环境科学  2023, Vol. 44 Issue (12): 6508-6517   PDF    
吕梁市PM2.5中多环芳烃的来源解析及健康风险评价
牟玲, 刘紫叶, 李杨勇, 李雪梅, 李晓帆, 刘添, 冯传阳, 姜辛     
太原理工大学环境科学与工程学院, 太原 030024
摘要: 为探索吕梁地区PM2.5中多环芳烃的季节变化、健康风险和潜在来源,于2018年10月23日至2019年7月1日对离石区(市区)和孝义市(郊区)进行PM2.5样品采集,利用气相色谱-质谱联用仪(GC-MS)测定了14种多环芳烃浓度.总多环芳烃的浓度年均值为95.50 ng·m-3,主要以5~6环为主(49.7%),3环占比较低(8.3%);吕梁市多环芳烃浓度呈现冬季>秋季>春季>夏季的季节性变化规律,市区浓度年均值(130.47 ng·m-3)高于郊区(84.4 ng·m-3);增量终身致癌风险和蒙特卡洛模拟结果均表明吕梁市多环芳烃毒性服从成人>青年>儿童的规律,除夏季外,离石区增量终身致癌风险值均在10-6~10-4之间,远高于孝义市,表明市区存在较高的多环芳烃潜在风险;通过采用特征比值法和正定矩阵因子分解模型表明,吕梁市多环芳烃主要来自于煤和生物质的燃烧(61.9%)和机动车尾气排放(38.1%),由后向轨迹和潜在源因子贡献分析模型确定吕梁市多环芳烃潜在源主要分布在山西南部、陕西北部和内蒙古西部.
关键词: 多环芳烃(PAHs)      吕梁市      季节性变化      健康风险评价      源解析     
Source Analysis and Health Risk Assessment of PAHs in PM2.5, Lüliang City
MU Ling , LIU Zi-ye , LI Yang-yong , LI Xue-mei , LI Xiao-fan , LIU Tian , FENG Chuan-yang , JIANG Xin     
School of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
Abstract: To investigate the seasonal variation, health risks, and potential sources of polycyclic aromatic hydrocarbons(PAHs) in PM2.5 in the Lüliang area, PM2.5 samples were collected in Lishi District(downtown area) and Xiaoyi City(suburban area) from October 23, 2018 to July 1, 2019, and the concentrations of 14 PAHs were determined using gas chromatography-mass spectrometry(GC-MS). The annual average concentration of PAHs was 95.50 ng·m-3, and the concentration of 5-6 ring PAHs was mainly(49.7%), with 3 ring PAHs accounting for a relatively low proportion(8.3%).The concentration of PAHs in Lüliang City showed a seasonal pattern of winter>autumn>spring>summer. The results of the ILCRs model and Monte Carlo simulation showed that the toxicity of PAHs in Lüliang City followed the rule of adults>youth>children. Except in summer, the ILCRs values in the Lishi area were between 10-6 and 10-4, much higher than those in Xiaoyi City, indicating that there was a high potential risk of polycyclic aromatic hydrocarbons in the urban area. Through the characteristic ratio method and positive matrix factorization(PMF), it was shown that the PAHs in Lüliang City were mainly from the combustion of coal and biomass(61.9%) and vehicle exhaust emissions(38.1%). Based on the backward trajectory and potential source factor contribution analysis model, it was determined that the potential sources of PAHs in Lüliang City were mainly distributed in southern Shanxi, northern Shaanxi, and western Inner Mongolia.
Key words: polycyclic aromatic hydrocarbons(PAHs)      Lüliang City      seasonal variation      health risk assessment      source analysis     

多环芳烃(polycyclic aromatic hydrocarbons, PAHs)是一种典型的持久性有机污染物, 具有高毒性、持久性、生物累积性和长距离输送性[1], 主要通过饮食摄入、呼吸作用和皮肤接触这3种途径进入人体, 从而引发肺癌和其他严重疾病, 对人体健康造成潜在威胁[2].大气中PAHs来源主要分为两类, 一类是自然来源, 主要包括火山爆发、天然火灾等; 一类是人为来源, 主要由煤、石油和天然气等有机物的不完全燃烧以及高分子有机物的热解形成, 其中人为来源占主要地位[3].大气中PAHs可存在于气相和颗粒相中, 由于其长距离输送性, 可到达全球各地, 各国政府虽已采取减排和管控措施, 但PAHs浓度仍未呈下降趋势[4].明确PAHs的排放源、季节变化和健康风险, 可为制定有效的污染控制策略提供科学依据.

目前, 国内外关于PAHs的研究主要集中在污染特征、季节变化、源解析和健康风险评价等方面[5, 6], 且主要针对的是一些直辖市和省会城市[7, 8], 而在中小型工业城市, 污染情况往往更加严重[9, 10].有研究表明焦作(年均值119.22 ng·m-3)[11]和乌鲁木齐(年均值451.35 ng·m-3)[12]等中等工业城市PM2.5中PAHs浓度明显高于北京(年均值61.20 ng·m-3)[13]和中国香港(年均值3.35 ng·m-3)[14]等地, 且各城市PAHs季节变化均服从冬季高, 夏季低的规律.常见的PAHs来源解析方法包括特征比值法和正定矩阵因子分解(PMF)模型[15, 16], 近年来, 后向轨迹、潜在源因子贡献分析模型(PSCF)也成为识别PAHs传输途径和潜在来源的重要方式[17~20].增量终身致癌风险(ILCR)是一种常见的PAHs致癌风险评价方法, 有学者将其与蒙特卡洛模拟结合, 对我国乌鲁木齐和印度杜尔加普尔等地PAHs致癌风险进行模拟[21, 22].不同地区PM2.5中PAHs的污染特征和来源受地形条件、气象因素和经济结构的共同影响[23], 因此有必要针对不同地区PM2.5中PAHs进行分析.

