多环芳烃(polycyclic aromatic hydrocarbons, PAHs)是一种典型的持久性有机污染物, 具有高毒性、持久性、生物累积性和长距离输送性[1], 主要通过饮食摄入、呼吸作用和皮肤接触这3种途径进入人体, 从而引发肺癌和其他严重疾病, 对人体健康造成潜在威胁[2].大气中PAHs来源主要分为两类, 一类是自然来源, 主要包括火山爆发、天然火灾等; 一类是人为来源, 主要由煤、石油和天然气等有机物的不完全燃烧以及高分子有机物的热解形成, 其中人为来源占主要地位[3].大气中PAHs可存在于气相和颗粒相中, 由于其长距离输送性, 可到达全球各地, 各国政府虽已采取减排和管控措施, 但PAHs浓度仍未呈下降趋势[4].明确PAHs的排放源、季节变化和健康风险, 可为制定有效的污染控制策略提供科学依据.
目前, 国内外关于PAHs的研究主要集中在污染特征、季节变化、源解析和健康风险评价等方面[5, 6], 且主要针对的是一些直辖市和省会城市[7, 8], 而在中小型工业城市, 污染情况往往更加严重[9, 10].有研究表明焦作(年均值119.22 ng·m-3)[11]和乌鲁木齐(年均值451.35 ng·m-3)[12]等中等工业城市PM2.5中PAHs浓度明显高于北京(年均值61.20 ng·m-3)[13]和中国香港(年均值3.35 ng·m-3)[14]等地, 且各城市PAHs季节变化均服从冬季高, 夏季低的规律.常见的PAHs来源解析方法包括特征比值法和正定矩阵因子分解(PMF)模型[15, 16], 近年来, 后向轨迹、潜在源因子贡献分析模型(PSCF)也成为识别PAHs传输途径和潜在来源的重要方式[17~20].增量终身致癌风险(ILCR)是一种常见的PAHs致癌风险评价方法, 有学者将其与蒙特卡洛模拟结合, 对我国乌鲁木齐和印度杜尔加普尔等地PAHs致癌风险进行模拟[21, 22].不同地区PM2.5中PAHs的污染特征和来源受地形条件、气象因素和经济结构的共同影响[23], 因此有必要针对不同地区PM2.5中PAHs进行分析.
山西是我国煤炭消费大省, 2020年煤炭消费量为3.62亿t, 占全国煤炭消费总量的12.8%[24, 25], 且呈增长趋势.目前针对山西省PAHs的研究仅限于省会太原[26], 未见关于吕梁地区大气PAHs污染特征的研究.吕梁是我国大气污染防治重点区域——汾渭平原的主要城市之一, 大气污染排放强度较大[27].本文以吕梁离石区和孝义市为研究区, 系统分析了大气PM2.5中PAHs的污染特征和季节变化; 根据等效毒性和ILCR值评价PAHs对人类健康的影响, 并使用蒙特卡洛模型对PAHs的致癌风险进行预测; 利用特征比值法和PMF模型解析PAHs的来源, 使用后向轨迹和PSCF模型识别PAHs传输途径和潜在源, 以期为有效改善吕梁市大气PM2.5中PAHs污染提供重要的数据支撑.
1 材料与方法 1.1 样品的采集采样点设置在吕梁市离石区吕梁学院(37°34′47.68″N, 111°08′49.13″E)和孝义市太原理工大学现代科技学院(37°06′59.12″N, 111°45′23.48″E), 距地面约20 m.吕梁学院位于离石市区, 太原理工大学现代科技学院位于孝义郊区, 两个采样点均地势宽阔, 周围无明显高大建筑物.
采样仪器为崂应2050型空气/智能TSP综合采样器(02代, 青岛崂山应用技术研究所), 采样流量为100L·min-1, 采样滤膜为90 mm的石英纤维滤膜(Tissuquartz, 2500qat-up, Pallflex membrane filters).各个季节的采样时间分别为秋季: 2018年10月23~29日; 冬季: 2018年12月22~28日; 春季: 2019年4月16~22日; 夏季: 2019年6月25日至7月1日, 每个样品的采样持续时间为24 h(09:00至次日09:00), 共获得55个PM2.5样品, 其中离石区27个(冬季6个), 孝义市28个.采集后的样品放入-20℃冰柜中冷藏保存.
1.2 样品的预处理及分析取1/8滤膜置于20 mL样品瓶中, 加入二氯甲烷(DCM)∶甲醇(methanol)(2∶1, 体积比)溶液至滤膜被完全浸没.采用超声波清洗器对样品瓶进行超声萃取, 共萃取3次, 每次15 min.萃取后的溶液用巴氏滴管经玻璃棉过滤至梨形瓶中, 将梨形瓶置于旋转蒸发仪上, 经真空浓缩至少量, 并转移至气相色谱瓶内, 浓缩后溶液用氮气吹扫仪吹干.
分析仪器采用气相色谱质谱联用仪(Agilent 7890A气相色谱仪串联Agilent 5975C质谱检测器), 配置HP-5MS(30 m×0.25 mm×0.25 μm, J&W Scientific, USA)熔融石英毛细管柱, 载气为高纯氦气, 升温程序为: 初温为50℃, 保持2 min后, 以15℃·min-1的升温速率升至120℃, 再以5℃·min-1的速率升至300℃, 并在300℃下保持16 min, 进样器温度设定在280℃, 进样量为2 μL, 不分流进样.
