提高了烟草中超氧阴离子含量(PELOEC=250 g·kg-1), 50~100 μm的PE低含量(≤500 mg·kg-1)下诱导蚕豆根部SOD、POD和CAT活性, 不影响丙二醛(MDA)含量;MPs可以在水稻的地上部和根部诱导氧化应激反应[26]. MDA是脂质过氧化物, 其含量可反映植物细胞氧化损伤的程度, MDA含量先升后降表示植物通过自身调节能力抵御了环境危害. 如:0.54~2.7 g·kg-1 PVC暴露刺激了大豆的抗氧化系统, SOD、POD和CAT活性增加, 以保护其免受氧化损伤, 使得MDA含量降低[17]. 活性氧胁迫还会对植物产生基因毒性, 如:10 g·kg-1下50 μm的PE和PBAT抑制了水稻氮素转运基因表达, 干扰水稻氮素代谢[26];PE处理下烟草叶绿体中光捕获、电子传递和光系统相关基因的表达受到抑制[24]. 此外, 植物可以通过调节自身的代谢来适应或抵抗环境的变化, 有研究发现其受影响的代谢途径主要是氨基酸代谢等[18], 如1 g·kg-1 PE的暴露影响了大豆的氨基酸代谢, 从而影响植物的生长和发育. 总体来说, MPs会对植物造成细胞毒性和基因毒性, 环境相关浓度(environmental relative concentration, ERC)下小粒径MPs可引起植物氧化应激.
2.4 MPs对植物的间接毒性MPs会改变土壤特性, 有实验证明PE对土壤吸附离子和营养元素的能力有所改善;Yi等[27]发现PE和PP的添加提高了土壤微生物群落的α-多样性. 土壤理化性质与微生物群落等的改变间接影响陆生植物的生长, 不同类型MPs会造成植物生物量、组织元素组成、根系性状和土壤微生物活性的不同变化[28]. 如:PE降低土壤的通气能力间接抑制了白菜生长[13];土壤速效氮是PVC引发的玉米幼苗生长和生理性状的主要限制因素[12];MPs通过氮代谢和光合作用影响水稻生长[26];根际土壤的Shannon指数和Simpson指数在1 g·kg-1 PLA下发生变化, 参与固氮的关键细菌也发生了改变[18];Li等[29]发现蚯蚓活动可以降低MPs对玉米的毒害作用. 生态系统是一个整体, MPs存在会对土壤理化性质、微生物群落和土壤动物等产生影响, 进而对陆生植物造成间接毒性效应.
2.5 MPs和其他污染物对植物的联合毒性MPs因其比表面积大及孔隙结构等特性, 可以吸附许多有机污染物和重金属等, 影响环境中共存污染物的运输、转化和生物利用度, 最终对生物体产生毒性[30, 31]. 首先, MPs影响植物对污染物的吸收和生物有效性. 如:1 g·kg-1 PE增加了油菜对金属的积累, 并增强重金属的毒性作用[32]. 联合毒性与MPs特性、吸附解析行为、植物种类和土壤性质等密切相关, MPs可能降低污染物积累的同时增加其生物有效性, 从而对植物造成更严重的损害. 如:PS降低大豆根和叶中菲(Phe)的积累, 增加茎中菲的积累[3], 但共暴露比单一处理的毒性更大;PE通过改变土壤微环境来提高生菜对镉的吸收, 其中土壤pH、溶解有机碳起着核心作用[33]. 除此之外, MPs和污染物的联合毒性同样表现在影响植物生长与萌发、光合作用、根际微生物和氧化应激等方面, 如表 2.
![]() |
表 2 MPs与其他污染物对植物的联合毒性效应1) Table 2 Combined toxic effects of microplastics and other pollutants on plants |
3 微塑料对土壤动物的毒性影响
土壤污染会在个体和群落水平上引起土壤动物的一系列变化. 蚯蚓、线虫和弹尾虫等常作为土壤污染测试的模式生物, 图 5简要概述了MPs对土壤动物的毒性影响机制, 主要表现为基因、细胞、组织和个体水平方面的基因表达异常、氧化应激和生长发育等的毒性作用和机制. 关于MPs对蚯蚓毒性影响的研究较多, 本节主要以蚯蚓为例综述MPs单一或联合暴露对土壤动物的毒性影响(表 3和表 4).
![]() |
图 5 微塑料对土壤动物的毒性及其作用机制 Fig. 5 Toxicity and its mechanism of microplastics to soil animals |
![]() |
表 3 MPs对土壤动物的毒性效应 Table 3 Toxic effects of microplastics on soil animals |
![]() |
表 4 MPs联合暴露对土壤动物的毒性效应1) Table 4 Toxic effects of joint exposure of microplastics on soil animals |
3.1 MPs对土壤动物的毒性与作用机制
(1)摄食与行为 土壤动物在感知到环境污染时, 会用回避行为保护自己免受伤害, 回避程度取决于其对污染物的感知和污染物性质[42];如:ω(MPs) < 1 g·kg-1时蚯蚓未出现回避行为[43], 而ω(MPs) > 40 g·kg-1时出现明显的回避行为[44];弹尾虫对土壤的回避行为随MPs丰度升高呈增加趋势[45]. 土壤动物会摄食不同类型、形状和粒径的微塑料, 部分MPs积累后会堵塞或磨损其摄取器官和消化道甚至导致死亡, 如:在蜗牛的粪便和胃肠道中观察到MPs的存在[46];Lahive等[47]使用荧光显微镜证实了线蚓对尼龙颗粒的摄入, 粒径小的MPs摄入量更多;MPs主要分布在蚯蚓的中、尾部表皮和肠道内, 而NPs(纳米微塑料)更多分布于头部和皮下组织, 对蚯蚓肌纤维和表皮均有明显损害[1]. 值得注意的是土壤和蚯蚓中微纤维含量的相关性表明蚯蚓没有对MPs优先摄食或回避[48]. 土壤动物可通过挖洞行为在水平和垂直方向上运输土壤中的微塑料, 并进一步导致MPs的迁移和生态风险, 如有实验发现蚯蚓以大小选择的方式将MPs从土壤表面移动到它们的洞穴中[49], 产生更重、更密集的地洞壁, 加剧污染并进一步对地下水安全造成威胁. 因此, 应关注土壤动物的摄食和行为在MPs的深层次垂直转移方面的作用[50].