山西是我国煤炭消费大省, 2020年煤炭消费量为3.62亿t, 占全国煤炭消费总量的12.8%[24, 25], 且呈增长趋势.目前针对山西省PAHs的研究仅限于省会太原[26], 未见关于吕梁地区大气PAHs污染特征的研究.吕梁是我国大气污染防治重点区域——汾渭平原的主要城市之一, 大气污染排放强度较大[27].本文以吕梁离石区和孝义市为研究区, 系统分析了大气PM2.5中PAHs的污染特征和季节变化; 根据等效毒性和ILCR值评价PAHs对人类健康的影响, 并使用蒙特卡洛模型对PAHs的致癌风险进行预测; 利用特征比值法和PMF模型解析PAHs的来源, 使用后向轨迹和PSCF模型识别PAHs传输途径和潜在源, 以期为有效改善吕梁市大气PM2.5中PAHs污染提供重要的数据支撑.

1 材料与方法 1.1 样品的采集

采样点设置在吕梁市离石区吕梁学院(37°34′47.68″N, 111°08′49.13″E)和孝义市太原理工大学现代科技学院(37°06′59.12″N, 111°45′23.48″E), 距地面约20 m.吕梁学院位于离石市区, 太原理工大学现代科技学院位于孝义郊区, 两个采样点均地势宽阔, 周围无明显高大建筑物.

采样仪器为崂应2050型空气/智能TSP综合采样器(02代, 青岛崂山应用技术研究所), 采样流量为100L·min-1, 采样滤膜为90 mm的石英纤维滤膜(Tissuquartz, 2500qat-up, Pallflex membrane filters).各个季节的采样时间分别为秋季: 2018年10月23~29日; 冬季: 2018年12月22~28日; 春季: 2019年4月16~22日; 夏季: 2019年6月25日至7月1日, 每个样品的采样持续时间为24 h(09:00至次日09:00), 共获得55个PM2.5样品, 其中离石区27个(冬季6个), 孝义市28个.采集后的样品放入-20℃冰柜中冷藏保存.

1.2 样品的预处理及分析

取1/8滤膜置于20 mL样品瓶中, 加入二氯甲烷(DCM)∶甲醇(methanol)(2∶1, 体积比)溶液至滤膜被完全浸没.采用超声波清洗器对样品瓶进行超声萃取, 共萃取3次, 每次15 min.萃取后的溶液用巴氏滴管经玻璃棉过滤至梨形瓶中, 将梨形瓶置于旋转蒸发仪上, 经真空浓缩至少量, 并转移至气相色谱瓶内, 浓缩后溶液用氮气吹扫仪吹干.

分析仪器采用气相色谱质谱联用仪(Agilent 7890A气相色谱仪串联Agilent 5975C质谱检测器), 配置HP-5MS(30 m×0.25 mm×0.25 μm, J&W Scientific, USA)熔融石英毛细管柱, 载气为高纯氦气, 升温程序为: 初温为50℃, 保持2 min后, 以15℃·min-1的升温速率升至120℃, 再以5℃·min-1的速率升至300℃, 并在300℃下保持16 min, 进样器温度设定在280℃, 进样量为2 μL, 不分流进样.

测得的14种PAHs分别为: 菲(Phe)、蒽(Ant)、荧蒽(Fla)、芘(Pyr)、苯并[a]蒽(BaA)、(Chr)、苯并[b]荧蒽(BbF)、苯并[k]荧蒽(BkF)、苯并[e]芘(BeP)、苯并[a]芘(BaP)、苝(Pery)、茚并[123-cd]芘(IcdP)、二苯并[a, h]蒽(DahA)和苯并[g, h, i]苝(BghiP).

1.3 质量控制与质量保证

GC-MS分析时所有目标化合物的响应因子均使用可靠的标准品测定.每个季节采样完成后需进行1 d的空白样品采集, 在空白样品中未发现明显的污染(小于样品中污染的5%).目标化合物回收率在78%~103%之间.

2 结果与讨论 2.1 PAHs的污染特征

吕梁市PM2.5ρ(PAHs)为4.70~590.11 ng·m-3(年均值95.50 ng·m-3), 其中离石区PM2.5ρ(PAHs)(年均值130.47 ng·m-3)高于孝义市(年均值84.40 ng·m-3), 约为孝义市的1.5倍, 表明离石区受PAHs污染更严重.离石区采样点位于市区, 孝义市采样点位于郊区, 市区相比郊区而言, 人为活动较为频繁, 这可能是造成离石区污染严重的主要原因[28].与国内外其他城市相比, 吕梁市ρ(PAHs)高于浙北地区(年均值35.50ng·m-3)[29], 神农架大九湖(年均值30.36 ng·m-3)[30], 伊朗卡拉杰(年均值18.46 ng·m-3)[31]和韩国蔚山(年均值2.55 ng·m-3)[32], 低于詹谢普尔(年均值750.80 ng·m-3)[33], 阿迪蒂亚普尔(年均值321.71 ng·m-3)[34].

根据苯环数量及相对分子质量将所测得的14种PAHs分为: 低相对分子质量PAHs(3环, LMW)、中相对分子质量PAHs(4环, MMW)和高相对分子质量PAHs(5~6环, HMW)这3类. HMW-PAHs(5~6环)为难挥发性化合物, 主要存在于颗粒相中, 一般被认为是机动车尾气排放的标志物[35]; MMW-PAHs(4环)为半挥发性化合物, 气相和颗粒相中均占一定比例, 受温度影响较大, 当温度降低时, PAHs由气相向颗粒相富集[36], 一般被认为是燃煤排放的标志物[37]; LMW-PAHs(3环)易挥发, 主要存在于气相之中, 颗粒物中占比较低, 一般被认为是生物质燃烧的标志物[38].由图 1可知, 2个采样点不同环数PAHs的浓度存在较大差异, 但其分布特征基本一致, 均呈现HMW-PAHs(48.62%~51.53%)>MMW-PAHs(41.31%~42.96%)>LMW-PAHs(5.51%~10.07%)的规律, 根据以上分析, 这种现象可能是由PAHs自身性质及污染源的排放特性所造成的.