测得的14种PAHs分别为: 菲(Phe)、蒽(Ant)、荧蒽(Fla)、芘(Pyr)、苯并[a]蒽(BaA)、(Chr)、苯并[b]荧蒽(BbF)、苯并[k]荧蒽(BkF)、苯并[e]芘(BeP)、苯并[a]芘(BaP)、苝(Pery)、茚并[123-cd]芘(IcdP)、二苯并[a, h]蒽(DahA)和苯并[g, h, i]苝(BghiP).
1.3 质量控制与质量保证GC-MS分析时所有目标化合物的响应因子均使用可靠的标准品测定.每个季节采样完成后需进行1 d的空白样品采集, 在空白样品中未发现明显的污染(小于样品中污染的5%).目标化合物回收率在78%~103%之间.
2 结果与讨论 2.1 PAHs的污染特征吕梁市PM2.5中ρ(PAHs)为4.70~590.11 ng·m-3(年均值95.50 ng·m-3), 其中离石区PM2.5中ρ(PAHs)(年均值130.47 ng·m-3)高于孝义市(年均值84.40 ng·m-3), 约为孝义市的1.5倍, 表明离石区受PAHs污染更严重.离石区采样点位于市区, 孝义市采样点位于郊区, 市区相比郊区而言, 人为活动较为频繁, 这可能是造成离石区污染严重的主要原因[28].与国内外其他城市相比, 吕梁市ρ(PAHs)高于浙北地区(年均值35.50ng·m-3)[29], 神农架大九湖(年均值30.36 ng·m-3)[30], 伊朗卡拉杰(年均值18.46 ng·m-3)[31]和韩国蔚山(年均值2.55 ng·m-3)[32], 低于詹谢普尔(年均值750.80 ng·m-3)[33], 阿迪蒂亚普尔(年均值321.71 ng·m-3)[34].
根据苯环数量及相对分子质量将所测得的14种PAHs分为: 低相对分子质量PAHs(3环, LMW)、中相对分子质量PAHs(4环, MMW)和高相对分子质量PAHs(5~6环, HMW)这3类. HMW-PAHs(5~6环)为难挥发性化合物, 主要存在于颗粒相中, 一般被认为是机动车尾气排放的标志物[35]; MMW-PAHs(4环)为半挥发性化合物, 气相和颗粒相中均占一定比例, 受温度影响较大, 当温度降低时, PAHs由气相向颗粒相富集[36], 一般被认为是燃煤排放的标志物[37]; LMW-PAHs(3环)易挥发, 主要存在于气相之中, 颗粒物中占比较低, 一般被认为是生物质燃烧的标志物[38].由图 1可知, 2个采样点不同环数PAHs的浓度存在较大差异, 但其分布特征基本一致, 均呈现HMW-PAHs(48.62%~51.53%)>MMW-PAHs(41.31%~42.96%)>LMW-PAHs(5.51%~10.07%)的规律, 根据以上分析, 这种现象可能是由PAHs自身性质及污染源的排放特性所造成的.
![]() |
图 1 吕梁市PM2.5中PAHs的组成 Fig. 1 Composition of PAHs in PM2.5, Luliang City |
从同系物的组成来看, 吕梁地区14种PAHs中浓度较高的依次为Fla、BbF、Chr和Pyr(>45 ng·m-3), 浓度较低的依次为Pery、Ant和BghiP(<10 ng·m-3), 与长春市[39]PM2.5中PAHs组成规律研究结果相似.BaP是致癌性PAHs的代表, 其浓度年均值为8.80 ng·m-3, 远超《环境空气质量标准》(GB 3095-2012)中所规定的浓度限值(1ng·m-3), 吕梁地区较高的BaP浓度将对人体造成较大的危害, 需引起高度重视.
2.2 PAHs季节变化特征吕梁市春、夏、秋、冬四季ρ(PAHs)分别为(40.59±41.86)、(19.68±10.96)、(68.31±44.93)和(309.7±168.71)ng·m-3, 呈现出冬季>秋季>春季>夏季的季节性变化规律, 这与文献[40, 41]中报道的其他城市PAHs季节变化规律一致.吕梁地区冬季较高的PAHs污染水平主要与燃煤量的增加以及该季节气温低、易频繁出现逆温层、风速较小等气象条件有关.
如图 2所示, 从PAHs组成来看, 离石区冬季PAHs单体浓度最高的依次为Fla、Pyr和Phe, 分别占PAHs浓度的14.6%、12.8%和10.4%; 孝义市冬季PAHs单体浓度最高的依次为Fla、Chr和BbF, 分别占PAHs浓度的13.4%、12.6%和11.8%. BbF、Pyr和Fla是煤燃烧排放最丰富的PAHs[42]; Phe被确认为是生物质燃烧的标志物[43]; Chr和BaA通常被作为天然气燃烧的化学示踪剂[44].由此可见, 吕梁地区冬季PAHs浓度可能受煤-生物质-天然气燃烧的共同影响.离石区和孝义市两地四季PAHs浓度均服从HMW>MMW>LMW的规律, 表明机动车尾气是两地PAHs的重要排放源[45].对比春夏两季, 秋冬季4环PAHs所占比例明显上升, 这一现象与集中供暖时期燃煤量大幅度增加有关[46], 同时与春夏季相比, 秋冬季较低的温度使PAHs更易由气相向颗粒相富集[47].另外, 离石区冬季3环PAHs所占比例明显上升, 可能与部分居民采用生物质燃烧方式进行取暖有关[48].