(2)生长与繁殖 土壤动物摄入MPs后, 可能会引起组织的物理损伤和炎症反应, 对其生长和繁殖产生不利影响, 甚至导致死亡. 如:PS[(24.65±5.20)μm]对蚯蚓的28 d-LC50为25.67 g·kg-1[51]. 1 g·kg-1的PVC(80~250 μm)暴露降低弹尾虫的生长和繁殖(抑制率分别为16.8%和28.8%)[52]. 弹尾虫在PE(< 500 μm)影响下繁殖的EC50值为2.9 g·kg-1[45];MPs对土壤动物的亲代和后代都具有一定的生殖毒性, 5 g·kg-1 PE导致蚯蚓繁殖减少70%, 且幼体的后代数量显著减少[53]. 但也存在少部分积极影响, 摄食PET会导致巨型蜗牛生长更快[46]. 总体来说, 土壤动物的生长与繁殖指标对高丰度和小粒径的MPs更加敏感, 不同MPs特性影响效果差异较大. 如:ω(PS)≤5 g·kg-1下对蚯蚓的影响很小, 而高丰度(≥10 g·kg-1)则明显抑制蚯蚓的生长并增加死亡率[54], NPs对蚯蚓生长的抑制作用大于MPs[1];PLA比PE对蚯蚓造成更严重的表皮损伤、肠道损伤和精囊损伤[55];老化PS暴露会引起更严重的生殖毒性[56].
(3)氧化应激 MPs暴露会诱导土壤动物的氧化应激影响SOD、POD、CAT、GPx(谷胱甘肽过氧化物酶)和GST(谷胱甘肽S-转移酶)等抗氧化生物标志物. 机体抗氧化酶活性在受到污染时通常会升高, 而酶活性的显著抑制可能是由于ROS过度积累引起的酶合成、失活或亚基修饰组装的改变[31]. 如:0.71 g·kg-1 MPs让陆生蜗牛的GPx平均值降低59.3%, 总抗氧化能力降低36.7%, MDA升高58.0%[57]. 土壤动物氧化应激变化如表 3所示.
(4)肠道毒性 MPs在土壤动物体内累积后会损伤肠道壁、改变肠道酸碱度及通透性[58], 影响肠道微生物群落的生物多样性和物种丰富度等. 100 μg·L-1 PS可导致线虫肠道损伤, 如肠道屏障功能发生障碍, 改变肠道发育相关基因的表达等[59];蜗牛摄入MPs(0.71 g·kg-1)后造成肠壁绒毛损伤等[57]. 肠道微生物与宿主的健康、代谢和免疫系统以及分解过程密切相关[60], 可使用宏基因组或者16S rDNA测序技术, 从物种组成、α与β多样性和差异物种与标志物种分析等方面讨论MPs对土壤动物肠道微生物的影响. 如:5 g·kg-1的PE显著改变了弹尾虫肠道微生物群落, 降低了菌群多样性[45];然而, Cheng等[60]实验证明HDPE和PP不会干扰蚯蚓肠道的微生物群. 有关MPs对土壤动物肠道和微生物菌群的影响详见表 3.
(5)其他毒性 MPs对土壤动物神经毒性主要表现为神经元损伤和神经递质失衡, 具体有开展乙酰胆碱酯酶(AChE)、Na+/K+-ATPase、Ca2+/Mg2+-ATPase和羧酸酶的活性及钙与谷氨酸的含量等研究. Han等[61]实验表明PLA暴露下蚯蚓AChE活性的增加促进了神经递质水解, 影响神经信号传导, Ca2+-atp酶活性的降低导致细胞内钙离子浓度升高, 损害神经系统. MPs会造成土壤动物的代谢紊乱, 可采用代谢酶和代谢组学等分析涉及氨基酸和能量代谢(标志物)等众多途径的代谢毒性. Xiao等[1]实验发现PS提高了蚯蚓体内的能量代谢, ATP和非酯化脂肪酸含量显著降低. MPs对土壤动物的基因毒性主要表现为基因表达异常和DNA损伤. 使用实时荧光定量PCR技术揭示基因表达谱的变化, 如:防御基因MT、TCTP、CYP450和HSP70等[56]. 通过彗星实验(Tail DNA%, OTM)和8-OHdG(8-羟基脱氧鸟苷)酶活性可判断体腔细胞DNA损伤程度[53].
3.2 MPs与其他污染物的联合毒性MPs可作为其他污染物的载体, 联合暴露后对土壤动物产生毒性效应(表 4).
(1)MPs添加剂 塑料生产过程中, 添加了一些催化剂、颜料和稳定剂[79]以改善塑料产品的性能, 如地膜, 有研究报告称, MPs中的添加剂可以释放到环境中, 甚至进入有机体内[36], 对土壤动物产生毒性效应. 如:有研究发现MPs的毒性作用主要是其24 h可提取添加剂引起的;邻苯二甲酸丁苄酯(BBP)作为MPs增塑剂会在蚯蚓体内积累, 造成遗传毒性和氧化损伤[53], 也会造成消化系统的损害和神经毒性[80].
(2)重金属 MPs与重金属相互作用后会影响土壤动物对重金属的积累和生物有效性. 如:MPs促进了蚯蚓对Cu和Ni的积累, 其中粒径较小的MPs促进作用更显著[81]. 0~300 g·kg-1 PE(< 300 μm)改变镉的生物有效性, 增强镉对蚯蚓的毒性[82], 但有研究发现老化PE对重金属的生物有效性无显著影响[83];并非MPs都会增加重金属的毒性, Wang等[84]发现MPs在低丰度下降低了蚯蚓体内砷的生物积累. 现有证据表明, 同时接触微塑料和重金属可能对土壤动物的生长、行为和免疫系统等产生负面影响. 廖苑辰等[85]发现Cd和PS联合暴露后, 蚯蚓产生氧化胁迫(CAT活性降低, MDA含量上升), 影响其物质代谢能力, 损伤体腔细胞DNA等. MPs与重金属之间相互作用的不确定性使其对土壤动物的联合作用机制尚不清楚, 有待进一步研究[86].