图 1 吕梁市PM2.5中PAHs的组成 Fig. 1 Composition of PAHs in PM2.5, Luliang City

从同系物的组成来看, 吕梁地区14种PAHs中浓度较高的依次为Fla、BbF、Chr和Pyr(>45 ng·m-3), 浓度较低的依次为Pery、Ant和BghiP(<10 ng·m-3), 与长春市[39]PM2.5中PAHs组成规律研究结果相似.BaP是致癌性PAHs的代表, 其浓度年均值为8.80 ng·m-3, 远超《环境空气质量标准》(GB 3095-2012)中所规定的浓度限值(1ng·m-3), 吕梁地区较高的BaP浓度将对人体造成较大的危害, 需引起高度重视.

2.2 PAHs季节变化特征

吕梁市春、夏、秋、冬四季ρ(PAHs)分别为(40.59±41.86)、(19.68±10.96)、(68.31±44.93)和(309.7±168.71)ng·m-3, 呈现出冬季>秋季>春季>夏季的季节性变化规律, 这与文献[40, 41]中报道的其他城市PAHs季节变化规律一致.吕梁地区冬季较高的PAHs污染水平主要与燃煤量的增加以及该季节气温低、易频繁出现逆温层、风速较小等气象条件有关.

图 2所示, 从PAHs组成来看, 离石区冬季PAHs单体浓度最高的依次为Fla、Pyr和Phe, 分别占PAHs浓度的14.6%、12.8%和10.4%; 孝义市冬季PAHs单体浓度最高的依次为Fla、Chr和BbF, 分别占PAHs浓度的13.4%、12.6%和11.8%. BbF、Pyr和Fla是煤燃烧排放最丰富的PAHs[42]; Phe被确认为是生物质燃烧的标志物[43]; Chr和BaA通常被作为天然气燃烧的化学示踪剂[44].由此可见, 吕梁地区冬季PAHs浓度可能受煤-生物质-天然气燃烧的共同影响.离石区和孝义市两地四季PAHs浓度均服从HMW>MMW>LMW的规律, 表明机动车尾气是两地PAHs的重要排放源[45].对比春夏两季, 秋冬季4环PAHs所占比例明显上升, 这一现象与集中供暖时期燃煤量大幅度增加有关[46], 同时与春夏季相比, 秋冬季较低的温度使PAHs更易由气相向颗粒相富集[47].另外, 离石区冬季3环PAHs所占比例明显上升, 可能与部分居民采用生物质燃烧方式进行取暖有关[48].

百分比表示四季不同环数PAHs的占比 图 2 吕梁市离石和孝义两地PAHs组成的季节变化 Fig. 2 Seasonal change in the composition of PAHs in Lishi and Xiaoyi, Luliang City

本研究对吕梁离石区和孝义市两地PAHs与PM2.5和气象数据之间的相关性进行评估(图 3). 在离石区(r=0.808, P<0.01)和孝义市(r=0.676, P<0.05), PAHs与PM2.5呈现显著的相关性, 这表明吕梁地区PAHs与PM2.5存在共同排放源[49], 如汽车尾气和燃烧排放等. PAHs与温度呈现显著负相关性(温度: r=-0.713, P<0.01), 温度高时有利于LMW-PAHs从颗粒相挥发到气相中, 从而使得PM2.5中PAHs浓度降低. PAHs与风速之间无显著相关性, 可能是由于大气中PAHs同时受风速和风向的影响, 这一结果与齐静文等[50]研究的结果一致.

图 3 PAHs浓度与PM2.5浓度及气象因素的相关性分析 Fig. 3 Correlation analysis of PAHs concentrations and PM2.5 concentrations and meteorological factors

2.3 健康风险评价 2.3.1 PAHs的毒性评价

BaP是最早发现的一种具有强致癌性的PAH, 比PAHs更适合做致癌性标志物[51].本文根据世界卫生组织(WHO)规定的毒性等效因子(TEFs), 以BaP为参照物, 对吕梁市PM2.5中PAHs的毒性进行评价, 见表 1. 计算过程和涉及参数见Ghanavati等[52]的研究.

表 1 吕梁市呼吸暴露PAHs的健康风险评估 Table 1 Health risk assessment of respiratory exposed PAHs in Luliang City

表 1可知, 离石区四季致癌等效浓度(TEQ)依次为夏季(2.88 ng·m-3)<春季(9.86 ng·m-3)<秋季(14.38 ng·m-3)<冬季(38.85 ng·m-3), 孝义市春、夏、秋三季TEQ基本相同, 在1.73~1.98 ng·m-3之间, 但冬季的TEQ出现剧烈增长, 达到33.59 ng·m-3, 约为其它三季的16~20倍.

从区域分布来看, 离石区TEQ高于孝义市, 表明离石区人群存在更高的致癌风险, 这与离石采样点处于市区, 人为活动相对频繁有关.

2.3.2 增量终生致癌风险(ILCR)

本研究基于US EPA健康风险评价模型, 以成人、青年和儿童为研究对象, 使用增量终生致癌风险(ILCR)[53, 54]对吕梁市通过呼吸进入人体的PAHs所产生的致癌风险进行评估, 研究结果见表 1.由于儿童、青年和成人三者呼吸速率、体重和暴露期存在较大差别, 故ILCR值也有所不同.由表 1可知, 吕梁离石区和孝义市两地ILCR值均服从成人>青年>儿童的规律, 表明PAHs对成人危害最大, 对儿童危害最小, 这可能是由于呼吸速率和暴露时间的不同而造成的[55].