![]() |
百分比表示四季不同环数PAHs的占比 图 2 吕梁市离石和孝义两地PAHs组成的季节变化 Fig. 2 Seasonal change in the composition of PAHs in Lishi and Xiaoyi, Luliang City |
本研究对吕梁离石区和孝义市两地PAHs与PM2.5和气象数据之间的相关性进行评估(图 3). 在离石区(r=0.808, P<0.01)和孝义市(r=0.676, P<0.05), PAHs与PM2.5呈现显著的相关性, 这表明吕梁地区PAHs与PM2.5存在共同排放源[49], 如汽车尾气和燃烧排放等. PAHs与温度呈现显著负相关性(温度: r=-0.713, P<0.01), 温度高时有利于LMW-PAHs从颗粒相挥发到气相中, 从而使得PM2.5中PAHs浓度降低. PAHs与风速之间无显著相关性, 可能是由于大气中PAHs同时受风速和风向的影响, 这一结果与齐静文等[50]研究的结果一致.
![]() |
图 3 PAHs浓度与PM2.5浓度及气象因素的相关性分析 Fig. 3 Correlation analysis of PAHs concentrations and PM2.5 concentrations and meteorological factors |
BaP是最早发现的一种具有强致癌性的PAH, 比PAHs更适合做致癌性标志物[51].本文根据世界卫生组织(WHO)规定的毒性等效因子(TEFs), 以BaP为参照物, 对吕梁市PM2.5中PAHs的毒性进行评价, 见表 1. 计算过程和涉及参数见Ghanavati等[52]的研究.
![]() |
表 1 吕梁市呼吸暴露PAHs的健康风险评估 Table 1 Health risk assessment of respiratory exposed PAHs in Luliang City |
由表 1可知, 离石区四季致癌等效浓度(TEQ)依次为夏季(2.88 ng·m-3)<春季(9.86 ng·m-3)<秋季(14.38 ng·m-3)<冬季(38.85 ng·m-3), 孝义市春、夏、秋三季TEQ基本相同, 在1.73~1.98 ng·m-3之间, 但冬季的TEQ出现剧烈增长, 达到33.59 ng·m-3, 约为其它三季的16~20倍.
从区域分布来看, 离石区TEQ高于孝义市, 表明离石区人群存在更高的致癌风险, 这与离石采样点处于市区, 人为活动相对频繁有关.
2.3.2 增量终生致癌风险(ILCR)本研究基于US EPA健康风险评价模型, 以成人、青年和儿童为研究对象, 使用增量终生致癌风险(ILCR)[53, 54]对吕梁市通过呼吸进入人体的PAHs所产生的致癌风险进行评估, 研究结果见表 1.由于儿童、青年和成人三者呼吸速率、体重和暴露期存在较大差别, 故ILCR值也有所不同.由表 1可知, 吕梁离石区和孝义市两地ILCR值均服从成人>青年>儿童的规律, 表明PAHs对成人危害最大, 对儿童危害最小, 这可能是由于呼吸速率和暴露时间的不同而造成的[55].
根据US EPA规定, ILCR值≤10-6属于可接受水平, 10-6~10-4表明有潜在危险, >10-4表明具有较高风险[56].离石区夏季ILCR值低于10-6, 属可接受水平, 春、秋、冬三季均在10-6~10-4之内, 表明存在潜在风险.孝义市春、夏、秋三季ILCR值皆低于10-6, 属于可接受水平, 冬季在10-6~10-4之间, 对人群健康存在潜在风险.由以上分析可知, 市区PAHs潜在风险大于郊区.
2.3.3 蒙特卡洛模拟本研究使用Crystal Ball 11.1软件进行蒙特卡罗模拟, 对儿童、青年和成人这3个年龄段受PAHs危害程度进行预测.随机模拟迭代的次数设置为10 000次.吕梁市成人、青年和儿童的平均致癌风险分别为4.54× 10-6、2.80× 10-6和2.48× 10-6, 均高于可接受致癌风险值, 低于致癌风险值上限, 表明吕梁地区PAHs对3个年龄段人群没有较高的潜在致癌威胁.
如图 4所示, 不同年龄阶段致癌风险分布由蒙特卡洛模拟的4个百分位数呈现(5%、50%、90%和95%).对于3个年龄组, 在5%处, ILCR均低于可接受致癌风险值(1.0×10-6), 这表明PAHs对人群健康不造成威胁; 在50%处, 儿童和青年皆低于可接受致癌风险值, 成人致癌风险值为可接受水平的1.54倍, 这表明成人患癌症风险可能高于其他两个年龄段; 在95%处, 儿童、青年和成人的致癌风险值分别为可接受水平的4.20、6.39和10.50倍, 进一步表明吕梁市由PAHs造成的致癌风险服从成人>青年>儿童的规律.
![]() |
图 4 吕梁市不同年龄阶段接触PAHs健康风险的预测概率密度函数 Fig. 4 Predicted probability density function of the health risk of exposure to PAHs at different age stages in Luliang City |
大气环境中PAHs的组成特征会因为污染源燃料种类和燃烧方式的不同而产生差别, 但其相对含量却比较稳定, 本研究运用表 2中5种特征比值对吕梁市大气PAHs的主要来源进行判别.
