环境科学  2024, Vol. 45 Issue (6): 3165-3175   PDF    
北京市城市河流中抗生素的污染特征及多层次生态风险评估
赵晓帅1, 郑其冰2, 马瑞2, 张恒3, 陈苗3, 郭昌胜3     
1. 邹平市生态环境监控中心, 邹平 256200;
2. 滨州市生态环境局高新技术产业开发区分局, 滨州 256623;
3. 中国环境科学研究院, 北京 100012
摘要: 为评估北京市河流中抗生素的污染特征和生态风险, 利用固相萃取结合高效液相色谱串联质谱检测了4类共35种常见抗生素的浓度水平, 并利用风险商法(RQ)和联合概率曲线法(JPCs)评估了抗生素的生态风险. 结果表明, 北京市10条河流地表水中共检测出33种抗生素, 总浓度范围是N.D. ~ 1 573.57 ng·L-1, 磺胺甲唑的浓度最高(N.D. ~ 160.04 ng·L-1), 其次为磺胺嘧啶(0.09 ~ 147.90 ng·L-1)和氧氟沙星(0.28 ~ 94.72 ng·L-1), 其中检出率 > 50.0%的抗生素有16种;RQ法显示有12种抗生素存在生态风险, 四环素、克拉霉素和甲氧苄氨嘧啶的风险最高, 其风险商分别为3.99、1.86和1.01, 污水处理厂出口的风险高于其所在河流干流的风险. 四环素、克拉霉素和甲氧苄氨嘧啶的预测无效应浓度超标率均为2.3%, 基于JPCs发现, 克拉霉素的最大风险乘积为1.66%, 对0.3% ~ 7.0%的物种具有低等风险, 其余抗生素的风险可忽略. 抗生素的检出率、浓度分布、最敏感物种和物种敏感性分布对生态风险评估具有重要影响, 采用多层次生态风险评估法能有效避免保护不足和过保护现象, 有助于在全区域范围内对抗生素进行分级和分区管理.
关键词: 北京市河流      抗生素      污染特征      生态风险      概率风险评估     
Pollution Characteristics and Multilevel Risk Assessments of Antibiotics in the Urban Rivers of Beijing, China
ZHAO Xiao-shuai1 , ZHENG Qi-bing2 , MA Rui2 , ZHANG Heng3 , CHEN Miao3 , GUO Chang-sheng3     
1. Zouping City Ecological Environment Monitoring Center, Zouping 256200, China;
2. Binzhou Bureau of Ecological Environment High-tech Industrial Development Zone Branch, Binzhou 256623, China;
3. Chinese Research Academy of Environmental Sciences, Beijing 100012, China
Abstract: To comprehensively assess the pollution characteristics and ecological risks of antibiotics in the rivers in Beijing, the concentrations of 35 common antibiotics belonging to four categories were quantified by using solid phase extraction combined with high-performance liquid chromatography-tandem mass spectrometry. The ecological risks of antibiotics were evaluated using the methods of risk quotient (RQ) and joint probability curves (JPCs). The results showed that a total of 33 antibiotics were detected in the surface water of ten rivers in Beijing, and the total concentrations of antibiotics ranged from N.D. to 1 573.57 ng·L-1. Sulfamethoxazole showed the highest concentration (N.D.-160.04 ng·L-1), followed by sulfadiazine (0.09-147.90 ng·L-1) and ofloxacin (0.28-94.72 ng·L-1). There were 16 antibiotics with a detection frequency greater than 50.0%. The RQ method showed that there were 12 antibiotics with potential ecological risks. Tetracycline, clarithromycin, and trimethoprim showed the highest risks, with RQs of 3.99, 1.86, and 1.01, respectively. The risks of antibiotics at the outlets of wastewater treatment plants were higher than those in mainstream rivers. The PNEC exceedance rates of tetracycline, clarithromycin, and trimethoprim were above 2.3%. Based on JPCs, the maximum risk product of clarithromycin was 1.66%, and it showed low risks to 0.3%-7.0% of species. The risks of other antibiotics could be ignored. The detection frequency, distribution of concentrations, most sensitive species, and species sensitivity distribution of antibiotics had important impacts on the ecological risk assessment. Using the multilevel ecological risk assessment strategy can effectively avoid inadequate protection and overprotection and is also conducive to the hierarchical and zoning management of antibiotics throughout the region.
Key words: rivers in Beijing      antibiotics      pollution characteristics      ecological risks      probability risk assessment     

抗生素是一类可以预防或治疗人类和畜禽细菌感染的抗菌药物, 同时也常被用作动物生长促进剂. 中国作为世界上最大的抗生素生产国和消费国, 在2013 ~ 2018年的药用和农用抗生素年产量达19.3万t[1]. 由于代谢不完全, 人类和动物消耗的大部分抗生素以母体化合物或代谢物的形式通过尿液或粪便排泄[2]. 抗生素具有水溶性强和挥发性弱的特点, 由于污水处理厂(wastewater treatment plants, WWTPs)对抗生素的处理能力有限[3], 抗生素最终通过WWTPs出水、农业径流及水产和畜禽养殖废水进入到各类水环境介质中[4]. 目前, 已在地表水[5]、地下水[6]、农田、土壤[7]和沉积物[8]等环境介质中检测到各类抗生素. 其中, 关于地表水中抗生素的研究较多, 在过去数十年的研究中, 包含磺胺类、氟喹诺酮类、四环素类、大环内酯类和β-内酰胺类抗生素已在中国地表水中被广泛报道[8]. 如天津海河流域中15种抗生素的浓度平均值为821 ng·L-1, 总浓度范围为414 ~ 1 951 ng·L-1[9]. 江西锦江流域地表水中共检出21种抗生素, 浓度范围为231 ~ 8.71 × 104 ng·L-1[10]. 南京市饮用水源地中共检出29种抗生素, 浓度平均值为0.3 ~ 37 ng·L-1, 浓度范围为0.56 ~ 1 995 ng·L-1[11]. 抗生素在地表水中的普遍存在导致其生态风险不容忽视, 已有研究表明, 抗生素可以改变微生物活性和群落组成, 并导致细菌对抗生素耐药性的增加, 由此导致的抗性基因问题备受关注[12]. 环境相关浓度的抗生素暴露不仅会引起水生生物的氧化应激、炎症和代谢紊乱, 而且会抑制水生生物的发育、生长和繁殖[13, 14]. 除了对水生生物的影响, 抗生素可能在食物中累积并影响人类健康, 导致关节疾病、内分泌紊乱、致突变性及中枢神经系统缺陷等问题[15]. 因此, 研究抗生素在地表水中的污染特征和生态风险至关重要.