(3)有机污染物 农田土壤中抗生素和杀虫剂的使用, 在提高农作物产量的同时也带来了生态风险. MPs可改变有机污染物在蚯蚓体内的积累. MPs可增加蚯蚓对全氟辛酸(PFOA)、芘(Pyr)[87]和2, 4-D(除草剂)[88]的积累, 降低对菲的生物积累[89];此外, MPs对污染物的竞争性吸附导致蚯蚓体内多环芳烃(PAHs)和多氯联苯的积累降低. 与单独暴露于MPs或污染物相比, 联合暴露通常会造成更大的不利影响. 如:MP和2, 4-D对蚯蚓在氧化损伤、基因表达和生物积累等方面的影响比单一处理组更明显;100 mg·kg-1的MPs-Pyr共暴露处理组的拟杆菌门(Bacteroidetes)的丰度降低且α-多样性远高于CK和Pyr组[87];PS和四环素的复合污染影响隐线蚓的基因表达, 导致微生物群落失调, 比单一处理组诱导了更高的抗生素耐药基因多样性[90]. 因此, 提高对土壤中MPs及有机污染物共存的环境风险的认识意义重大.
4 微塑料对土壤动植物毒性的影响因素MPs对土壤动植物毒性效应的影响因素是复杂多样的, MPs粒径、丰度、形状、类型、不同添加剂和老化程度等方面均对土壤动植物造成不同程度的影响. 综合来看, MPs的粒径大小与毒性效应之间存在着高的相关性, MPs类型的影响弱于含量. MPs在土壤体系中与不同种类动植物和土壤性质等具有错综复杂的相互作用.
有研究发现MPs对蚯蚓的多数相似的影响源于其特殊的尺寸, 而不是MPs的类型. 粒径较小的微塑料一般具有更强的毒性效应, 尤其是NPs, 其易进入土壤动植物体内造成严重的损害. 如:不同粒径MPs(70 nm、1 μm和10 μm)中70 nm PS对蚯蚓诱发更严重的氧化应激、能量消耗和组织病理损伤[1];小尺寸比大尺寸的PVC对线蚓生长和繁殖的危害更大[47];20 nm PS比100 nm PS对线虫产生更严重的生殖毒性[74]. 然而, 不同的研究也出现了相反的结果. 如:Jiang等[67]发现1 300 nm PS比100 nm PS对蚯蚓具有更大的毒性作用;线虫对530 nm MPs敏感性高于42 nm MPs[99];MPs尺寸对土壤动植物的作用规律受土壤动植物种类、毒性效应类型和暴露时间等的影响.
不同类型的MPs表现出不同程度的毒性. 如:Colzi等[23]比较了PP、PE、PVC和PET对西葫芦的毒性效应, 发现PVC的毒性最高, PE毒性最小;Pignattelli等[16]也发现PP、PE和PVC中PVC对芥花的毒性最高;PVC对樱桃萝卜的毒性比其他污染物(PA、PP和OTC)大[40];PE对水稻植株的负面影响相对强于PBAT[26]. 因此, 不同类型MPs因其微观结构、自身添加剂和物化性质等方面的差异对动植物作用效果各异. 此外, PE和PS是研究土壤动植物毒性效应时最常用的两种MPs, 但许多可生物降解MPs(如PLA和PPC)似乎并不比PE等对生物更友好[44], 也需得到更多关注.
土壤中MPs丰度一般为0~2.4 g·kg-1, 即ERC较低暴露丰度(< 5 g·kg-1)下, MPs对蚯蚓的影响较小, 而高丰度(≥5 g·kg-1)则明显抑制了蚯蚓的生长[87];PE和PP对小麦种子发芽率的影响表现出“低促高抑”的现象[35]. 但是, 众多研究表明ERC暴露下MPs对土壤动植物的影响不容忽视, 如:ERC的PLA和IMI暴露对蚯蚓产生了氧化应激并导致基因损伤[95];ERC的MPs显著影响了弹尾虫在土壤中的分布[45];ERC的PS干扰了蚯蚓的渗透调节代谢[84], 并影响了其繁殖能力[53];ERC的汽车轮胎微塑料对蚯蚓的多种酶活性生物标志物产生显著影响[43].
综上, 现有研究发现了MPs对土壤动植物的危害, 但MPs粒径、丰度、形状和类型等方面均对土壤动植物的危害产生不同程度的影响, 因此, MPs各因素对土壤动植物毒性效应的影响是复杂多样的, 还需要进一步系统开展土壤中MPs的毒性效应研究以探明各因素的作用规律. 此外, 研究土壤中ERC暴露下MPs的毒性作用机制, 对有效评估MPs在的实际环境中对土壤动植物的生态风险至关重要.
5 研究展望本文综述了土壤微塑料污染对动植物的影响. MPs通过吸附、摄食和维管运输等途径附着于动植物体表面或进入体内, 对土壤动植物个体层面的生长发育等产生危害, 并在微观层面对基因、细胞、组织等产生毒性效应. 微塑料-土壤动植物体系具有复杂多变的特点, 在现有研究基础上, 未来需要关注以下5个问题:
(1)老化微塑料对其他污染物具有更强的亲和力, 未来的研究需要加强对可生物降解MPs和其降解产物的毒性影响研究, 并加强土壤微塑料的老化作用以及其降解机制的探究.
(2)目前的毒性研究主要采用人工合成的MPs颗粒, 然而土壤中的MPs种类繁多、形态各异, 对动植物的影响机制更为复杂, 因此, 需要着重关注环境相关的MPs特征进行毒性研究.