![]() |
表 2 PAHs来源区分的特征比值 Table 2 Characteristic ratio of PAHs |
吕梁市不同季节大气PAHs的特征比值如表 2所示, Flu/(Pyr±Flu)的比值均大于0.5, 表明吕梁市大气PAHs主要来自于煤和生物质的燃烧; IcdP/(IcdP+BghiP)的比值为0.40~0.49, 表明机动车尾气是PAHs的重要来源; Ant/(Phe+Ant)的比值在采样期间均高于0.1, 故可推断吕梁地区大气PAHs污染受生物质燃烧影响较大; BaA/(BaA+Chr)的比值在0.28~0.51之间, 这表明PAHs来源于化石燃料和部分生物质的燃烧, 冬季比值达到最大, 为0.42±0.09, 这一现象可能与冬季集中供暖, 燃煤量上升有关; BaP/BghiP比值均大于0.6, 这表明机动车尾气排放是大气PAHs污染的重要来源.根据以上分析可知, 吕梁市大气PAHs主要来源为机动车尾气排放, 生物质燃烧以及煤炭燃烧.
2.4.2 PMF源解析本研究利用US EPA开发的EPA PMF软件(5.0版本)对吕梁市14种PAHs的来源进行了详细分析, 分析过程和涉及参数见文献[62, 63], 各因子的来源解析成分谱如图 5所示.
![]() |
图 5 基于PMF模型的吕梁市PAHs源成分谱图 Fig. 5 Source component spectrum of PAHs in Luliang City based on the PMF model |
因子1(61.9%)主要由3~4环的PAHs组成, 其贡献率在51.7%~99.8%之间, 其中, Ant(99.96%)和Phe(91.94%)具有较高负荷.Ant和Phe是煤和生物质燃烧时排放的最丰富的PAH单体[64].因此, 推测因子1为煤和生物质的燃烧.
因子2(38.1%)主要由5~6环的PAHs组成, 其贡献率在38.4%~57.4%之间, 其中, BeP(57.32%)、BkF(53.12%)和BghiP(52.27%)这3种PAHs单体具有较高负荷.有研究表明, 大于等于5环PAHs主要来自于机动车尾气[65], BkF和BghiP是车辆排放的标志物[66].因此, 推测因子2为机动车尾气排放.
根据以上分析可知, 吕梁市PM2.5中PAHs主要来自于煤和生物质的燃烧以及机动车尾气, 这与特征比值法所得到的结论相同.
2.4.3 PSCF潜在源分析为进一步探索吕梁地区PAHs的污染来源, 本研究使用MeteoInfo 3.3.7对吕梁市采样期间后向轨迹及PAHs潜在源进行分析, 分析结果如图 6所示.
![]() |
图 6 吕梁市四季PM2.5中PAHs的后向轨迹及潜在源贡献分析结果 Fig. 6 Results of the backward trajectory and potential source contribution analysis of PAHs in four seasons PM2.5, Luliang City |
PSCF值越高, 表明该地区产生污染的可能性越大.如图 6(a1)所示, 春季采样期间后向轨迹主要受气团2(33.33%)、气团3(25.00%)和气团5(17.26%)的影响, 根据PSCF模型分析结果图 6(a2)可知, 该季节吕梁市PAHs潜在源主要分布在山西南部、陕西中部和河南与陕西交界线处, 这是3个气团簇共同作用的结果.夏季采样期间后向轨迹如图 6(b1)所示, 主要受气团1(44.37%)、气团3(23.24%)和气团4(22.54%)的影响, 该季节PAHs潜在源分析如图 6(b2)所示, 主要位于山西南部, 受气团1影响较大.如图 6(c1)所示, 秋季采样期间后向轨迹主要受气团1(38.1%)、气团4(23.81%)和气团5(20.24%)影响, 由图 6(c2)可知, 秋季吕梁市PAHs潜在源主要分布在内蒙古西部和陕西北部, 受气团1与气团4影响较大.冬季吕梁市采样期间后向轨迹如图 6(d1)所示, 主要受气团1(16.07%)、气团2(39.29%)和气团3(19.05%)影响, 根据图 6(d2)可知, 吕梁市冬季PAHs潜在源主要分布在内蒙古西部和陕西北部, 3个气团簇皆经过两地, 到达吕梁.
根据以上分析, 吕梁市PAHs潜在来源主要分布在山西南部, 陕西北部及内蒙古西部, 这3个来源地均设有煤矿, 如山西的霍西煤田和沁水煤田、陕西的神府矿区和榆横矿区以及内蒙古的东胜煤田等, 潜在源地区污染物由气团簇传输至吕梁, 对环境空气造成危害.
3 结论(1) 吕梁市PM2.5中ρ(PAHs)年均值为95.50 ng·m-3, 以5~6环PAHs为主(49.7%), 离石区(年均值130.47 ng·m-3) PAHs浓度高于孝义市(年均值84.4 ng·m-3), 约为孝义市的1.5倍, 高致癌性BaP(年均值8.80 ng·m-3)超过国家规定的浓度限值. 吕梁市PAHs浓度呈现冬季>秋季>春季>夏季的季节性变化规律. 大气PAHs浓度与PM2.5呈正相关, 与温度呈负相关, 与风速无显著相关性.
(2) 吕梁离石区和孝义市两地ILCR值均服从成人>青年>儿童的规律.离石区除夏季外, ILCRs值均在10-6~10-4之间, 远高于孝义市, 表明市区存在较高的潜在致癌风险.
(3) 吕梁市PM2.5中PAHs主要来自于煤和生物质的燃烧(61.9%)以及机动车尾气(38.1%), PAHs潜在源主要分布在山西南部、陕西北部及内蒙古西部.