河流是重要的水资源, 北京市是全球排名第8的超大城市, 地处海河流域, 从东到西分布有蓟运河、潮白河、北运河、永定河及大清河五大水系. 北京市内有许多河流类型, 包括人造河流、天然河流、静态河流和非静态河流, 以及大型水库[16, 17]. 北京市水资源供需矛盾日渐突出, 属于极度缺水城市, 而且由于频繁的人类活动, 其水污染问题越来越受到关注. 目前关于北京市地表水中抗生素的研究多集中在单个河流或流域, 或研究的抗生素种类较少、且风险底数不清[16, 18]. 本文以北京市为研究区域, 选择受人类活动干扰较大的城市河流为研究对象, 研究常用的四环素类、大环内酯类、磺胺类和喹诺酮类抗生素在北京市城市河流中的赋存状态和分布规律, 使用多层次生态风险评估法评估抗生素的生态风险, 以期为北京市地表水中抗生素乃至其它新污染物的治理研究提供一定的参考.

1 材料与方法 1.1 试剂与仪器

35种抗生素的基本信息如表 1所示, 抗生素及回收率指示物四环素-d6、红霉素-d3、磺胺甲唑-d4、甲氧苄氨嘧啶-d3、环丙沙星-d8和氧氟沙星-d3均购买于天津阿尔塔科技有限公司(First Standard, 中国天津), 纯度均 > 97%. 色谱纯甲醇、乙腈和甲酸购自美国Fisher Scientific公司. 分析纯Na2EDTA和盐酸购自百灵威公司. Oasis HLB(500 mg, 6 cc)固相萃取柱购自美国Waters公司, 玻璃纤维滤膜(GF/F, 47 mm × 0.7 μm)购自英国Whatman公司. 尼龙针筒式微孔滤膜(13 mm× 0.22 μm)购自天津津腾公司. 使用Milli-Q超纯水系统制备超纯水(Millipore公司). Open Architecture on-line固相萃取装置(Supelco公司, 德国)用于样品前处理. 超高效液相色谱-三重四极杆质谱联用系统(UPLC-MS/MS, Xevo TQ-S micro IVD system, 美国Waters公司)和液相色谱柱Acquity UPLC BEH C18(2.1 mm × 50 mm, 1.7 μm, 美国Waters公司)用于抗生素的定量检测.

表 1 抗生素的基本信息和浓度水平1)/ng·L-1 Table 1 Information and concentrations of antibiotics/ng·L-1

1.2 样品采集

于2021年11月在北京市城区主要河流设置43个点位采集地表水(图 1). 河流涉及沙河(S1, S2)、温榆河(WY1 ~ WY7)、清河(Q1 ~ Q6, R2 ~ R4)、北小河(BX1 ~ BX4, R5)、白河(B1 ~ B5)、亮马河(LM1 ~ LM3, R6)、通惠河(TH1 ~ TH3, R1)、凉水河(LS1 ~ LS4, R7)、运潮减河(YCJ)和北运河(BY), 其中点位R1 ~ R7表示靠近WWTPs出水排污口. 使用有机玻璃采水器采集距水面0 ~ 50 cm的表层水样, 放置于2 L棕色玻璃瓶中, 水样收集后, 将所有水样储存在4 ℃, 并在48h内进行进一步处理和分析.

图 1 采样点位示意 Fig. 1 Locations of the sampling sites

1.3 样品前处理与仪器检测 1.3.1 样品前处理

待水样静置后, 取上层清液经0.7 μm玻璃纤维滤膜过滤去除悬浮颗粒物, 准确量取1 000 mL过滤后的水样, 加入1 mol·L-1盐酸调节水样pH值至3, 依次加入0.2 g Na2EDTA及20 ng氘代替代物(四环素-d6、红霉素-d3、磺胺甲唑-d4、甲氧苄氨嘧啶-d3、环丙沙星-d8和氧氟沙星-d3)后摇匀, 然后使用Oasis HLB固相萃取柱(500 mg, 6 cc)进行富集净化. 上样前, HLB柱依次用5 mL甲醇和5 mL超纯水进行活化;上样时, 流速控制在3 mL·min-1左右;上样后, 先用10 mL超纯水清洗HLB小柱, 然后在负压下抽干, 最后用6 mL甲醇洗脱. 洗脱液在40 ℃用N2浓缩至近干, 最后用甲醇/水溶液(10∶90, 体积比)定容至1 mL, 过0.22 μm滤膜后放入棕色样品小瓶待测.

1.3.2 样品检测

抗生素的定量检测使用UPLC-MS/MS系统并依据本课题组开发的检测方法[19 ~ 21]. 采用多反应监测(multiple reaction monitoring, MRM)与电喷雾正离子源(ESI+)模式, 氮气作为脱溶剂气和雾化气体, 毛细管电压为0.5 ~ 1.00 kV, 离子源温度为150 ℃, 脱溶剂气温度为400 ~ 500 ℃, 脱溶剂气流速为800 ~ 1 000 L·h-1. 色谱条件:色谱柱温度为40 ℃, 进样体积为5 µL, 流动相流速为0.4 mL·min-1, 流动相分别为纯水溶液(含0.1%甲酸, A相)和甲醇(B相). 4类抗生素的梯度洗脱条件不同. 四环素类:0 ~ 0.5 min, 10% B, 0.5 ~ 3.5 min, 10% ~ 50% B, 3.5 ~ 3.7 min, 50% ~ 95% B, 3.7 ~ 4.7 min, 95% B, 4.7 ~ 5.0 min, 95% ~ 10% B, 5.0 ~ 6.5 min, 10% B;大环内酯类:0 ~ 0.5 min, 8% B, 0.5 ~ 2.5 min, 8% ~ 40% B, 2.5 ~ 2.7 min, 40% ~ 60% B, 2.7 ~ 5.0 min, 60% ~ 85% B, 5.0 ~ 5.1 min, 85% ~ 95% B, 5.1 ~ 6.1 min, 85% ~ 95% B, 6.1 ~ 6.2 min, 95% ~ 8% B, 6.2 ~ 7.8 min, 8% B;磺胺类:0 ~ 0.5 min, 8% B, 0.5 ~ 3.5 min, 8% ~ 40% B, 3.5 ~ 3.6 min, 40% ~ 80% B, 3.6 ~ 4.6 min, 80% ~ 95% B, 4.6 ~ 5.6 min, 95% B, 5.6 ~ 5.8 min, 95% ~ 8% B, 5.8 ~ 7.5 min, 8% B;喹诺酮类:0 ~ 0.5 min, 20% B, 0.5 ~ 5.0 min, 20% ~ 60% B, 5.0 ~ 5.2 min, 60% ~ 95% B, 5.2 ~ 6.2 min, 95% B, 6.2 ~ 6.4 min, 95% ~ 20% B, 6.4 ~ 8.0 min, 20% B.