(3)现有研究多数为实验室内的短期暴露模拟, 其野外和长期暴露风险不明. 因此, 开展环境相关MPs暴露下的长期毒性效应研究和野外实验至关重要, 以更深入地分析不同尺寸、种类、形状、丰度和老化程度等MPs对土壤动植物的毒性作用机制.
(4)目前关于MPs毒性机制的研究多为定性的或描述性的, 缺乏定量的探究. 下一步可以采用多学科交叉方法和多组学技术, 以量化MPs的毒性作用机制及影响通路.
(5)现有报道多为MPs暴露后土壤动植物单物种的毒性效应分析, 缺乏种群、群落、生态系统层面的研究, 此外, 土壤中微塑料形成的生物膜也存在潜在的危害. 因此, 今后可开展MPs对土壤多物种、模型生态系统(微宇宙等)和生物膜方面的研究, 有助于综合评估MPs对生物群落和生态系统的环境风险.
[1] | Xiao X, He E K, Jiang X F, et al. Visualizing and assessing the size-dependent oral uptake, tissue distribution, and detrimental effect of polystyrene microplastics in Eisenia fetida [J]. Environmental Pollution, 2022, 306. DOI:10.1016/j.envpol.2022.119436 |
[2] | Su P J, Wang J, Zhang D, et al. Hierarchical and cascading changes in the functional traits of soil animals induced by microplastics: A meta-analysis[J]. Journal of Hazardous Materials, 2022, 440. DOI:10.1016/j.jhazmat.2022.129854 |
[3] | Xu G H, Liu Y, Yu Y. Effects of polystyrene microplastics on uptake and toxicity of phenanthrene in soybean[J]. Science of the Total Environment, 2021, 783. DOI:10.1016/j.scitotenv.2021.147016 |
[4] | Li J, Yu S G, Yu Y F, et al. Effects of microplastics on higher plants: A review[J]. Bulletin of Environmental Contamination and Toxicology, 2022, 109(2): 241-265. DOI:10.1007/s00128-022-03566-8 |
[5] | Cui W Z, Gao P P, Zhang M Y, et al. Adverse effects of microplastics on earthworms: A critical review[J]. Science of the Total Environment, 2022, 850. DOI:10.1016/j.scitotenv.2022.158041 |
[6] | Zhou Y F, Liu X N, Wang J. Ecotoxicological effects of microplastics and cadmium on the earthworm Eisenia foetida [J]. Journal of Hazardous Materials, 2020, 392. DOI:10.1016/j.jhazmat.2020.122273 |
[7] | Kim D, An S, Kim L, et al. Translocation and chronic effects of microplastics on pea plants (Pisum sativum) in copper-contaminated soil[J]. Journal of Hazardous Materials, 2022, 436. DOI:10.1016/j.jhazmat.2022.129194 |
[8] | Wu X L, Lu J L, Du M H, et al. Particulate plastics-plant interaction in soil and its implications: A review[J]. Science of the Total Environment, 2021, 792. DOI:10.1016/j.scitotenv.2021.148337 |
[9] | Zhou J, Wen Y, Marshall M R, et al. Microplastics as an emerging threat to plant and soil health in agroecosystems[J]. Science of the Total Environment, 2021, 787. DOI:10.1016/j.scitotenv.2021.147444 |
[10] | Iqbal B, Zhao T T, Yin W Q, et al. Impacts of soil microplastics on crops: A review[J]. Applied Soil Ecology, 2023, 181. DOI:10.1016/j.apsoil.2022.104680 |
[11] | Gentili R, Quaglini L, Cardarelli E, et al. Toxic impact of soil microplastics (PVC) on two weeds: Changes in growth, phenology and photosynthesis efficiency[J]. Agronomy, 2022, 12(5). DOI:10.3390/agronomy12051219 |
[12] | Zhang K, Gao N, Li Y, et al. Responses of maize (Zea mays L.) seedlings growth and physiological traits triggered by polyvinyl chloride microplastics is dominated by soil available nitrogen[J]. Ecotoxicology and Environmental Safety, 2023, 252. DOI:10.1016/j.ecoenv.2023.114618 |
[13] | Yu Y F, Li J, Song Y, et al. Stimulation versus inhibition: The effect of microplastics on pak choi growth[J]. Applied Soil Ecology, 2022, 177. DOI:10.1016/j.apsoil.2022.104505 |
[14] | Lian J P, Wu J N, Xiong H X, et al. Impact of polystyrene nanoplastics (PSNPs) on seed germination and seedling growth of wheat (Triticum aestivum L.)[J]. Journal of Hazardous Materials, 2020, 385. DOI:10.1016/j.jhazmat.2019.121620 |
[15] |
叶子琪, 蒋小峰, 汤其阳, 等. 聚乙烯微塑料对蚕豆幼苗的毒性效应[J]. 南京大学学报(自然科学), 2021, 57(3): 385-392. Ye Z Q, Jiang X F, Tang Q Y, et al. Toxic effects of polyethylene microplastics on higher plant Vicia faba [J]. Journal of Nanjing University (Natural Science), 2021, 57(3): 385-392. |
[16] | Pignattelli S, Broccoli A, Renzi M. Physiological responses of garden cress (L. sativum) to different types of microplastics[J]. Science of the Total Environment, 2020, 727. DOI:10.1016/j.scitotenv.2020.138609 |
[17] |
安菁, 刘欢语, 郑艳, 等. 土壤微塑料残留对大豆幼苗生长及生理生化特征的影响[J]. 四川农业大学学报, 2021, 39(1): 41-46, 113. An J, Liu H Y, Zheng Y, et al. Effects of soil microplastics residue on soybean seedlings growth and the physiological and biochemical characteristics[J]. Journal of Sichuan Agricultural University, 2021, 39(1): 41-46, 113. |
[18] | Lian Y H, Liu W T, Shi R Y, et al. Effects of polyethylene and polylactic acid microplastics on plant growth and bacterial community in the soil[J]. Journal of Hazardous Materials, 2022, 435. DOI:10.1016/j.jhazmat.2022.129057 |
[19] |
许学慧, 胡海娜, 陈颖. 聚乙烯微塑料对大豆生长的影响[J]. 中国土壤与肥料, 2021(6): 262-268. Xu X H, Hu H N, Chen Y. Study on the effect of polyethylene microplastics on soybean growth[J]. Soil and Fertilizer Sciences in China, 2021(6): 262-268. |
[20] | Meng F R, Yang X M, Riksen M, et al. Response of common bean (Phaseolus vulgaris L.) growth to soil contaminated with microplastics[J]. Science of the Total Environment, 2021, 755. DOI:10.1016/j.scitotenv.2020.142516 |