根据US EPA规定, ILCR值≤10-6属于可接受水平, 10-6~10-4表明有潜在危险, >10-4表明具有较高风险[56].离石区夏季ILCR值低于10-6, 属可接受水平, 春、秋、冬三季均在10-6~10-4之内, 表明存在潜在风险.孝义市春、夏、秋三季ILCR值皆低于10-6, 属于可接受水平, 冬季在10-6~10-4之间, 对人群健康存在潜在风险.由以上分析可知, 市区PAHs潜在风险大于郊区.

2.3.3 蒙特卡洛模拟

本研究使用Crystal Ball 11.1软件进行蒙特卡罗模拟, 对儿童、青年和成人这3个年龄段受PAHs危害程度进行预测.随机模拟迭代的次数设置为10 000次.吕梁市成人、青年和儿童的平均致癌风险分别为4.54× 10-6、2.80× 10-6和2.48× 10-6, 均高于可接受致癌风险值, 低于致癌风险值上限, 表明吕梁地区PAHs对3个年龄段人群没有较高的潜在致癌威胁.

图 4所示, 不同年龄阶段致癌风险分布由蒙特卡洛模拟的4个百分位数呈现(5%、50%、90%和95%).对于3个年龄组, 在5%处, ILCR均低于可接受致癌风险值(1.0×10-6), 这表明PAHs对人群健康不造成威胁; 在50%处, 儿童和青年皆低于可接受致癌风险值, 成人致癌风险值为可接受水平的1.54倍, 这表明成人患癌症风险可能高于其他两个年龄段; 在95%处, 儿童、青年和成人的致癌风险值分别为可接受水平的4.20、6.39和10.50倍, 进一步表明吕梁市由PAHs造成的致癌风险服从成人>青年>儿童的规律.

图 4 吕梁市不同年龄阶段接触PAHs健康风险的预测概率密度函数 Fig. 4 Predicted probability density function of the health risk of exposure to PAHs at different age stages in Luliang City

2.4 PAHs源解析 2.4.1 特征比值法

大气环境中PAHs的组成特征会因为污染源燃料种类和燃烧方式的不同而产生差别, 但其相对含量却比较稳定, 本研究运用表 2中5种特征比值对吕梁市大气PAHs的主要来源进行判别.

表 2 PAHs来源区分的特征比值 Table 2 Characteristic ratio of PAHs

吕梁市不同季节大气PAHs的特征比值如表 2所示, Flu/(Pyr±Flu)的比值均大于0.5, 表明吕梁市大气PAHs主要来自于煤和生物质的燃烧; IcdP/(IcdP+BghiP)的比值为0.40~0.49, 表明机动车尾气是PAHs的重要来源; Ant/(Phe+Ant)的比值在采样期间均高于0.1, 故可推断吕梁地区大气PAHs污染受生物质燃烧影响较大; BaA/(BaA+Chr)的比值在0.28~0.51之间, 这表明PAHs来源于化石燃料和部分生物质的燃烧, 冬季比值达到最大, 为0.42±0.09, 这一现象可能与冬季集中供暖, 燃煤量上升有关; BaP/BghiP比值均大于0.6, 这表明机动车尾气排放是大气PAHs污染的重要来源.根据以上分析可知, 吕梁市大气PAHs主要来源为机动车尾气排放, 生物质燃烧以及煤炭燃烧.

2.4.2 PMF源解析

本研究利用US EPA开发的EPA PMF软件(5.0版本)对吕梁市14种PAHs的来源进行了详细分析, 分析过程和涉及参数见文献[62, 63], 各因子的来源解析成分谱如图 5所示.

图 5 基于PMF模型的吕梁市PAHs源成分谱图 Fig. 5 Source component spectrum of PAHs in Luliang City based on the PMF model

因子1(61.9%)主要由3~4环的PAHs组成, 其贡献率在51.7%~99.8%之间, 其中, Ant(99.96%)和Phe(91.94%)具有较高负荷.Ant和Phe是煤和生物质燃烧时排放的最丰富的PAH单体[64].因此, 推测因子1为煤和生物质的燃烧.

因子2(38.1%)主要由5~6环的PAHs组成, 其贡献率在38.4%~57.4%之间, 其中, BeP(57.32%)、BkF(53.12%)和BghiP(52.27%)这3种PAHs单体具有较高负荷.有研究表明, 大于等于5环PAHs主要来自于机动车尾气[65], BkF和BghiP是车辆排放的标志物[66].因此, 推测因子2为机动车尾气排放.

根据以上分析可知, 吕梁市PM2.5中PAHs主要来自于煤和生物质的燃烧以及机动车尾气, 这与特征比值法所得到的结论相同.

2.4.3 PSCF潜在源分析

为进一步探索吕梁地区PAHs的污染来源, 本研究使用MeteoInfo 3.3.7对吕梁市采样期间后向轨迹及PAHs潜在源进行分析, 分析结果如图 6所示.

图 6 吕梁市四季PM2.5中PAHs的后向轨迹及潜在源贡献分析结果 Fig. 6 Results of the backward trajectory and potential source contribution analysis of PAHs in four seasons PM2.5, Luliang City

PSCF值越高, 表明该地区产生污染的可能性越大.如图 6(a1)所示, 春季采样期间后向轨迹主要受气团2(33.33%)、气团3(25.00%)和气团5(17.26%)的影响, 根据PSCF模型分析结果图 6(a2)可知, 该季节吕梁市PAHs潜在源主要分布在山西南部、陕西中部和河南与陕西交界线处, 这是3个气团簇共同作用的结果.夏季采样期间后向轨迹如图 6(b1)所示, 主要受气团1(44.37%)、气团3(23.24%)和气团4(22.54%)的影响, 该季节PAHs潜在源分析如图 6(b2)所示, 主要位于山西南部, 受气团1影响较大.如图 6(c1)所示, 秋季采样期间后向轨迹主要受气团1(38.1%)、气团4(23.81%)和气团5(20.24%)影响, 由图 6(c2)可知, 秋季吕梁市PAHs潜在源主要分布在内蒙古西部和陕西北部, 受气团1与气团4影响较大.冬季吕梁市采样期间后向轨迹如图 6(d1)所示, 主要受气团1(16.07%)、气团2(39.29%)和气团3(19.05%)影响, 根据图 6(d2)可知, 吕梁市冬季PAHs潜在源主要分布在内蒙古西部和陕西北部, 3个气团簇皆经过两地, 到达吕梁.