1.3.3 质量控制

样品检测过程中, 采用程序空白以排除污染和干扰, 使用超纯水作为空白样品, 每5个样品间隔一个空白. 配备不同浓度区间的标准溶液构建标准曲线, 使用内标法对抗生素进行定量, 标准曲线的相关系数(R2)及内标回收率如表 2所示, 均满足质控要求. 方法检出限(limits of detection, LOD)和定量限(limits of quantification, LOQ)分别定义为3倍和10倍信噪比的浓度. 在分析过程中, 低于LOD的浓度记为0, 介于LOD和LOQ之间的浓度记为LOQ/2[22].

表 2 抗生素的检出限、定量限及标准曲线范围 Table 2 LODs, LOQs, and range of calibration curve of antibiotics

1.4 生态风险评估 1.4.1 毒性数据的筛选及预测无效应浓度的推导

毒性数据来自ECOTOX数据库(https://cfpub.epa.gov/ecotox/search.cfm)和文献[23]. 基于研究的准确性、相关性和可靠性原则, 筛选抗生素对所有水生生物的慢性和急性毒性数据[24 ~ 26]. 筛选程序为:对于最敏感的效应终点, 首先选择无观察效应浓度(no observed effect concentrations, NOEC)、最大可接受浓度(maximum acceptable toxic concentration, MATC)或10%效应浓度(10% effect concentration, EC10). 其次选择最低可观察效应浓度(lowest observed effect concentration, LOEC)或中值效应浓度(median effect concentration, EC50), 并使用评价因子(assessment factor, AF)校正, AF分别选择2或100[27]. 对于没有可用毒性数据的化合物, 使用美国环境保护局的生态结构-活性关系(ECOSAR模型v2.0)估算毒性值, 并选择最敏感的测试终点, 急性和慢性之间的AF选择1 000.

1.4.2 风险商法

依据欧盟技术指导文件, 利用风险商法评价在北京市城市河流中抗生素的生态风险, 计算公式为:

(1)

式中, MEC为抗生素在环境中的检出浓度(ng·L-1), 本研究选择浓度最大值进行计算, PNEC为预测无效应浓度(ng·L-1), 为毒性效应值除以相应的AF. 根据计算的RQ将抗生素的生态风险分为4个等级:①RQ < 0.01, 表示无风险;②0.01 ≤ RQ < 0.1, 表示低风险;③0.1 ≤ RQ < 1.0, 表示中风险;④RQ ≥ 1.0, 表示高风险.

1.4.3 优化的风险商法

基于浓度最大值的风险商法可以定量评估某个区域某种污染物风险的大小, 但无法反映其对水生生物产生危害的覆盖范围. 当某种污染物毒性效应很高, 但是在某一区域内的浓度很低时, 其生态风险也可能很小, 浓度低于或高于PNEC的污染物被视为对生物安全有风险[28]. 与风险商法相比, 优化的风险商法中的PNEC超标率[F, 公式(2)]能够评估水环境中污染物浓度超出毒性效应阈值的可能性. 为了综合考虑污染物的风险, 将PNEC超标率乘以污染物的风险商得到优化的风险商指数(RQf). 优化的风险商法充分考虑了有机污染物的毒性效应和检出浓度, 定义为公式(3)[29]

(2)
(3)

式中, F为抗生素浓度超过PNEC的概率, n为浓度≥ PNEC的点位数量, N为采样点位总数. 本研究设置了5个等级来区分新污染物的风险:①RQf = 0表示没有风险;②0 < RQf < 0.01表示风险可忽略;③0.01 ≤ RQf < 0.1表示低风险;④0.1 ≤ RQf < 1.0表示中等风险;⑤RQf ≥ 1.0表示高风险[29].

1.4.4 联合概率风险评估

RQ和RQf法的计算都要取决于选定的PNEC, 这些PNEC由单一物种毒性试验确定, 不确定性较大, 不能用于保护整个水生态系统. 为了保护多物种的水生生物, 使用概率风险评价工具包(probabilistic risk assessment tool, PRAT)构建联合概率分布曲线(joint probability distributions, JPCs)并对使用RQf法评估的具有风险的抗生素进行概率生态风险评估[30]. JPCs是以所有生物毒性数据的累计函数和污染物暴露浓度的反累计函数作图, 将风险评价的结论以连续分布曲线的形式表述, 同时也需要考虑环境暴露浓度和毒性值的不确定性和可变性[31]. 联合概率曲线越靠近X轴, 生物受到影响的可能性越小, 评价目标水体越安全[30]. 为了精确定量描述概率风险评估结果, 计算JPC曲线上X轴与Y轴数值的乘积, 得到风险乘积(risk product, RP), 根据最大风险乘积对不同级别的风险进行分类, 具体分为如下4个等级[32, 33]:①当最大风险乘积 < 0.25%时, 被认定为风险可忽略;②当0.25% ≤最大风险乘积 < 2.0%时, 被认定为低风险;③当2.0% ≤最大风险乘积 < 10.0%时, 风险被认定为中风险;④当最大风险乘积≥ 10.0%时, 认定为高风险.