[1] | Baalbaki R, Nassar J, Salloum S, et al. Comparison of atmospheric polycyclic aromatic hydrocarbon levels in three urban areas in Lebanon[J]. Atmospheric Environment, 2018, 179: 260-267. DOI:10.1016/j.atmosenv.2018.02.028 |
[2] | Mallah M A, Changxing L, Mallah M A, et al. Polycyclic aromatic hydrocarbon and its effects on human health: an overeview[J]. Chemosphere, 2022, 296. DOI:10.1016/j.chemosphere.2022.133948 |
[3] | Reizer E, Viskolcz B, Fiser B. Formation and growth mechanisms of polycyclic aromatic hydrocarbons: a mini-review[J]. Chemosphere, 2022, 291. DOI:10.1016/j.chemosphere.2021.132793 |
[4] | Yu Y, Katsoyiannis A, Bohlin-Nizzetto P, et al. Polycyclic aromatic hydrocarbons not declining in arctic air despite global emission reduction[J]. Environmental Science & Technology, 2019, 53(5): 2375-2382. |
[5] | Hu T P, Zhang J Q, Xing X L, et al. Seasonal variation and health risk assessment of atmospheric PM2.5-bound polycyclic aromatic hydrocarbons in a classic agglomeration industrial city, central China[J]. Air Quality, Atmosphere & Health, 2018, 11(6): 683-694. |
[6] | Yadav I C, Devi N L, Li J, et al. Altitudinal and spatial variations of polycyclic aromatic hydrocarbons in Nepal: implications on source apportionment and risk assessment[J]. Chemosphere, 2018, 198: 386-396. DOI:10.1016/j.chemosphere.2018.01.075 |
[7] | Zhang Y P, Chen J, Yang H N, et al. Seasonal variation and potential source regions of PM2.5-bound PAHs in the megacity Beijing, China: impact of regional transport[J]. Environmental Pollution, 2017, 231: 329-338. DOI:10.1016/j.envpol.2017.08.025 |
[8] | Jia J P, Deng L, Bi C J, et al. Seasonal variations, gas-PM2.5 partitioning and long-distance input of PM2.5-bound and gas-phase polycyclic aromatic hydrocarbons in Shanghai, China[J]. Atmospheric Environment, 2021, 252. DOI:10.1016/j.atmosenv.2021.118335 |
[9] | Liu Y, Yan C Q, Ding X, et al. Sources and spatial distribution of particulate polycyclic aromatic hydrocarbons in Shanghai, China[J]. Science of the Total Environment, 2017, 584-585: 307-317. DOI:10.1016/j.scitotenv.2016.12.134 |
[10] | Wang T, Xia Z H, Wu M M, et al. Pollution characteristics, sources and lung cancer risk of atmospheric polycyclic aromatic hydrocarbons in a new urban district of Nanjing, China[J]. Journal of Environmental Sciences, 2017, 55: 118-128. DOI:10.1016/j.jes.2016.06.025 |
[11] |
姬莞莞, 邰超, 宋党育, 等. PM2.5中多环芳烃的污染特征及源解析: 以河南省焦作市为例[J]. 环境科学与技术, 2017, 40(4): 92-99. Ji W W, Tai C, Song D Y, et al. Pollution characteristics and source apportionment of atmospheric PAHs in PM2.5: a case study in Jiaozuo City[J]. Environmental Science & Technology, 2017, 40(4): 92-99. |
[12] | Li K J, Talifu D, Gao B, et al. Temporal distribution and source apportionment of composition of ambient PM2.5 in Urumqi, North-West China[J]. Atmosphere, 2022, 13(5). DOI:10.3390/atmos13050781 |
[13] | Chen Y, Li X H, Zhu T L, et al. PM2.5bound PAHs in three indoor and one outdoor air in Beijing: concentration, source and health risk assessment[J]. Science of the Total Environment, 2017, 586: 255-264. DOI:10.1016/j.scitotenv.2017.01.214 |
[14] | Yan D H, Wu S H, Zhou S L, et al. Characteristics, sources and health risk assessment of airborne particulate PAHs in Chinese cities: a review[J]. Environmental Pollution, 2019, 248: 804-814. DOI:10.1016/j.envpol.2019.02.068 |
[15] | Hassan S K. Particle-bound polycyclic aromatic hydrocarbon in the atmosphere of heavy traffic areas in Greater Cairo, Egypt: status, source, and human health risk assessment[J]. Atmosphere, 2018, 9(10). DOI:10.3390/atmos9100368 |
[16] | Shin S M, Lee J Y, Shin H J, et al. Seasonal variation and source apportionment of oxygenated polycyclic aromatic hydrocarbons(OPAHs) and polycyclic aromatic hydrocarbons(PAHs) in PM2.5 in Seoul, Korea[J]. Atmospheric Environment, 2022, 272. DOI:10.1016/j.atmosenv.2022.118937 |
[17] | Zhan L X, Huang H F, Zhao S Z, et al. Comparison of atmospheric polycyclic aromatic hydrocarbons(PAHs) over six years at a CAWNET background site in central China: changes of seasonal variations and potential sources[J]. Chemosphere, 2022, 299. DOI:10.1016/j.chemosphere.2022.134298 |