根据以上分析, 吕梁市PAHs潜在来源主要分布在山西南部, 陕西北部及内蒙古西部, 这3个来源地均设有煤矿, 如山西的霍西煤田和沁水煤田、陕西的神府矿区和榆横矿区以及内蒙古的东胜煤田等, 潜在源地区污染物由气团簇传输至吕梁, 对环境空气造成危害.

3 结论

(1) 吕梁市PM2.5ρ(PAHs)年均值为95.50 ng·m-3, 以5~6环PAHs为主(49.7%), 离石区(年均值130.47 ng·m-3) PAHs浓度高于孝义市(年均值84.4 ng·m-3), 约为孝义市的1.5倍, 高致癌性BaP(年均值8.80 ng·m-3)超过国家规定的浓度限值. 吕梁市PAHs浓度呈现冬季>秋季>春季>夏季的季节性变化规律. 大气PAHs浓度与PM2.5呈正相关, 与温度呈负相关, 与风速无显著相关性.

(2) 吕梁离石区和孝义市两地ILCR值均服从成人>青年>儿童的规律.离石区除夏季外, ILCRs值均在10-6~10-4之间, 远高于孝义市, 表明市区存在较高的潜在致癌风险.

(3) 吕梁市PM2.5中PAHs主要来自于煤和生物质的燃烧(61.9%)以及机动车尾气(38.1%), PAHs潜在源主要分布在山西南部、陕西北部及内蒙古西部.