2 结果与讨论 2.1 检出频率和浓度分布特征

在北京市城市河流43个地表水样点中, 除洛美沙星和司氟沙星两种喹诺酮类抗生素没有被检出外, 其余33种抗生素均有不同程度的检出, 它们分别属于四环素类、大环内酯类、磺胺类及喹诺酮类抗生素. 35种抗生素的检出率如图 2所示, 抗生素的检出率为0% ~ 100.0%, 检出率 > 50.0%的抗生素有16种, 其中, 磺胺嘧啶、甲氧苄氨嘧啶、喹酸和氧氟沙星的检出率为100.0%. 除此以外, 林可霉素、红霉素、克拉霉素、罗红霉素、磺胺甲唑和克林霉素的检出率也较高, 均大于95.0%, 说明其在水环境中的广泛存在.

1.磺胺嘧啶, 2.甲氧苄氨嘧啶, 3.喹酸, 4.氧氟沙星, 5.林可霉素, 6.红霉素, 7.克拉霉素, 8.罗红霉素, 9.磺胺甲唑, 10.克林霉素, 11.磺胺对甲氧嘧啶, 12.萘啶酸, 13.磺胺二甲嘧, 14.磺胺二甲异唑, 15.磺胺甲基嘧啶, 16.达氟沙星, 17.磺胺喹啉, 18.磺胺醋酰, 19.金霉素, 20.土霉素, 21.依诺沙星, 22.磺胺二甲氧嗪, 23.奥比沙星, 24.磺胺氯哒嗪, 25.磺胺噻唑, 26.甲磺酸培氟沙星, 27.环丙沙星, 28.恩诺沙星, 29.氟罗沙星, 30.四环素, 31.双氟沙星, 32.泰乐菌素, 33.交沙霉素, 34.洛美沙星, 35.司氟沙星 图 2 抗生素的检出率 Fig. 2 Detection frequency of the antibiotics

35种抗生素在各个点位的分布情况如图 3所示. 35种抗生素在所有点位的总浓度范围是N.D. ~ 1 573.57 ng·L-1, 磺胺甲唑的浓度最高(N.D. ~ 160.04 ng·L-1), 其次为磺胺嘧啶(0.09 ~ 147.90 ng·L-1)和氧氟沙星(0.28 ~ 94.72 ng·L-1), 且这3种抗生素在各个点位的浓度平均值均大于15.0 ng·L-1, 且检出率均大于97.0%. 3种四环素类抗生素的检出浓度较低, 四环素、土霉素和金霉素的浓度最大值分别为2.00、0.28和0.32 ng·L-1, 其中四环素的检出率仅为7.0%.

图 3 抗生素在各采样点的浓度 Fig. 3 Concentrations of antibiotics in different sampling sites

7种大环内酯类抗生素的检出率相对较高, 克拉霉素、克林霉素、林可霉素和罗红霉素的检出率均大于95.0%, 且具有最高的浓度平均值, 分别为4.02、3.65、1.61和1.14 ng·L-1. 磺胺类抗生素的检出浓度最高, 其中磺胺甲唑、磺胺嘧啶和磺胺二甲嘧啶的浓度平均值最高, 分别为36.59、27.94和10.33 ng·L-1, 且其检出率均在80.0%以上, 这3种磺胺类抗生素的浓度最大值分别为160.04、147.90和171.81 ng·L-1, 分别位于白河(B3)、清河(R3)和北运河(BYH). 磺胺类抗生素在水环境中普遍存在, 这与先前研究的结果一致[34], 其中, 磺胺甲唑在国内地表水中频繁被检出, 有研究表明其在WWTPs的去除率较低, 导致受纳水体中普遍存在此类抗生素[35]. 本研究中磺胺甲唑的浓度低于珠江(20 ~ 350 ng·L-1)[36]和长江口(4.2 ~ 756 ng·L-1)[37], 但高于长江水体(5 ~ 23 ng·L-1)[38]浓度. 甲氧苄氨嘧啶是磺胺类药物的增效剂, 通常与磺胺甲唑一起作为复方三唑用于治疗各种细菌感染[39], 它们的使用非常广泛, 这是导致它们被频繁检出的主要原因. 同时磺胺甲唑能够抑制革兰氏阳性和阴性细菌及原生动物, 是人类和兽医治疗中处方和消耗最多的磺胺类抗生素之一[40].

氧氟沙星和喹酸是浓度平均值最高的两种喹诺酮类抗生素, 浓度平均值分别为17.52 ng·L-1和5.29 ng·L-1, 浓度最大值分别为94.72 ng·L-1和12.66 ng·L-1, 浓度最大值分别位于通惠河(R1)和白河(B3). 喹诺酮类抗生素是人和动物使用最广泛的抗生素之一, 一般用于人类和动物呼吸性疾病和胃肠道疾病, 占我国抗生素总体使用量的17%[2], 由于氧氟沙星的高消耗量使其在中国地表水环境中普遍存在[34]. 各类抗生素浓度在各河流的分布情况如图 4所示, 按照35种抗生素的浓度平均值由高到低排序, 北运河、清河、通惠河和亮马河浓度平均值最高, 均在4.50 ng·L-1以上. 北运河、白河、清河和通惠河中单种抗生素浓度最大值均在90.00 ng·L-1以上, 如磺胺二甲嘧啶在北运河中的浓度最大值达171.81 ng·L-1, 磺胺甲唑在白河中的浓度最大值达160.04 ng·L-1, 磺胺嘧啶在清河中的浓度最大值达147.90 ng·L-1, 氧氟沙星在通惠河中的浓度最大值达94.72 ng·L-1. 有研究表明, 不同河流中抗生素的浓度分布差异与人口密度有关, 人类活动频繁的区域能检测到更高浓度的抗生素[16]. 由图 3可知, 大环内酯类、磺胺类及喹诺酮类抗生素分别在R2、R3和R1点位的浓度最高, 这3个点位均位于WWTPs出水口附近, 说明WWTPs出水口附近的抗生素浓度高于河流中其它点位, 表明抗生素部分来源于污水处理厂, 这也与之前的研究结果类似[41].

图 4 抗生素在各河流中的分布 Fig. 4 Distribution of antibiotics in different rivers

2.2 抗生素的生态风险 2.2.1 风险商法

35种抗生素的PNEC值如图 5所示, 其中林可霉素、磺胺二甲异唑、喹酸、环丙沙星和磺胺嘧啶的PNEC值来源于已发表的文献, 分别为700、1950、700、100和150 ng·L-1[29], 其余30种抗生素的PNEC值来源于ECOTOX数据库或ECOSAR预测. 由图 5可知, 四环素的PNEC值最小, 为0.5 ng·L-1, 依诺沙星的PNEC值最大, 为1.6×106 ng·L-1.