[21] |
张彦, 窦明, 邹磊, 等. 不同微塑料赋存环境对小麦萌发与幼苗生长影响研究[J]. 中国环境科学, 2021, 41(8): 3867-3877. Zhang Y, Dou M, Zou L, et al. Effects of different microplastics occurrence environment on seed germination and seedling growth of wheat (Triticum aestivum L.)[J]. China Environmental Science, 2021, 41(8): 3867-3877. |
[22] |
廖苑辰, 娜孜依古丽·加合甫别克, 李梅, 等. 微塑料对小麦生长及生理生化特性的影响[J]. 环境科学, 2019, 40(10): 4661-4667. Liao Y C, Nazygul·Jahitbek, Li M, et al. Effects of microplastics on the growth, physiology, and biochemical characteristics of wheat (Triticum aestivum)[J]. Environmental Science, 2019, 40(10): 4661-4667. |
[23] | Colzi I, Renna L, Bianchi E, et al. Impact of microplastics on growth, photosynthesis and essential elements in Cucurbita pepo L[J]. Journal of Hazardous Materials, 2022, 423. DOI:10.1016/j.jhazmat.2021.127238 |
[24] | Teng L H, Zhu Y H, Li H B, et al. The phytotoxicity of microplastics to the photosynthetic performance and transcriptome profiling of Nicotiana tabacum seedlings[J]. Ecotoxicology and Environmental Safety, 2022, 231. DOI:10.1016/j.ecoenv.2021.113155 |
[25] | Zhang B, Chu G X, Wei C Z, et al. The growth and antioxidant defense responses of wheat seedlings to omethoate stress[J]. Pesticide Biochemistry and Physiology, 2011, 100(3): 273-279. |
[26] | Yang C, Gao X H. Impact of microplastics from polyethylene and biodegradable mulch films on rice (Oryza sativa L.)[J]. Science of the Total Environment, 2022, 828. DOI:10.1016/j.scitotenv.2022.154579 |
[27] | Yi M L, Zhou S H, Zhang L L, et al. The effects of three different microplastics on enzyme activities and microbial communities in soil[J]. Water Environment Research, 2021, 93(1): 24-32. |
[28] | De Souza Machado A A, Lau C W, Kloas W, et al. Microplastics can change soil properties and affect plant performance[J]. Environmental Science & Technology, 2019, 53(10): 6044-6052. |
[29] | Li Y P, Wang J, Shao M A, et al. Earthworm activity effectively mitigated the negative impact of microplastics on maize growth[J]. Journal of Hazardous Materials, 2023, 459. DOI:10.1016/j.jhazmat.2023.132121 |
[30] |
罗晶晶, 吴凡, 张加文, 等. 我国土壤受试植物筛选与毒性预测[J]. 中国环境科学, 2022, 42(7): 3295-3305. Luo J J, Wu F, Zhang J W, et al. Screening of soil test plants and developing of their toxicity prediction models in China[J]. China Environmental Science, 2022, 42(7): 3295-3305. |
[31] | Cheng Y L, Zhu L S, Song W H, et al. Combined effects of mulch film-derived microplastics and atrazine on oxidative stress and gene expression in earthworm (Eisenia fetida)[J]. Science of the Total Environment, 2020, 746. DOI:10.1016/j.scitotenv.2020.141280 |
[32] | Jia H, Wu D, Yu Y, et al. Impact of microplastics on bioaccumulation of heavy metals in rape (Brassica napus L.)[J]. Chemosphere, 2022, 288. DOI:10.1016/j.chemosphere.2021.132576 |
[33] | Wang F L, Wang X X, Song N N. Polyethylene microplastics increase cadmium uptake in lettuce (Lactuca sativa L.) by altering the soil microenvironment[J]. Science of the Total Environment, 2021, 784. DOI:10.1016/j.scitotenv.2021.147133 |
[34] | Zhang Z Q, Li Y, Qiu T Y, et al. Microplastics addition reduced the toxicity and uptake of cadmium to Brassica chinensis L[J]. Science of the Total Environment, 2022, 852. DOI:10.1016/j.scitotenv.2022.158353 |
[35] |
冯天朕, 陈苏, 陈影, 等. 微塑料与Cd交互作用对小麦种子发芽的生态毒性研究[J]. 中国环境科学, 2022, 42(4): 1892-1900. Feng T Z, Chen S, Chen Y, et al. Study on ecological toxicity of microplastics and cadmium interaction on wheat seed germination[J]. China Environmental Science, 2022, 42(4): 1892-1900. |
[36] | Guo A Y, Pan C R, Su X M, et al. Combined effects of oxytetracycline and microplastic on wheat seedling growth and associated rhizosphere bacterial communities and soil metabolite profiles[J]. Environmental Pollution, 2022, 302. DOI:10.1016/j.envpol.2022.119046 |
[37] | Liu S Q, Wang J W, Zhu J H, et al. The joint toxicity of polyethylene microplastic and phenanthrene to wheat seedlings[J]. Chemosphere, 2021, 282. DOI:10.1016/j.chemosphere.2021.130967 |
[38] |
郑阳, 查旭琼, 周凯泰, 等. 微塑料-镉复合污染对绿豆种子发芽及幼苗生长的影响[J]. 嘉兴学院学报, 2022, 34(6): 59-64. Zheng Y, Zha X Q, Zhou K T, et al. Effect of microplastic-cadmium combined pollution on germination and seedling growth of mung bean seeds[J]. Journal of Jiaxing University, 2022, 34(6): 59-64. |
[39] |
李贞霞, 李庆飞, 李瑞静, 等. 黄瓜幼苗对微塑料和镉污染的生理响应[J]. 农业环境科学学报, 2020, 39(5): 973-981. Li Z X, Li Q F, Li R J, et al. Physiological response of cucumber seedlings to microplastics and cadmium[J]. Journal of Agro-Environment Science, 2020, 39(5): 973-981. |
[40] | Cui M, Yu S G, Yu Y F, et al. Responses of cherry radish to different types of microplastics in the presence of oxytetracycline[J]. Plant Physiology and Biochemistry, 2022, 191: 1-9. |