参考文献
[1] Baalbaki R, Nassar J, Salloum S, et al. Comparison of atmospheric polycyclic aromatic hydrocarbon levels in three urban areas in Lebanon[J]. Atmospheric Environment, 2018, 179: 260-267. DOI:10.1016/j.atmosenv.2018.02.028
[2] Mallah M A, Changxing L, Mallah M A, et al. Polycyclic aromatic hydrocarbon and its effects on human health: an overeview[J]. Chemosphere, 2022, 296. DOI:10.1016/j.chemosphere.2022.133948
[3] Reizer E, Viskolcz B, Fiser B. Formation and growth mechanisms of polycyclic aromatic hydrocarbons: a mini-review[J]. Chemosphere, 2022, 291. DOI:10.1016/j.chemosphere.2021.132793
[4] Yu Y, Katsoyiannis A, Bohlin-Nizzetto P, et al. Polycyclic aromatic hydrocarbons not declining in arctic air despite global emission reduction[J]. Environmental Science & Technology, 2019, 53(5): 2375-2382.
[5] Hu T P, Zhang J Q, Xing X L, et al. Seasonal variation and health risk assessment of atmospheric PM2.5-bound polycyclic aromatic hydrocarbons in a classic agglomeration industrial city, central China[J]. Air Quality, Atmosphere & Health, 2018, 11(6): 683-694.
[6] Yadav I C, Devi N L, Li J, et al. Altitudinal and spatial variations of polycyclic aromatic hydrocarbons in Nepal: implications on source apportionment and risk assessment[J]. Chemosphere, 2018, 198: 386-396. DOI:10.1016/j.chemosphere.2018.01.075
[7] Zhang Y P, Chen J, Yang H N, et al. Seasonal variation and potential source regions of PM2.5-bound PAHs in the megacity Beijing, China: impact of regional transport[J]. Environmental Pollution, 2017, 231: 329-338. DOI:10.1016/j.envpol.2017.08.025
[8] Jia J P, Deng L, Bi C J, et al. Seasonal variations, gas-PM2.5 partitioning and long-distance input of PM2.5-bound and gas-phase polycyclic aromatic hydrocarbons in Shanghai, China[J]. Atmospheric Environment, 2021, 252. DOI:10.1016/j.atmosenv.2021.118335
[9] Liu Y, Yan C Q, Ding X, et al. Sources and spatial distribution of particulate polycyclic aromatic hydrocarbons in Shanghai, China[J]. Science of the Total Environment, 2017, 584-585: 307-317. DOI:10.1016/j.scitotenv.2016.12.134
[10] Wang T, Xia Z H, Wu M M, et al. Pollution characteristics, sources and lung cancer risk of atmospheric polycyclic aromatic hydrocarbons in a new urban district of Nanjing, China[J]. Journal of Environmental Sciences, 2017, 55: 118-128. DOI:10.1016/j.jes.2016.06.025
[11] 姬莞莞, 邰超, 宋党育, 等. PM2.5中多环芳烃的污染特征及源解析: 以河南省焦作市为例[J]. 环境科学与技术, 2017, 40(4): 92-99.
Ji W W, Tai C, Song D Y, et al. Pollution characteristics and source apportionment of atmospheric PAHs in PM2.5: a case study in Jiaozuo City[J]. Environmental Science & Technology, 2017, 40(4): 92-99.
[12] Li K J, Talifu D, Gao B, et al. Temporal distribution and source apportionment of composition of ambient PM2.5 in Urumqi, North-West China[J]. Atmosphere, 2022, 13(5). DOI:10.3390/atmos13050781
[13] Chen Y, Li X H, Zhu T L, et al. PM2.5bound PAHs in three indoor and one outdoor air in Beijing: concentration, source and health risk assessment[J]. Science of the Total Environment, 2017, 586: 255-264. DOI:10.1016/j.scitotenv.2017.01.214
[14] Yan D H, Wu S H, Zhou S L, et al. Characteristics, sources and health risk assessment of airborne particulate PAHs in Chinese cities: a review[J]. Environmental Pollution, 2019, 248: 804-814. DOI:10.1016/j.envpol.2019.02.068
[15] Hassan S K. Particle-bound polycyclic aromatic hydrocarbon in the atmosphere of heavy traffic areas in Greater Cairo, Egypt: status, source, and human health risk assessment[J]. Atmosphere, 2018, 9(10). DOI:10.3390/atmos9100368
[16] Shin S M, Lee J Y, Shin H J, et al. Seasonal variation and source apportionment of oxygenated polycyclic aromatic hydrocarbons(OPAHs) and polycyclic aromatic hydrocarbons(PAHs) in PM2.5 in Seoul, Korea[J]. Atmospheric Environment, 2022, 272. DOI:10.1016/j.atmosenv.2022.118937
[17] Zhan L X, Huang H F, Zhao S Z, et al. Comparison of atmospheric polycyclic aromatic hydrocarbons(PAHs) over six years at a CAWNET background site in central China: changes of seasonal variations and potential sources[J]. Chemosphere, 2022, 299. DOI:10.1016/j.chemosphere.2022.134298
[18] Kumar A, Sankar T K, Sethi S S, et al. Characteristics, toxicity, source identification and seasonal variation of atmospheric polycyclic aromatic hydrocarbons over east India[J]. Environmental Science and Pollution Research, 2020, 27(1): 678-690. DOI:10.1007/s11356-019-06882-5
[19] Akhbarizadeh R, Dobaradaran S, Amouei Torkmahalleh M, et al. Suspended fine particulate matter(PM2.5), microplastics(MPs), and polycyclic aromatic hydrocarbons(PAHs) in air: their possible relationships and health implications[J]. Environmental Research, 2021, 192. DOI:10.1016/j.envres.2020.110339
[20] Matos J, Silveira C, Cerqueira M. Particle-bound polycyclic aromatic hydrocarbons in a rural background atmosphere of southwestern Europe[J]. Science of the Total Environment, 2021, 787. DOI:10.1016/j.scitotenv.2021.147666
[21] Gope M, Masto R E, Basu A, et al. Elucidating the distribution and sources of street dust bound PAHs in Durgapur, India: a probabilistic health risk assessment study by Monte-Carlo simulation[J]. Environmental Pollution, 2020, 267. DOI:10.1016/j.envpol.2020.115669
[22] Wang W, Ding X, Turap Y, et al. Distribution, sources, risks, and vitro DNA oxidative damage of PM2.5-bound atmospheric polycyclic aromatic hydrocarbons in Urumqi, NW China[J]. Science of the Total Environment, 2020, 739. DOI:10.1016/j.scitotenv.2020.139518
[23] Ishtiaq J, Syed J H, Jadoon W A, et al. Atmospheric polycyclic aromatic hydrocarbons(PAHs) at urban settings in Pakistan: spatial variations, sources and health risks[J]. Chemosphere, 2021, 274. DOI:10.1016/j.chemosphere.2021.129811