1.四环素, 2.克拉霉素, 3.甲氧苄氨嘧啶, 4.环丙沙星, 5.磺胺嘧啶, 6.红霉素, 7.氧氟沙星, 8.交沙霉素, 9.磺胺甲唑, 10.恩诺沙星, 11.罗红霉素, 12.林可霉素, 13.喹酸, 14.洛美沙星, 15.磺胺噻唑, 16.磺胺醋酰, 17.土霉素, 18.磺胺二甲异唑, 19.磺胺对甲氧嘧啶, 20.金霉素, 21.磺胺二甲氧嗪, 22.克林霉素, 23.泰乐菌素, 24.磺胺二甲嘧啶, 25.磺胺甲基嘧啶, 26.双氟沙星, 27.奥比沙星, 28.磺胺氯哒嗪, 29.达氟沙星, 30.萘啶酸, 31.司氟沙星, 32.氟罗沙星, 33.磺胺喹啉, 34.甲磺酸培氟沙星, 35.依诺沙星 图 5 抗生素的PNEC值 Fig. 5 PNEC of antibiotics

以北京市城市河流中检出的抗生素的浓度最大值除以PNEC计算各抗生素的RQ值, 结果如图 6(a)所示. 由于洛美沙星和司氟沙星在所有采样点均未被检出, 本研究中无法评估这2种抗生素的生态风险. 33种抗生素中有3种具有高风险, 3种具有中风险, 6种具有低风险, 其余21种抗生素的RQ < 0.01, 视为生态风险可以忽略. 四环素、克拉霉素和甲氧苄氨嘧啶的生态风险最高, 其RQ值分别为3.99、1.86和1.01[图 6(a)]. 四环素和克拉霉素在江西锦江流域中也被评估为高风险[10]. 磺胺嘧啶、氧氟沙星和磺胺甲唑表现为中风险, 其RQ分别为0.99、0.45和0.41. 氧氟沙星的生态风险已被报道, 其被列为欧洲水体中需要优先关注的抗生素之一[29]. 红霉素、磺胺噻唑、林可霉素、喹酸、磺胺二甲嘧啶和罗红霉素表现为低风险, 其中大环内酯类抗生素的占比最高. 关于我国地表水中抗生素的污染状况及潜在生态风险, 已有学者进行了报道. 如Jiang等[42]调查了台湾西南部沿海水域新污染物的来源和分布, 并对风险进行了初步估计, 检测到了包含布洛芬、可待因、红霉素、咖啡因和卡马西平等在内的13种污染物, 结果表明氨苄青霉素具有显著生态风险(RQ > 1.0), 表明对沿海水域的水生生物存在高风险. Bu等[43]基于文献检索综述了全国地表水环境中药物及个人护理品(pharmaceuticals and personal care products, PPCPs)的生态风险, 表明我国地表水中有6种PPCPs可能具有潜在生态风险, 分别是红霉素、罗红霉素、双氯芬酸、布洛芬、水杨酸和磺胺甲唑, 应在今后的环境管理中优先考虑. 周力等[44]识别了我国水环境中抗生素的优先次序, 发现高生态风险优先关注抗生素为克拉霉素、环丙沙星、阿莫西林、头孢克洛和氧氟沙星. 另一项基于我国地表水抗生素生态风险的研究表明, 阿莫西林、环丙沙星和青霉素具有潜在的生态风险[45].

a1.四环素, a2.克拉霉素, a3.甲氧苄氨嘧啶, a4.磺胺嘧啶, a5.氧氟沙星, a6.磺胺甲唑, a7.红霉素, a8.磺胺噻唑, a9.林可霉素, a10.喹酸, a11.磺胺二甲嘧啶, a12.罗红霉素, a13.交沙霉素, a14.克林霉素, a15.环丙沙星, a16.磺胺对甲氧嘧啶, a17.磺胺二甲异唑, a18.恩诺沙星, a19.土霉素, a20.金霉素, a21.磺胺二甲氧嗪, a22.磺胺醋酰, a23.泰乐菌素, a24.磺胺甲基嘧啶, a25.达氟沙星, a26.萘啶酸, a27.磺胺氯哒嗪, a28.依诺沙星, a29.甲磺酸培氟沙星, a30.氟罗沙星, a31.双氟沙星, a32.奥比沙星, a33.磺胺喹啉;b1.四环素, b2.土霉素, b3.金霉素, b4.林可霉素, b5.克林霉素, b6.红霉素, b7.克拉霉素, b8.交沙霉素, b9.罗红霉素, b10.泰乐菌素, b11.磺胺醋酰, b12.磺胺嘧啶, b13.磺胺甲唑, b14.磺胺噻唑, b15.磺胺甲基嘧啶, b16.磺胺二甲异唑, b17.磺胺二甲嘧啶, b18.磺胺对甲氧嘧啶, b19.磺胺氯哒嗪, b20.甲氧苄氨嘧啶, b21.磺胺喹啉, b22.磺胺二甲氧嗪, b23.萘啶酸, b24.喹酸, b25.依诺沙星, b26.环丙沙星, b27.甲磺酸培氟沙星, b28.达氟沙星, b29.恩诺沙星, b30.氧氟沙星, b31.氟罗沙星, b32.奥比沙星, b33.双氟沙星 图 6 抗生素的最大RQ值及抗生素在各采样点的RQ值 Fig. 6 Maximum RQ of antibiotics and the RQ of antibiotics in different sampling sites

图 6(b)显示了不同点位中各抗生素的RQ值, 结果显示四环素在BX1具有高风险(RQ = 3.99), 克拉霉素在R2具有高风险(RQ = 1.86), 甲氧苄氨嘧啶在R1具有高风险(RQ = 1.0), 说明WWTPs出口的风险高于其所在河流干流的风险. 四环素被定为国内地表水中的优先污染物[26], 且在浙江省宁波市两个不同的流域中均具有中风险[46]. Wu等[47]研究发现克拉霉素在长江和巢湖具有高风险. 对于具有中风险的3种污染物磺胺嘧啶、氧氟沙星和磺胺甲唑, 其分别对62.8%、27.9%和37.2%的区域具有中等风险. 红霉素、磺胺甲唑和甲氧苄氨嘧啶是胶州湾中两种主要的抗生素且对大部分区域的敏感水生生物均有高风险[48], 其在饮用水源地丹江口水库的检出率均为100.0%[19], 而本研究中红霉素的生态风险较低. 也有研究表明, 我国地表水中红霉素、三氯生、磺胺嘧啶、氧氟沙星、环丙沙星和双氯芬酸对水生生物的潜在风险最大[49]. 不同研究区域抗生素的污染情况不同, 说明污染物的生态风险在空间分布不均匀, 不同流域应因地制宜加强对中高风险抗生素的管控.