[41] | Lin X L, Li Y J, Xu G H, et al. Biodegradable microplastics impact the uptake of Cd in rice: The roles of niche breadth and assembly process[J]. Science of the Total Environment, 2022, 851. DOI:10.1016/j.scitotenv.2022.158222 |
[42] | Gao M L, Lv M T, Han M, et al. Avoidance behavior of Eisenia fetida in oxytetracycline- and heavy metal-contaminated soils[J]. Environmental Toxicology and Pharmacology, 2016, 47: 119-123. |
[43] | Lackmann C, Velki M, Šimić A, et al. Two types of microplastics (polystyrene-HBCD and car tire abrasion) affect oxidative stress-related biomarkers in earthworm Eisenia andrei in a time-dependent manner[J]. Environment International, 2022, 163. DOI:10.1016/j.envint.2022.107190 |
[44] | Ding W L, Li Z, Qi R M, et al. Effect thresholds for the earthworm Eisenia fetida: Toxicity comparison between conventional and biodegradable microplastics[J]. Science of the Total Environment, 2021, 781. DOI:10.1016/j.scitotenv.2021.146884 |
[45] | Ju H, Zhu D, Qiao M. Effects of polyethylene microplastics on the gut microbial community, reproduction and avoidance behaviors of the soil springtail, Folsomia candida [J]. Environmental Pollution, 2019, 247: 890-897. |
[46] | De Felice B, Ambrosini R, Bacchetta R, et al. Dietary exposure to polyethylene terephthalate microplastics (PET-MPs) induces faster growth but not oxidative stress in the giant snail Achatina reticulata [J]. Chemosphere, 2021, 270. DOI:10.1016/j.chemosphere.2020.129430 |
[47] | Lahive E, Walton A, Horton A A, et al. Microplastic particles reduce reproduction in the terrestrial worm Enchytraeus crypticus in a soil exposure[J]. Environmental Pollution, 2019, 255. DOI:10.1016/j.envpol.2019.113174 |
[48] | Prendergast-Miller M T, Katsiamides A, Abbass M, et al. Polyester-derived microfibre impacts on the soil-dwelling earthworm Lumbricus terrestris [J]. Environmental Pollution, 2019, 251: 453-459. |
[49] | Lwanga E H, Gertsen H, Gooren H, et al. Incorporation of microplastics from litter into burrows of Lumbricus terrestris [J]. Environmental Pollution, 2017, 220: 523-531. |
[50] | Heinze W M, Mitrano D M, Lahive E, et al. Nanoplastic transport in soil via bioturbation by Lumbricus terrestris [J]. Environmental Science & Technology, 2021, 55(24): 16423-16433. |
[51] | Liu J B, Qin J J, Zhu L, et al. The protective layer formed by soil particles on plastics decreases the toxicity of polystyrene microplastics to earthworms (Eisenia fetida)[J]. Environment International, 2022, 162. DOI:10.1016/j.envint.2022.107158 |
[52] | Zhu D, Chen Q L, An X L, et al. Exposure of soil collembolans to microplastics perturbs their gut microbiota and alters their isotopic composition[J]. Soil Biology and Biochemistry, 2018, 116: 302-310. |
[53] | Sobhani Z, Panneerselvan L, Fang C, et al. Chronic and transgenerational effects of polyethylene microplastics at environmentally relevant concentrations in earthworms[J]. Environmental Technology & Innovation, 2022, 25. DOI:10.1016/j.eti.2021.102226 |
[54] | Cao D D, Wang X, Luo X X, et al. Effects of polystyrene microplastics on the fitness of earthworms in an agricultural soil[A]. In: Proceedings of the 3rd International Conference on Energy Materials and Environment Engineering[C]. Bangkok: IOP, 2017: 012148. |
[55] |
张书武, 任珊, 裴磊, 等. 聚乙烯和聚乳酸微塑料对蚯蚓的毒性效应[J]. 应用与环境生物学报, 2023, 29(2): 322-327. Zhang S W, Ren S, Pei L, et al. Toxicological effects of polyethylene and polylactic acid microplastics on earthworms[J]. Chinese Journal of Applied & Environmental Biology, 2023, 29(2): 322-327. |
[56] | Chen H B, Yang Y, Wang C, et al. Reproductive toxicity of UV-photodegraded polystyrene microplastics induced by DNA damage-dependent cell apoptosis in Caenorhabditis elegans [J]. Science of the Total Environment, 2022, 811. DOI:10.1016/j.scitotenv.2021.152350 |
[57] | Song Y, Cao C J, Qiu R, et al. Uptake and adverse effects of polyethylene terephthalate microplastics fibers on terrestrial snails (Achatina fulica) after soil exposure[J]. Environmental Pollution, 2019, 250: 447-455. |
[58] |
莫奥运, 张雅琳, 高伟, 等. 微/纳塑料对土壤动物的毒性作用: 进展与展望[J]. 生态与农村环境学报, 2023, 39(5): 634-643. Mo A Y, Zhang Y L, Gao W, et al. Toxic effects of micro/nano plastics on soil animals: Research progress and prospectives[J]. Journal of Ecology and Rural Environment, 2023, 39(5): 634-643. |
[59] | Yu Y J, Chen H B, Hua X, et al. Polystyrene microplastics (PS-MPs) toxicity induced oxidative stress and intestinal injury in nematode Caenorhabditis elegans [J]. Science of the Total Environment, 2020, 726. DOI:10.1016/j.scitotenv.2020.138679 |
[60] | Cheng Y L, Song W H, Tian H M, et al. The effects of high-density polyethylene and polypropylene microplastics on the soil and earthworm Metaphire guillelmi gut microbiota[J]. Chemosphere, 2021, 267. DOI:10.1016/j.chemosphere.2020.129219 |