[24] 国家统计局. 中国统计年鉴-2021[M]. 北京: 中国统计出版社, 2021.
[25] 山西省统计局, 国家统计局山西调查总队. 山西统计年鉴-2021[M]. 北京: 中国统计出版社, 2021.
[26] 郭志明, 刘頔, 林田, 等. 太原城区PM2.5中多环芳烃、硝基多环芳烃的污染特征、来源解析和健康风险评价[J]. 环境科学学报, 2018, 38(3): 1102-1108.
Guo Z M, Liu D, Lin T, et al. Concentration, source identification, and exposure risk assessment of PM2.5-bound PAHs and nitro-PAHs in the atmosphere of Taiyuan[J]. Acta Scientiae Circumstantiae, 2018, 38(3): 1102-1108.
[27] 高兴艾, 裴坤宁, 王淑敏, 等. 汾渭平原吕梁市颗粒物潜在源及输送通道分析[J]. 中国环境科学, 2022, 42(7): 2988-2999.
Gao X A, Pei K N, Wang S M, et al. Analysis on the potential source and transmission channel of particulate matter in Lüliang City, Fenwei Plain[J]. China Environmental Science, 2022, 42(7): 2988-2999. DOI:10.3969/j.issn.1000-6923.2022.07.002
[28] Shahsavani S, Hoseini M, Dehghani M, et al. Characterisation and potential source identification of polycyclic aromatic hydrocarbons in atmospheric particles(PM10) from urban and suburban residential areas in Shiraz, Iran[J]. Chemosphere, 2017, 183: 557-564. DOI:10.1016/j.chemosphere.2017.05.101
[29] 徐宏辉, 徐婧莎, 何俊, 等. 浙北地区PM2.5中多环芳烃特征[J]. 中国环境科学, 2018, 38(9): 3247-3253.
Xu H H, Xu J S, He J, et al. Characteristics analyses of PAHs in PM2.5 in the northern Zhejiang Province[J]. China Environmental Science, 2018, 38(9): 3247-3253.
[30] 金梦云, 邢新丽, 柯艳萍, 等. 神农架大九湖大气中的多环芳烃[J]. 环境科学, 2017, 38(5): 1760-1768.
Jin M Y, Xing X L, Ke Y P, et al. Polycyclic aromatic hydrocarbons in the atmosphere of Dajiuhu, Shennongjia, China[J]. Environmental Science, 2017, 38(5): 1760-1768. DOI:10.13227/j.hjkx.201609235
[31] Azimi-Yancheshmeh R, Moeinaddini M, Feiznia S, et al. Seasonal and spatial variations in atmospheric PM2.5-bound PAHs in Karaj City, Iran: sources, distributions, and health risks[J]. Sustainable Cities and Society, 2021, 72. DOI:10.1016/j.scs.2021.103020
[32] Nguyen T N T, Jung K S, Son J M, et al. Seasonal variation, phase distribution, and source identification of atmospheric polycyclic aromatic hydrocarbons at a semi-rural site in Ulsan, South Korea[J]. Environmental Pollution, 2018, 236: 529-539. DOI:10.1016/j.envpol.2018.01.080
[33] Ambade B, Kumar A, Kumar A, et al. Temporal variability of atmospheric particulate-bound polycyclic aromatic hydrocarbons(PAHs) over central east India: sources and carcinogenic risk assessment[J]. Air Quality, Atmosphere & Health, 2022, 15(1): 115-130.
[34] Ambade B, Kumar A, Sahu L K. Characterization and health risk assessment of particulate bound polycyclic aromatic hydrocarbons(PAHs) in indoor and outdoor atmosphere of central east India[J]. Environmental Science and Pollution Research, 2021, 28(40): 56269-56280. DOI:10.1007/s11356-021-14606-x
[35] Famiyeh L, Chen K, Xu J S, et al. A review on analysis methods, source identification, and cancer risk evaluation of atmospheric polycyclic aromatic hydrocarbons[J]. Science of the Total Environment, 2021, 789. DOI:10.1016/j.scitotenv.2021.147741
[36] 周变红, 张承中, 王格慧. 西安城区大气中多环芳烃的季节变化特征及健康风险评价[J]. 环境科学学报, 2012, 32(9): 2324-2331.
Zhou B H, Zhang C Z, Wang G H. Seasonal variation and health risk assessment of atmospheric polycyclic aromatic hydrocarbons(PAHs) in the urban area of Xi'an[J]. Acta Scientiae Circumstantiae, 2012, 32(9): 2324-2331. DOI:10.13671/j.hjkxxb.2012.09.024
[37] Mehmood T, Zhu T L, Ahmad I, et al. Ambient PM2.5 and PM10 bound PAHs in Islamabad, Pakistan: concentration, source and health risk assessment[J]. Chemosphere, 2020, 257. DOI:10.1016/j.chemosphere.2020.127187
[38] Siudek P. Polycyclic aromatic hydrocarbons in coarse particles(PM10) over the coastal urban region in Poland: Distribution, source analysis and human health risk implications[J]. Chemosphere, 2023, 311. DOI:10.1016/j.chemosphere.2022.137130
[39] 张艺璇, 曹芳, 郑涵, 等. 2017年秋季长春市PM2.5中多环芳烃的污染来源及健康风险评价[J]. 环境科学, 2020, 41(2): 564-573.
Zhang Y X, Cao F, Zheng H, et al. Source apportionment and health risk assessment of polycyclic aromatic hydrocarbons in PM2.5 in Changchun City, autumn of 2017[J]. Environmental Science, 2020, 41(2): 564-573.
[40] Singh B P, Zughaibi T A, Alharthy S A, et al. Statistical analysis, source apportionment, and toxicity of particulate- and gaseous-phase PAHs in the urban atmosphere[J]. Frontiers in Public Health, 2023, 10. DOI:10.3389/fpubh.2022.1070663
[41] Khan M B, Masiol M, Bruno C, et al. Potential sources and meteorological factors affecting PM2.5-bound polycyclic aromatic hydrocarbon levels in six main cities of northeastern Italy: an assessment of the related carcinogenic and mutagenic risks[J]. Environmental Science and Pollution Research, 2018, 25(32): 31987-32000. DOI:10.1007/s11356-018-2841-1
[42] Ray D, Chatterjee A, Majumdar D, et al. Polycyclic aromatic hydrocarbons over a tropical urban and a high altitude Himalayan station in India: temporal variation and source apportionment[J]. Atmospheric Research, 2017, 197: 331-341. DOI:10.1016/j.atmosres.2017.07.010
[43] Gurkan Ayyildiz E, Esen F. Atmospheric polycyclic aromatic hydrocarbons(PAHs) at two sites, in bursa, turkey: determination of concentrations, gas-particle partitioning, sources, and health risk[J]. Archives of Environmental Contamination and Toxicology, 2020, 78(3): 350-366. DOI:10.1007/s00244-019-00698-7
[44] Davoudi M, Esmaili-Sari A, Bahramifar N, et al. Spatio-temporal variation and risk assessment of polycyclic aromatic hydrocarbons(PAHs) in surface dust of qom metropolis, Iran[J]. Environmental Science and Pollution Research, 2021, 28(8): 9276-9289. DOI:10.1007/s11356-020-08863-5