2.2.2 多层次生态风险评估

四环素、克拉霉素和甲氧苄氨嘧啶的PNEC值分别为0.5、20和29 ng·L-1, 所有点位中抗生素浓度超出这3种PNEC值的点位均有1个, 分别是BX1、R2和R1, 四环素、克拉霉素和甲氧苄氨嘧啶的PNEC超标率均为2.3%, 依据公式利用优化的风险商法计算这3种抗生素的RQf分别为0.09、0.04和0.02, 说明它们具有低等以上生态风险. 单一数据的风险商法可能会忽略部分污染物在局部区域的风险水平, 造成过保护的现象, 优化的风险商法能同时考虑污染物的毒性效应和全区域的污染物浓度, 能降低风险商法的不确定性[26]. 已有研究应用此方法确定了磺胺甲唑和阿奇霉素对中国武汉湖泊水生生物的潜在风险[50].

对优化的风险商法筛选的具有低等风险的3种抗生素进一步使用联合概率分布曲线法评估, 结果如图 7所示. 四环素和甲氧苄氨嘧啶的最大风险乘积分别为0.024%和0.058%, 均低于0.25%, 说明其生态风险可忽略. 克拉霉素的最大风险乘积为1.66%, 说明其具有低风险, 且对0.3% ~ 7.0%的物种具有低等风险. 优化的风险商法的主要缺点是采用最敏感的毒性数据推导PNEC, 没有考虑水生态系统中其它物种的敏感性. 而联合概率分布曲线法综合考虑了污染物的浓度分布和多物种毒性效应, 评估结果更加精确.

图 7 抗生素的联合概率分布曲线 Fig. 7 Joint probability curves of the antibiotics

2.2.3 不确定性分析

尽管使用丰富的数据和科学的计算方法, 但本研究中的生态风险评估可能存在不确定性. 具体表现为以下4个方面:①水环境中的污染物并非单独存在, 它们通常以混合物的形式存在, 由于加和效应或协同效应, 多种污染物的混合物可能会增加水环境中抗生素的生态风险;②抗生素在水生环境中会发生转化, 尤其是受光照、气候或水力条件影响之后, 抗生素的降解中间体/产物可能比母体化合物带来更高的生态风险, 本研究未考虑抗生素降解产物的生态风险;③采用的样品采集方法也可能导致风险评估的不确定性, 在本研究中, 采用瞬时取样的方式, 这可能低估了抗生素的真实暴露浓度, 对污染物浓度的低估必然导致生态风险的低估;④本研究仅考虑地表水中抗生素的检测浓度和毒性效应, 没有考虑其在地表水中的环境行为和生物累积性, 这也会导致生态风险评估的不确定性.

3 结论

(1) 北京市城市河流中共检测到4类共33种抗生素, 总浓度范围是N.D. ~ 1 573.57 ng·L-1, 检出率 > 50.0%的抗生素有16种, 其中磺胺嘧啶、甲氧苄氨嘧啶、喹酸和氧氟沙星的检出率均为100.0%. 所有抗生素中磺胺甲唑的浓度最高(N.D. ~ 160.04 ng·L-1), 其次为磺胺嘧啶(0.09 ~ 147.90 ng·L-1)和氧氟沙星(0.28 ~ 94.72 ng·L-1), 浓度平均值均大于15.0 ng·L-1.

(2) 风险商法显示四环素、克拉霉素和甲氧苄氨嘧啶存在高风险, RQ值分别为3.99、1.86和1.01, 磺胺嘧啶、氧氟沙星和磺胺甲唑存在中风险, 红霉素、磺胺噻唑、林可霉素、喹酸、磺胺二甲嘧啶和罗红霉素存在低风险. 不同点位中各抗生素的风险结果显示, WWTPs出口的风险高于其所在河流干流的风险.

(3) 四环素、克拉霉素和甲氧苄氨嘧啶的PNEC超标率均为2.3%, 优化的风险商法显示三者均有低风险, 基于JPCs发现, 克拉霉素的最大风险乘积为1.66%, 且对0.3% ~ 7.0%的物种具有低等风险, 其余抗生素的风险可忽略.