[61] | Han Y N, Fu M R, Wu J H, et al. Polylactic acid microplastics induce higher biotoxicity of decabromodiphenyl ethane on earthworms (Eisenia fetida) compared to polyethylene and polypropylene microplastics[J]. Science of the Total Environment, 2023, 862. DOI:10.1016/j.scitotenv.2022.160909 |
[62] | Yu H, Shi L L, Fan P, et al. Effects of conventional versus biodegradable microplastic exposure on oxidative stress and gut microorganisms in earthworms: A comparison with two different soils[J]. Chemosphere, 2022, 307. DOI:10.1016/j.chemosphere.2022.135940 |
[63] | Zhao Y Y, Jia H T, Deng H, et al. Response of earthworms to microplastics in soil under biogas slurry irrigation: Toxicity comparison of conventional and biodegradable microplastics[J]. Science of the Total Environment, 2023, 858. DOI:10.1016/j.scitotenv.2022.160092 |
[64] | Chen Y L, Liu X N, Leng Y F, et al. Defense responses in earthworms (Eisenia fetida) exposed to low-density polyethylene microplastics in soils[J]. Ecotoxicology and Environmental Safety, 2020, 187. DOI:10.1016/j.ecoenv.2019.109788 |
[65] | Rodríguez-Seijo A, Da Costa J P, Rocha-Santos T, et al. Oxidative stress, energy metabolism and molecular responses of earthworms (Eisenia fetida) exposed to low-density polyethylene microplastics[J]. Environmental Science and Pollution Research, 2018, 25(33): 33599-33610. |
[66] | Tang R G, Zhu D, Luo Y M, et al. Nanoplastics induce molecular toxicity in earthworm: Integrated multi-omics, morphological, and intestinal microorganism analyses[J]. Journal of Hazardous Materials, 2023, 442. DOI:10.1016/j.jhazmat.2022.130034 |
[67] | Jiang X F, Chang Y Q, Zhang T, et al. Toxicological effects of polystyrene microplastics on earthworm (Eisenia fetida)[J]. Environmental Pollution, 2020, 259. DOI:10.1016/j.envpol.2019.113896 |
[68] | Li T T, Lu M T, Xu B H, et al. Multiple perspectives reveal the gut toxicity of polystyrene microplastics on Eisenia fetida: Insights into community signatures of gut bacteria and their translocation[J]. Science of the Total Environment, 2022, 838. DOI:10.1016/j.scitotenv.2022.156352 |
[69] | Tang R G, Ying M S, Luo Y M, et al. Microplastic pollution destabilized the osmoregulatory metabolism but did not affect intestinal microbial biodiversity of earthworms in soil[J]. Environmental Pollution, 2023, 320. DOI:10.1016/j.envpol.2023.121020 |
[70] | Yang Y, Xu G H, Yu Y. Microplastics impact the accumulation of metals in earthworms by changing the gut bacterial communities[J]. Science of the Total Environment, 2022, 831. DOI:10.1016/j.scitotenv.2022.154848 |
[71] | Yu Y J, Tan S H, Xie D L, et al. Photoaged microplastics induce neurotoxicity associated with damage to serotonergic, glutamatergic, dopaminergic, and GABAergic neuronal systems in Caenorhabditis elegans [J]. Science of the Total Environment, 2023, 900. DOI:10.1016/j.scitotenv.2023.165874 |
[72] | Qu M, Wang D Y. Toxicity comparison between pristine and sulfonate modified nanopolystyrene particles in affecting locomotion behavior, sensory perception, and neuronal development in Caenorhabditis elegans [J]. Science of the Total Environment, 2020, 703. DOI:10.1016/j.scitotenv.2019.134817 |
[73] | Yang Y H, Wu Q L, Wang D Y. Epigenetic response to nanopolystyrene in germline of nematode Caenorhabditis elegans [J]. Ecotoxicology and Environmental Safety, 2020, 206. DOI:10.1016/j.ecoenv.2020.111404 |
[74] | Liu H L, Tian L J, Wang S T, et al. Size-dependent transgenerational toxicity induced by nanoplastics in nematode Caenorhabditis elegans [J]. Science of the Total Environment, 2021, 790. DOI:10.1016/j.scitotenv.2021.148217 |
[75] | Schöpfer L, Menzel R, Schnepf U, et al. Microplastics effects on reproduction and body length of the soil-dwelling nematode Caenorhabditis elegans [J]. Frontiers in Environmental Science, 2020, 8. DOI:10.3389/fenvs.2020.00041 |
[76] | Colpaert R, Grézériat L P D, Louzon M, et al. Polyethylene microplastic toxicity to the terrestrial snail Cantareus aspersus: size matters[J]. Environmental Science and Pollution Research, 2021, 29(20): 29258-29267. |
[77] | Kokalj A J, Horvat P, Skalar T, et al. Plastic bag and facial cleanser derived microplastic do not affect feeding behaviour and energy reserves of terrestrial isopods[J]. Science of the Total Environment, 2018, 615: 761-766. |
[78] | She T J, Liu X, Wang J J, et al. Impact of size and shape in the transport of microplastics by a springtail species[J]. Environmental Pollutants and Bioavailability, 2023, 35(1). DOI:10.1080/26395940.2023.2261776 |
[79] | Liang X Y, Zhou D X, Wang J H, et al. Evaluation of the toxicity effects of microplastics and cadmium on earthworms[J]. Science of the Total Environment, 2022, 836. DOI:10.1016/j.scitotenv.2022.155747 |