[45] Wang X S, Chen M Q, Zheng X. Polycyclic aromatic hydrocarbons(PAHs) in Xuzhou urban street dust: concentration and sources[J]. Environmental Earth Sciences, 2017, 76(16). DOI:10.1007/s12665-017-6922-0
[46] 王占祥, 郭久久, 穆熙, 等. 宁东基地大气PAHs污染特征及呼吸暴露风险[J]. 中国环境科学, 2019, 39(7): 3102-3112.
Wang Z X, Guo J J, Mu X, et al. Pollution characteristics and inhalation exposure risk of atmospheric PAHs in Ningdong base[J]. China Environmental Science, 2019, 39(7): 3102-3112. DOI:10.19674/j.cnki.issn1000-6923.2019.0366
[47] Ali-Taleshi M S, Moeinaddini M, Riyahi Bakhtiari A, et al. A one-year monitoring of spatiotemporal variations of PM2.5-bound PAHs in Tehran, Iran: source apportionment, local and regional sources origins and source-specific cancer risk assessment[J]. Environmental Pollution, 2021, 274. DOI:10.1016/j.envpol.2020.115883
[48] Feng X X, Feng Y L, Chen Y J, et al. Source apportionment of PM2.5 during haze episodes in Shanghai by the PMF model with PAHs[J]. Journal of Cleaner Production, 2022, 330. DOI:10.1016/j.jclepro.2021.129850
[49] Kumar A, Ambade B, Sankar T K, et al. Source identification and health risk assessment of atmospheric PM2.5-bound polycyclic aromatic hydrocarbons in Jamshedpur, India[J]. Sustainable Cities and Society, 2020, 52. DOI:10.1016/j.scs.2019.101801
[50] 齐静文, 张瑞芹, 姜楠, 等. 洛阳市秋冬季PM2.5中多环芳烃的污染特征、来源解析及健康风险评价[J]. 环境科学, 2021, 42(2): 595-603.
Qi J W, Zhang R Q, Jiang N, et al. Characterization, sources, and health risks of PM2.5-bound PAHs during autumn and winter in Luoyang City[J]. Environmental Science, 2021, 42(2): 595-603.
[51] Petry T, Schmid P, Schlatter C. The use of toxic equivalency factors in assessing occupational and environmental health risk associated with exposure to airborne mixtures of polycyclic aromatic hydrocarbons(PAHs)[J]. Chemosphere, 1996, 32(4): 639-648. DOI:10.1016/0045-6535(95)00348-7
[52] Ghanavati N, Nazarpour A, Watts M J. Status, source, ecological and health risk assessment of toxic metals and polycyclic aromatic hydrocarbons(PAHs) in street dust of Abadan, Iran[J]. CATENA, 2019, 177: 246-259. DOI:10.1016/j.catena.2019.02.022
[53] Zhen Z X, Yin Y, Chen K, et al. Concentration and atmospheric transport of PM2.5-bound polycyclic aromatic hydrocarbons at Mount Tai, China[J]. Science of the Total Environment, 2021, 786. DOI:10.1016/j.scitotenv.2021.147513
[54] Sulong N A, Latif M T, Sahani M, et al. Distribution, sources and potential health risks of polycyclic aromatic hydrocarbons(PAHs) in PM2.5 collected during different monsoon seasons and haze episode in Kuala Lumpur[J]. Chemosphere, 2019, 219: 1-14. DOI:10.1016/j.chemosphere.2018.11.195
[55] Wang Y, Zhang H, Zhang X, et al. Abundance, source apportionment and health risk assessment of polycyclic aromatic hydrocarbons and nitro-polycyclic aromatic hydrocarbons in PM2.5 in the urban atmosphere of Singapore[J]. Atmosphere, 2022, 13(9). DOI:10.3390/atmos13091420
[56] Alghamdi M A, Hassan S K, Alzahrani N A, et al. Classroom dust-bound polycyclic aromatic hydrocarbons in jeddah primary schools, saudi arabia: level, characteristics and health risk assessment[J]. International Journal of Environmental Research and Public Health, 2020, 17(8). DOI:10.3390/ijerph17082779
[57] Nargis A, Habib A, Zhao S Z, et al. Monitoring of atmospheric polycyclic aromatic hydrocarbons by polyurethane foam-passive air samplers in Bangladesh: source apportionment and health risk assessment[J]. Atmospheric Environment, 2022, 289. DOI:10.1016/j.atmosenv.2022.119346
[58] Jahedi F, Dehdari Rad H, Goudarzi G, et al. Polycyclic aromatic hydrocarbons in PM1, PM2.5 and PM10 atmospheric particles: identification, sources, temporal and spatial variations[J]. Journal of Environmental Health Science and Engineering, 2021, 19(1): 851-866. DOI:10.1007/s40201-021-00652-7
[59] Zhang Q J, Yang L, Zhang Y J, et al. PM2.5-PAHs and PM10-PAHs at roadside environment: levels, meteorological impact, source apportionment, and health risks[J]. Air Quality, Atmosphere & Health, 2022, 15(7): 1287-1301.
[60] Khanal R, Furumai H, Nakajima F, et al. Carcinogenic profile, toxicity and source apportionment of polycyclic aromatic hydrocarbons accumulated from urban road dust in Tokyo, Japan[J]. Ecotoxicology and Environmental Safety, 2018, 165: 440-449. DOI:10.1016/j.ecoenv.2018.08.095
[61] Marinaite I, Penner I, Molozhnikova E, et al. Polycyclic aromatic hydrocarbons in the atmosphere of the southern Baikal region(Russia): sources and relationship with meteorological conditions[J]. Atmosphere, 2022, 13(3). DOI:10.3390/atmos13030420
[62] 王思宇. 应用PMF和PCA/APCS方法探究长春市大气中PM2.5来源[D]. 长春: 吉林大学, 2016.
[63] Galvão E S, Paiva H B, Menezes H C, et al. Cancer risk assessment and source apportionment of the gas- and particulate-phase of the polycyclic aromatic hydrocarbons in a metropolitan region in Brazil[J]. Chemosphere, 2023, 311. DOI:10.1016/j.chemosphere.2022.136872
[64] Wu X M, Sun W J, Huai B J, et al. Seasonal variation and sources of atmospheric polycyclic aromatic hydrocarbons in a background site on the Tibetan Plateau[J]. Journal of Environmental Sciences, 2023, 125: 524-532. DOI:10.1016/j.jes.2022.02.042
[65] Aminiyan M M, Kalantzi O I, Etesami H, et al. Occurrence and source apportionment of polycyclic aromatic hydrocarbons(PAHs) in dust of an emerging industrial city in Iran: implications for human health[J]. Environmental Science and Pollution Research, 2021, 28(44): 63359-63376.
[66] Sun Y W, Chen J, Qin W H, et al. Gas-PM2.5 partitioning, health risks, and sources of atmospheric PAHs in a northern China city: impact of domestic heating[J]. Environmental Pollution, 2022, 313. DOI:10.1016/j.envpol.2022.120156