参考文献
[1] Jiang Y H, Li M X, Guo C S, et al. Distribution and ecological risk of antibiotics in a typical effluent–receiving river (Wangyang River) in north China[J]. Chemosphere, 2014, 112: 267-274. DOI:10.1016/j.chemosphere.2014.04.075
[2] Zhang Q Q, Ying G G, Pan C G, et al. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: source analysis, multimedia modeling, and linkage to bacterial resistance[J]. Environmental Science & Technology, 2015, 49(11): 6772-6782.
[3] Zhou L J, Ying G G, Liu S, et al. Occurrence and fate of eleven classes of antibiotics in two typical wastewater treatment plants in South China[J]. Science of the Total Environment, 2013, 452-453: 365-376. DOI:10.1016/j.scitotenv.2013.03.010
[4] Kumar K, Gupta S C, Chander Y, et al. Antibiotic use in agriculture and its impact on the terrestrial environment[J]. Advances in Agronomy, 2005, 87: 1-54.
[5] Ma R X, Wang B, Yin L N, et al. Characterization of pharmaceutically active compounds in Beijing, China: occurrence pattern, spatiotemporal distribution and its environmental implication[J]. Journal of Hazardous Materials, 2017, 323: 147-155. DOI:10.1016/j.jhazmat.2016.05.030
[6] Liu X, Wang Z, Zhang L, et al. Inconsistent seasonal variation of antibiotics between surface water and groundwater in the Jianghan Plain: risks and linkage to land uses[J]. Journal of Environmental Sciences, 2021, 109: 102-113. DOI:10.1016/j.jes.2021.03.002
[7] Christian T, Schneider R J, Färber H A, et al. Determination of antibiotic residues in manure, soil, and surface waters[J]. Acta Hydrochimica et Hydrobiologica, 2003, 31(1): 36-44. DOI:10.1002/aheh.200390014
[8] Dong D M, Zhang L W, Liu S, et al. Antibiotics in water and sediments from Liao River in Jilin Province, China: occurrence, distribution, and risk assessment[J]. Environmental Earth Sciences, 2016, 75(16). DOI:10.1007/s12665-016-6008-4
[9] Lei K, Zhu Y, Chen W, et al. Spatial and seasonal variations of antibiotics in river waters in the Haihe River Catchment in China and ecotoxicological risk assessment[J]. Environment International, 2019, 130. DOI:10.1016/j.envint.2019.104919
[10] 李佳乐, 王萌, 胡发旺, 等. 江西锦江流域抗生素污染特征与生态风险评价[J]. 环境科学, 2022, 43(8): 4064-4073.
Li J L, Wang M, Hu F W, et al. Antibiotic pollution characteristics and ecological risk assessment in Jinjiang River basin, Jiangxi province[J]. Environmental Science, 2022, 43(8): 4064-4073.
[11] 李辉, 陈瑀, 封梦娟, 等. 南京市饮用水源地抗生素污染特征及风险评估[J]. 环境科学学报, 2020, 40(4): 1269-1277.
Li H, Chen Y, Feng M J, et al. Pollution characteristics and risk assessment of antibiotics in Nanjing drinking water sources[J]. Acta Scientiae Circumstantiae, 2020, 40(4): 1269-1277.
[12] Reichert G, Hilgert S, Fuchs S, et al. Emerging contaminants and antibiotic resistance in the different environmental matrices of Latin America[J]. Environmental Pollution, 2019, 255. DOI:10.1016/j.envpol.2019.113140
[13] Limbu S M, Zhou L, Sun S X, et al. Chronic exposure to low environmental concentrations and legal aquaculture doses of antibiotics cause systemic adverse effects in Nile tilapia and provoke differential human health risk[J]. Environment International, 2018, 115: 205-219. DOI:10.1016/j.envint.2018.03.034
[14] De Sotto R B, Medriano C D, Cho Y, et al. Sub-lethal pharmaceutical hazard tracking in adult zebrafish using untargeted LC–MS environmental metabolomics[J]. Journal of Hazardous Materials, 2017, 339: 63-72. DOI:10.1016/j.jhazmat.2017.06.009
[15] Liu X H, Zhang G D, Liu Y, et al. Occurrence and fate of antibiotics and antibiotic resistance genes in typical urban water of Beijing, China[J]. Environmental Pollution, 2019, 246: 163-173. DOI:10.1016/j.envpol.2018.12.005
[16] Dai G H, Wang B, Huang J, et al. Occurrence and source apportionment of pharmaceuticals and personal care products in the Beiyun River of Beijing, China[J]. Chemosphere, 2015, 119: 1033-1039. DOI:10.1016/j.chemosphere.2014.08.056
[17] Zhang S, Zheng Y T, Zhan A B, et al. Environmental DNA captures native and non-native fish community variations across the lentic and lotic systems of a megacity[J]. Science Advances, 2022, 8(6). DOI:10.1126/sciadv.abk0097
[18] Zhang C H, Wang L L, Gao X Y, et al. Antibiotics in WWTP discharge into the Chaobai River, Beijing[J]. Archives of Environmental Protection, 2016, 42(4): 48-57. DOI:10.1515/aep-2016-0036
[19] Chen M, Jin X W, Liu Y, et al. Human activities induce potential aquatic threats of micropollutants in Danjiangkou Reservoir, the largest artificial freshwater lake in Asia[J]. Science of the Total Environment, 2022, 850. DOI:10.1016/j.scitotenv.2022.157843
[20] Yang J T, Luo Y, Chen M, et al. Occurrence, spatial distribution, and potential risks of organic micropollutants in urban surface waters from Qinghai, northwest China[J]. Chemosphere, 2023, 318. DOI:10.1016/j.chemosphere.2023.137819
[21] Chen M, Hong Y J, Jin X W, et al. Ranking the risks of eighty pharmaceuticals in surface water of a megacity: A multilevel optimization strategy[J]. Science of the Total Environment, 2023, 878. DOI:10.1016/j.scitotenv.2023.163184
[22] Rico A, de Oliveira R, de Souza Nunes G S, et al. Pharmaceuticals and other urban contaminants threaten Amazonian freshwater ecosystems[J]. Environment International, 2021, 155. DOI:10.1016/j.envint.2021.106702
[23] von der Ohe P C, Dulio V, Slobodnik J, et al. A new risk assessment approach for the prioritization of 500 classical and emerging organic microcontaminants as potential river basin specific pollutants under the European Water Framework Directive[J]. Science of the Total Environment, 2011, 409(11): 2064-2077. DOI:10.1016/j.scitotenv.2011.01.054
[24] Klimisch H J, Andreae M, Tillmann U. A systematic approach for evaluating the quality of experimental toxicological and ecotoxicological data[J]. Regulatory Toxicology and Pharmacology, 1997, 25(1): 1-5. DOI:10.1006/rtph.1996.1076
[25] Moermond C T A, Kase R, Korkaric M, et al. CRED: Criteria for reporting and evaluating ecotoxicity data[J]. Environmental Toxicology and Chemistry, 2016, 35(5): 1297-1309. DOI:10.1002/etc.3259