[18] | Kumar A, Sankar T K, Sethi S S, et al. Characteristics, toxicity, source identification and seasonal variation of atmospheric polycyclic aromatic hydrocarbons over east India[J]. Environmental Science and Pollution Research, 2020, 27(1): 678-690. DOI:10.1007/s11356-019-06882-5 |
[19] | Akhbarizadeh R, Dobaradaran S, Amouei Torkmahalleh M, et al. Suspended fine particulate matter(PM2.5), microplastics(MPs), and polycyclic aromatic hydrocarbons(PAHs) in air: their possible relationships and health implications[J]. Environmental Research, 2021, 192. DOI:10.1016/j.envres.2020.110339 |
[20] | Matos J, Silveira C, Cerqueira M. Particle-bound polycyclic aromatic hydrocarbons in a rural background atmosphere of southwestern Europe[J]. Science of the Total Environment, 2021, 787. DOI:10.1016/j.scitotenv.2021.147666 |
[21] | Gope M, Masto R E, Basu A, et al. Elucidating the distribution and sources of street dust bound PAHs in Durgapur, India: a probabilistic health risk assessment study by Monte-Carlo simulation[J]. Environmental Pollution, 2020, 267. DOI:10.1016/j.envpol.2020.115669 |
[22] | Wang W, Ding X, Turap Y, et al. Distribution, sources, risks, and vitro DNA oxidative damage of PM2.5-bound atmospheric polycyclic aromatic hydrocarbons in Urumqi, NW China[J]. Science of the Total Environment, 2020, 739. DOI:10.1016/j.scitotenv.2020.139518 |
[23] | Ishtiaq J, Syed J H, Jadoon W A, et al. Atmospheric polycyclic aromatic hydrocarbons(PAHs) at urban settings in Pakistan: spatial variations, sources and health risks[J]. Chemosphere, 2021, 274. DOI:10.1016/j.chemosphere.2021.129811 |
[24] | 国家统计局. 中国统计年鉴-2021[M]. 北京: 中国统计出版社, 2021. |
[25] | 山西省统计局, 国家统计局山西调查总队. 山西统计年鉴-2021[M]. 北京: 中国统计出版社, 2021. |
[26] |
郭志明, 刘頔, 林田, 等. 太原城区PM2.5中多环芳烃、硝基多环芳烃的污染特征、来源解析和健康风险评价[J]. 环境科学学报, 2018, 38(3): 1102-1108. Guo Z M, Liu D, Lin T, et al. Concentration, source identification, and exposure risk assessment of PM2.5-bound PAHs and nitro-PAHs in the atmosphere of Taiyuan[J]. Acta Scientiae Circumstantiae, 2018, 38(3): 1102-1108. |
[27] |
高兴艾, 裴坤宁, 王淑敏, 等. 汾渭平原吕梁市颗粒物潜在源及输送通道分析[J]. 中国环境科学, 2022, 42(7): 2988-2999. Gao X A, Pei K N, Wang S M, et al. Analysis on the potential source and transmission channel of particulate matter in Lüliang City, Fenwei Plain[J]. China Environmental Science, 2022, 42(7): 2988-2999. DOI:10.3969/j.issn.1000-6923.2022.07.002 |
[28] | Shahsavani S, Hoseini M, Dehghani M, et al. Characterisation and potential source identification of polycyclic aromatic hydrocarbons in atmospheric particles(PM10) from urban and suburban residential areas in Shiraz, Iran[J]. Chemosphere, 2017, 183: 557-564. DOI:10.1016/j.chemosphere.2017.05.101 |
[29] |
徐宏辉, 徐婧莎, 何俊, 等. 浙北地区PM2.5中多环芳烃特征[J]. 中国环境科学, 2018, 38(9): 3247-3253. Xu H H, Xu J S, He J, et al. Characteristics analyses of PAHs in PM2.5 in the northern Zhejiang Province[J]. China Environmental Science, 2018, 38(9): 3247-3253. |
[30] |
金梦云, 邢新丽, 柯艳萍, 等. 神农架大九湖大气中的多环芳烃[J]. 环境科学, 2017, 38(5): 1760-1768. Jin M Y, Xing X L, Ke Y P, et al. Polycyclic aromatic hydrocarbons in the atmosphere of Dajiuhu, Shennongjia, China[J]. Environmental Science, 2017, 38(5): 1760-1768. DOI:10.13227/j.hjkx.201609235 |
[31] | Azimi-Yancheshmeh R, Moeinaddini M, Feiznia S, et al. Seasonal and spatial variations in atmospheric PM2.5-bound PAHs in Karaj City, Iran: sources, distributions, and health risks[J]. Sustainable Cities and Society, 2021, 72. DOI:10.1016/j.scs.2021.103020 |
[32] | Nguyen T N T, Jung K S, Son J M, et al. Seasonal variation, phase distribution, and source identification of atmospheric polycyclic aromatic hydrocarbons at a semi-rural site in Ulsan, South Korea[J]. Environmental Pollution, 2018, 236: 529-539. DOI:10.1016/j.envpol.2018.01.080 |
[33] | Ambade B, Kumar A, Kumar A, et al. Temporal variability of atmospheric particulate-bound polycyclic aromatic hydrocarbons(PAHs) over central east India: sources and carcinogenic risk assessment[J]. Air Quality, Atmosphere & Health, 2022, 15(1): 115-130. |
[34] | Ambade B, Kumar A, Sahu L K. Characterization and health risk assessment of particulate bound polycyclic aromatic hydrocarbons(PAHs) in indoor and outdoor atmosphere of central east India[J]. Environmental Science and Pollution Research, 2021, 28(40): 56269-56280. DOI:10.1007/s11356-021-14606-x |