[80] | Yao M Y, Qian J R, Chen X N, et al. Butyl benzyl phthalate exposure impact on the gut health of Metaphire guillelmi [J]. Waste Management, 2023, 171: 443-451. |
[81] | Li M, Liu Y, Xu G H, et al. Impacts of polyethylene microplastics on bioavailability and toxicity of metals in soil[J]. Science of the Total Environment, 2021, 760. DOI:10.1016/j.scitotenv.2020.144037 |
[82] | Huang C D, Ge Y, Yue S Z, et al. Microplastics aggravate the joint toxicity to earthworm Eisenia fetida with cadmium by altering its availability[J]. Science of the Total Environment, 2021, 753. DOI:10.1016/j.scitotenv.2020.142042 |
[83] | Li M, Jia H, Gao Q C, et al. Influence of aged and pristine polyethylene microplastics on bioavailability of three heavy metals in soil: Toxic effects to earthworms (Eisenia fetida)[J]. Chemosphere, 2023, 311. DOI:10.1016/j.chemosphere.2022.136833 |
[84] | Wang H T, Ma L, Zhu D, et al. Responses of earthworm Metaphire vulgaris gut microbiota to arsenic and nanoplastics contamination[J]. Science of the Total Environment, 2022, 806. DOI:10.1016/j.scitotenv.2021.150279 |
[85] |
廖苑辰, 王倩, 蒋小峰, 等. 聚苯乙烯微塑料和重金属镉对蚯蚓的联合毒性效应[J]. 生态毒理学报, 2022, 17(2): 216-226. Liao Y C, Wang Q, Jiang X F, et al. Combined toxic effects of polystyrene microplastics and cadmium on earthworms[J]. Asian Journal of Ecotoxicology, 2022, 17(2): 216-226. |
[86] |
张加文, 田彪, 罗晶晶, 等. 土壤重金属生物可利用性影响因素及模型预测[J]. 环境科学, 2022, 43(7): 3811-3824. Zhang J W, Tian B, Luo J J, et al. Effect factors and model prediction of soil heavy metal bioaccessibility[J]. Environmental Science, 2022, 43(7): 3811-3824. |
[87] | Liu Y, Xu G H, Yu Y. Effects of polystyrene microplastics on accumulation of pyrene by earthworms[J]. Chemosphere, 2022, 296. DOI:10.1016/j.chemosphere.2022.134059 |
[88] | Boughattas I, Zitouni N, Hattab S, et al. Interactive effects of environmental microplastics and 2, 4-dichlorophenoxyacetic acid (2, 4-D) on the earthworm Eisenia andrei [J]. Journal of Hazardous Materials, 2022, 424. DOI:10.1016/j.jhazmat.2021.127578 |
[89] | Jiang X T, Ma Y N, Wang L, et al. Effects of nano- and microplastics on the bioaccumulation and distribution of phenanthrene in the soil feeding earthworm Metaphire guillelmi [J]. Science of the Total Environment, 2022, 834. DOI:10.1016/j.scitotenv.2022.155125 |
[90] | Ma J, Sheng G D, Chen Q L, et al. Do combined nanoscale polystyrene and tetracycline impact on the incidence of resistance genes and microbial community disturbance in Enchytraeus crypticus?[J]. Journal of Hazardous Materials, 2020, 387. DOI:10.1016/j.jhazmat.2019.122012 |
[91] | Zhang S W, Ren S, Pei L, et al. Ecotoxicological effects of polyethylene microplastics and ZnO nanoparticles on earthworm Eisenia fetida [J]. Applied Soil Ecology, 2022, 176. DOI:10.1016/j.apsoil.2022.104469 |
[92] | Sheng Y F, Liu Y, Wang K W, et al. Ecotoxicological effects of micronized car tire wear particles and their heavy metals on the earthworm (Eisenia fetida) in soil[J]. Science of the Total Environment, 2021, 793. DOI:10.1016/j.scitotenv.2021.148613 |
[93] | Fu H M, Zhu L Z, Mao L G, et al. Combined ecotoxicological effects of different-sized polyethylene microplastics and imidacloprid on the earthworms (Eisenia fetida)[J]. Science of the Total Environment, 2023, 870. DOI:10.1016/j.scitotenv.2023.161795 |
[94] | Shi Z M, Wen M, Ma Z F. Effects of polyethylene, polyvinyl chloride, and polystyrene microplastics on the vermitoxicity of fluoranthene in soil[J]. Chemosphere, 2022, 298. DOI:10.1016/j.chemosphere.2022.134278 |
[95] | Baihetiyaer B, Jiang N, Li X X, et al. Oxidative stress and gene expression induced by biodegradable microplastics and imidacloprid in earthworms (Eisenia fetida) at environmentally relevant concentrations[J]. Environmental Pollution, 2023, 323. DOI:10.1016/j.envpol.2023.121285 |
[96] | Müller L, Josende M E, Soares G C, et al. Multigenerational effects of co-exposure to dimethylarsinic acid and polystyrene microplastics on the nematode Caenorhabditis elegans [J]. Environmental Science and Pollution Research, 2023, 30(36): 85359-85372. |
[97] | Dong S S, Qu M, Rui Q, et al. Combinational effect of titanium dioxide nanoparticles and nanopolystyrene particles at environmentally relevant concentrations on nematode Caenorhabditis elegans [J]. Ecotoxicology and Environmental Safety, 2018, 161: 444-450. |
[98] | Selonen S, Kokalj A J, Benguedouar H, et al. Modulation of chlorpyrifos toxicity to soil arthropods by simultaneous exposure to polyester microfibers or tire particle microplastics[J]. Applied Soil Ecology, 2023, 181. DOI:10.1016/j.apsoil.2022.104657 |
[99] | Kim S W, Kim D, Jeong S W, et al. Size-dependent effects of polystyrene plastic particles on the nematode Caenorhabditis elegans as related to soil physicochemical properties[J]. Environmental Pollution, 2020, 258. DOI:10.1016/j.envpol.2019.113740 |