[26] Liu N, Jin X W, Feng C L, et al. Ecological risk assessment of fifty pharmaceuticals and personal care products (PPCPs) in Chinese surface waters: a proposed multiple-level system[J]. Environment International, 2020, 136. DOI:10.1016/j.envint.2019.105454
[27] Liu N, Jin X W, Yan Z, et al. Occurrence and multiple-level ecological risk assessment of pharmaceuticals and personal care products (PPCPs) in two shallow lakes of China[J]. Environmental Sciences Europe, 2020, 32. DOI:10.1186/s12302-020-00346-1
[28] Tousova Z, Oswald P, Slobodnik J, et al. European demonstration program on the effect-based and chemical identification and monitoring of organic pollutants in European surface waters[J]. Science of the Total Environment, 2017, 601-602: 1849-1868. DOI:10.1016/j.scitotenv.2017.06.032
[29] Zhou S B, Di Paolo C, Wu X D, et al. Optimization of screening-level risk assessment and priority selection of emerging pollutants–The case of pharmaceuticals in European surface waters[J]. Environment International, 2019, 128: 1-10. DOI:10.1016/j.envint.2019.04.034
[30] Solomon K, Giesy J, Jones P. Probabilistic risk assessment of agrochemicals in the environment[J]. Crop Protection, 2000, 19(8-10): 649-655. DOI:10.1016/S0261-2194(00)00086-7
[31] Sun H W, Giesy J P, Jin X W, et al. Tiered probabilistic assessment of organohalogen compounds in the Han River and Danjiangkou Reservoir, central China[J]. Science of the Total Environment, 2017, 586: 163-173. DOI:10.1016/j.scitotenv.2017.01.194
[32] Moore D R J, Teed R S, Rodney S I, et al. Refined avian risk assessment for aldicarb in the United States[J]. Integrated Environmental Assessment and Management, 2010, 6(1): 83-101. DOI:10.1897/IEAM_2009-022.1
[33] Whitfield Aslund M, Breton R L, Padilla L, et al. Ecological risk assessment for Pacific salmon exposed to dimethoate in California[J]. Environmental Toxicology and Chemistry, 2017, 36(2): 532-543. DOI:10.1002/etc.3563
[34] Li W H, Gao L H, Shi Y L, et al. Occurrence, distribution and risks of antibiotics in urban surface water in Beijing, China[J]. Environmental Science: Processes & Impacts, 2015, 17(9): 1611-1619.
[35] Zheng Q, Zhang R J, Wang Y H, et al. Occurrence and distribution of antibiotics in the Beibu Gulf, China: Impacts of river discharge and aquaculture activities[J]. Marine Environmental Research, 2012, 78: 26-33. DOI:10.1016/j.marenvres.2012.03.007
[36] Peng X Z, Zhang K, Tang C M, et al. Distribution pattern, behavior, and fate of antibacterials in urban aquatic environments in South China[J]. Journal of Environmental Monitoring, 2011, 13(2): 446-454. DOI:10.1039/C0EM00394H
[37] Yang Y, Fu J, Peng H, et al. Occurrence and phase distribution of selected pharmaceuticals in the Yangtze Estuary and its coastal zone[J]. Journal of Hazardous Materials, 2011, 190(1-3): 588-596. DOI:10.1016/j.jhazmat.2011.03.092
[38] Chang X S, Meyer M T, Liu X Y, et al. Determination of antibiotics in sewage from hospitals, nursery and slaughter house, wastewater treatment plant and source water in Chongqing region of Three Gorge Reservoir in China[J]. Environmental Pollution, 2010, 158(5): 1444-1450. DOI:10.1016/j.envpol.2009.12.034
[39] Fekadu S, Alemayehu E, Dewil R, et al. Pharmaceuticals in freshwater aquatic environments: A comparison of the African and European challenge[J]. Science of the Total Environment, 2019, 654: 324-337. DOI:10.1016/j.scitotenv.2018.11.072
[40] Yang L, Zhou Y Q, Shi B, et al. Anthropogenic impacts on the contamination of pharmaceuticals and personal care products (PPCPs) in the coastal environments of the Yellow and Bohai seas[J]. Environment International, 2020, 135. DOI:10.1016/j.envint.2019.105306
[41] Liu J C, Lu G H, Xie Z X, et al. Occurrence, bioaccumulation and risk assessment of lipophilic pharmaceutically active compounds in the downstream rivers of sewage treatment plants[J]. Science of the Total Environment, 2015, 511: 54-62. DOI:10.1016/j.scitotenv.2014.12.033
[42] Jiang J J, Lee C L, Fang M D. Emerging organic contaminants in coastal waters: Anthropogenic impact, environmental release and ecological risk[J]. Marine Pollution Bulletin, 2014, 85(2): 391-399. DOI:10.1016/j.marpolbul.2013.12.045
[43] Bu Q W, Wang B, Huang J, et al. Pharmaceuticals and personal care products in the aquatic environment in China: A review[J]. Journal of Hazardous Materials, 2013, 262: 189-211. DOI:10.1016/j.jhazmat.2013.08.040
[44] 周力, 刘珊, 郭家骅, 等. 基于生态风险的我国水环境高风险抗生素筛选排序[J]. 环境科学, 2021, 42(6): 2748-2757.
Zhou L, Liu S, Guo J H, et al. Screening and sequencing high-risk antibiotics in China's water environment based on ecological risks[J]. Environmental Science, 2021, 42(6): 2748-2757.
[45] Li Q, Cheng B, Liu S, et al. Assessment of the risks of the major use antibiotics in China's surface waters using a probabilistic approach[J]. Integrated Environmental Assessment and Management, 2020, 16(1): 43-52. DOI:10.1002/ieam.4204
[46] Tang J F, Sun J, Wang W D, et al. Pharmaceuticals in two watersheds in Eastern China and their ecological risks[J]. Environmental Pollution, 2021, 277. DOI:10.1016/j.envpol.2021.116773
[47] Wu C X, Huang X L, Witter J D, et al. Occurrence of pharmaceuticals and personal care products and associated environmental risks in the central and lower Yangtze river, China[J]. Ecotoxicology and Environmental Safety, 2014, 106: 19-26. DOI:10.1016/j.ecoenv.2014.04.029
[48] Zhang R J, Tang J H, Li J, et al. Occurrence and risks of antibiotics in the coastal aquatic environment of the Yellow Sea, North China[J]. Science of the Total Environment, 2013, 450-451: 197-204. DOI:10.1016/j.scitotenv.2013.02.024
[49] Xiang Y, Wu H H, Li L, et al. A review of distribution and risk of pharmaceuticals and personal care products in the aquatic environment in China[J]. Ecotoxicology and Environmental Safety, 2021, 213. DOI:10.1016/j.ecoenv.2021.112044
[50] Chen X P, Lei L, Liu S T, et al. Occurrence and risk assessment of pharmaceuticals and personal care products (PPCPs) against COVID-19 in lakes and WWTP-river-estuary system in Wuhan, China[J]. Science of the Total Environment, 2021, 792. DOI:10.1016/j.scitotenv.2021.148352