[35] | Famiyeh L, Chen K, Xu J S, et al. A review on analysis methods, source identification, and cancer risk evaluation of atmospheric polycyclic aromatic hydrocarbons[J]. Science of the Total Environment, 2021, 789. DOI:10.1016/j.scitotenv.2021.147741 |
[36] |
周变红, 张承中, 王格慧. 西安城区大气中多环芳烃的季节变化特征及健康风险评价[J]. 环境科学学报, 2012, 32(9): 2324-2331. Zhou B H, Zhang C Z, Wang G H. Seasonal variation and health risk assessment of atmospheric polycyclic aromatic hydrocarbons(PAHs) in the urban area of Xi'an[J]. Acta Scientiae Circumstantiae, 2012, 32(9): 2324-2331. DOI:10.13671/j.hjkxxb.2012.09.024 |
[37] | Mehmood T, Zhu T L, Ahmad I, et al. Ambient PM2.5 and PM10 bound PAHs in Islamabad, Pakistan: concentration, source and health risk assessment[J]. Chemosphere, 2020, 257. DOI:10.1016/j.chemosphere.2020.127187 |
[38] | Siudek P. Polycyclic aromatic hydrocarbons in coarse particles(PM10) over the coastal urban region in Poland: Distribution, source analysis and human health risk implications[J]. Chemosphere, 2023, 311. DOI:10.1016/j.chemosphere.2022.137130 |
[39] |
张艺璇, 曹芳, 郑涵, 等. 2017年秋季长春市PM2.5中多环芳烃的污染来源及健康风险评价[J]. 环境科学, 2020, 41(2): 564-573. Zhang Y X, Cao F, Zheng H, et al. Source apportionment and health risk assessment of polycyclic aromatic hydrocarbons in PM2.5 in Changchun City, autumn of 2017[J]. Environmental Science, 2020, 41(2): 564-573. |
[40] | Singh B P, Zughaibi T A, Alharthy S A, et al. Statistical analysis, source apportionment, and toxicity of particulate- and gaseous-phase PAHs in the urban atmosphere[J]. Frontiers in Public Health, 2023, 10. DOI:10.3389/fpubh.2022.1070663 |
[41] | Khan M B, Masiol M, Bruno C, et al. Potential sources and meteorological factors affecting PM2.5-bound polycyclic aromatic hydrocarbon levels in six main cities of northeastern Italy: an assessment of the related carcinogenic and mutagenic risks[J]. Environmental Science and Pollution Research, 2018, 25(32): 31987-32000. DOI:10.1007/s11356-018-2841-1 |
[42] | Ray D, Chatterjee A, Majumdar D, et al. Polycyclic aromatic hydrocarbons over a tropical urban and a high altitude Himalayan station in India: temporal variation and source apportionment[J]. Atmospheric Research, 2017, 197: 331-341. DOI:10.1016/j.atmosres.2017.07.010 |
[43] | Gurkan Ayyildiz E, Esen F. Atmospheric polycyclic aromatic hydrocarbons(PAHs) at two sites, in bursa, turkey: determination of concentrations, gas-particle partitioning, sources, and health risk[J]. Archives of Environmental Contamination and Toxicology, 2020, 78(3): 350-366. DOI:10.1007/s00244-019-00698-7 |
[44] | Davoudi M, Esmaili-Sari A, Bahramifar N, et al. Spatio-temporal variation and risk assessment of polycyclic aromatic hydrocarbons(PAHs) in surface dust of qom metropolis, Iran[J]. Environmental Science and Pollution Research, 2021, 28(8): 9276-9289. DOI:10.1007/s11356-020-08863-5 |
[45] | Wang X S, Chen M Q, Zheng X. Polycyclic aromatic hydrocarbons(PAHs) in Xuzhou urban street dust: concentration and sources[J]. Environmental Earth Sciences, 2017, 76(16). DOI:10.1007/s12665-017-6922-0 |
[46] |
王占祥, 郭久久, 穆熙, 等. 宁东基地大气PAHs污染特征及呼吸暴露风险[J]. 中国环境科学, 2019, 39(7): 3102-3112. Wang Z X, Guo J J, Mu X, et al. Pollution characteristics and inhalation exposure risk of atmospheric PAHs in Ningdong base[J]. China Environmental Science, 2019, 39(7): 3102-3112. DOI:10.19674/j.cnki.issn1000-6923.2019.0366 |
[47] | Ali-Taleshi M S, Moeinaddini M, Riyahi Bakhtiari A, et al. A one-year monitoring of spatiotemporal variations of PM2.5-bound PAHs in Tehran, Iran: source apportionment, local and regional sources origins and source-specific cancer risk assessment[J]. Environmental Pollution, 2021, 274. DOI:10.1016/j.envpol.2020.115883 |
[48] | Feng X X, Feng Y L, Chen Y J, et al. Source apportionment of PM2.5 during haze episodes in Shanghai by the PMF model with PAHs[J]. Journal of Cleaner Production, 2022, 330. DOI:10.1016/j.jclepro.2021.129850 |
[49] | Kumar A, Ambade B, Sankar T K, et al. Source identification and health risk assessment of atmospheric PM2.5-bound polycyclic aromatic hydrocarbons in Jamshedpur, India[J]. Sustainable Cities and Society, 2020, 52. DOI:10.1016/j.scs.2019.101801 |
[50] |
齐静文, 张瑞芹, 姜楠, 等. 洛阳市秋冬季PM2.5中多环芳烃的污染特征、来源解析及健康风险评价[J]. 环境科学, 2021, 42(2): 595-603. Qi J W, Zhang R Q, Jiang N, et al. Characterization, sources, and health risks of PM2.5-bound PAHs during autumn and winter in Luoyang City[J]. Environmental Science, 2021, 42(2): 595-603. |
[51] | Petry T, Schmid P, Schlatter C. The use of toxic equivalency factors in assessing occupational and environmental health risk associated with exposure to airborne mixtures of polycyclic aromatic hydrocarbons(PAHs)[J]. Chemosphere, 1996, 32(4): 639-648. DOI:10.1016/0045-6535(95)00348-7 |
[52] | Ghanavati N, Nazarpour A, Watts M J. Status, source, ecological and health risk assessment of toxic metals and polycyclic aromatic hydrocarbons(PAHs) in street dust of Abadan, Iran[J]. CATENA, 2019, 177: 246-259. DOI:10.1016/j.catena.2019.02.022 |
[53] | Zhen Z X, Yin Y, Chen K, et al. Concentration and atmospheric transport of PM2.5-bound polycyclic aromatic hydrocarbons at Mount Tai, China[J]. Science of the Total Environment, 2021, 786. DOI:10.1016/j.scitotenv.2021.147513 |
[54] | Sulong N A, Latif M T, Sahani M, et al. Distribution, sources and potential health risks of polycyclic aromatic hydrocarbons(PAHs) in PM2.5 collected during different monsoon seasons and haze episode in Kuala Lumpur[J]. Chemosphere, 2019, 219: 1-14. DOI:10.1016/j.chemosphere.2018.11.195 |
[55] | Wang Y, Zhang H, Zhang X, et al. Abundance, source apportionment and health risk assessment of polycyclic aromatic hydrocarbons and nitro-polycyclic aromatic hydrocarbons in PM2.5 in the urban atmosphere of Singapore[J]. Atmosphere, 2022, 13(9). DOI:10.3390/atmos13091420 |
[56] | Alghamdi M A, Hassan S K, Alzahrani N A, et al. Classroom dust-bound polycyclic aromatic hydrocarbons in jeddah primary schools, saudi arabia: level, characteristics and health risk assessment[J]. International Journal of Environmental Research and Public Health, 2020, 17(8). DOI:10.3390/ijerph17082779 |
[57] | Nargis A, Habib A, Zhao S Z, et al. Monitoring of atmospheric polycyclic aromatic hydrocarbons by polyurethane foam-passive air samplers in Bangladesh: source apportionment and health risk assessment[J]. Atmospheric Environment, 2022, 289. DOI:10.1016/j.atmosenv.2022.119346 |
[58] | Jahedi F, Dehdari Rad H, Goudarzi G, et al. Polycyclic aromatic hydrocarbons in PM1, PM2.5 and PM10 atmospheric particles: identification, sources, temporal and spatial variations[J]. Journal of Environmental Health Science and Engineering, 2021, 19(1): 851-866. DOI:10.1007/s40201-021-00652-7 |
[59] | Zhang Q J, Yang L, Zhang Y J, et al. PM2.5-PAHs and PM10-PAHs at roadside environment: levels, meteorological impact, source apportionment, and health risks[J]. Air Quality, Atmosphere & Health, 2022, 15(7): 1287-1301. |
[60] | Khanal R, Furumai H, Nakajima F, et al. Carcinogenic profile, toxicity and source apportionment of polycyclic aromatic hydrocarbons accumulated from urban road dust in Tokyo, Japan[J]. Ecotoxicology and Environmental Safety, 2018, 165: 440-449. DOI:10.1016/j.ecoenv.2018.08.095 |
[61] | Marinaite I, Penner I, Molozhnikova E, et al. Polycyclic aromatic hydrocarbons in the atmosphere of the southern Baikal region(Russia): sources and relationship with meteorological conditions[J]. Atmosphere, 2022, 13(3). DOI:10.3390/atmos13030420 |
[62] | 王思宇. 应用PMF和PCA/APCS方法探究长春市大气中PM2.5来源[D]. 长春: 吉林大学, 2016. |
[63] | Galvão E S, Paiva H B, Menezes H C, et al. Cancer risk assessment and source apportionment of the gas- and particulate-phase of the polycyclic aromatic hydrocarbons in a metropolitan region in Brazil[J]. Chemosphere, 2023, 311. DOI:10.1016/j.chemosphere.2022.136872 |
[64] | Wu X M, Sun W J, Huai B J, et al. Seasonal variation and sources of atmospheric polycyclic aromatic hydrocarbons in a background site on the Tibetan Plateau[J]. Journal of Environmental Sciences, 2023, 125: 524-532. DOI:10.1016/j.jes.2022.02.042 |
[65] | Aminiyan M M, Kalantzi O I, Etesami H, et al. Occurrence and source apportionment of polycyclic aromatic hydrocarbons(PAHs) in dust of an emerging industrial city in Iran: implications for human health[J]. Environmental Science and Pollution Research, 2021, 28(44): 63359-63376. |
[66] | Sun Y W, Chen J, Qin W H, et al. Gas-PM2.5 partitioning, health risks, and sources of atmospheric PAHs in a northern China city: impact of domestic heating[J]. Environmental Pollution, 2022, 313. DOI:10.1016/j.envpol.2022.120156 |