环境科学  2023, Vol. 44 Issue (9): 5125-5134   PDF    
有机碳流失对土壤侵蚀的响应及其驱动因素: 基于Meta分析
刘小岚1, 黄金权1,2,3, 齐瑜洁1, 李威闻1, 刘纪根2,3, 陈燕飞1, 高绣纺1     
1. 长江大学资源与环境学院, 武汉 430100;
2. 长江水利委员会长江科学院, 武汉 430010;
3. 水利部山洪地质灾害防治工程技术研究中心, 武汉 430010
摘要: 土壤侵蚀是土壤有机碳(SOC)流失的主要驱动力,在全球碳循环中发挥着重要作用.评估侵蚀作用下SOC流失的主要驱动因素及其影响程度有助于深入理解土壤侵蚀作用下SOC的流失机制.因此,通过Meta分析方法,基于2007~2021年间国内外期刊上发表的24个案例,研究了不同气候因素(气候类型、降雨量和降雨强度)和土壤因素(土壤类型、容重和团聚体粒径)条件下土壤侵蚀对中国SOC流失的影响.结果表明:①与无侵蚀扰动相比,侵蚀作用下SOC含量显著下降(整体下降16.0%),表现出明显的负响应特征;②侵蚀背景下SOC对不同因子的负响应程度为:降雨强度(65.0%)>降雨量(24.3%)>土壤类型(21.4%)>容重(20.2%)>团聚体粒径(16.5%)>气候类型(9.1%);③主成分分析显示,侵蚀背景下气候因素相对于土壤因素是影响SOC流失的主导因素,降雨强度则再次显示为关键影响因子.深入分析我国土壤侵蚀作用下SOC流失特征及其影响因素,为系统理解土壤侵蚀在碳循环中的作用提供了理论参考.
关键词: 土壤侵蚀      土壤有机碳(SOC)      气候因素      土壤因素      Meta分析     
Response of Organic Carbon Loss to Soil Erosion and Its Drivers: A Meta-analysis
LIU Xiao-lan1 , HUANG Jin-quan1,2,3 , QI Yu-jie1 , LI Wei-wen1 , LIU Ji-gen2,3 , CHEN Yan-fei1 , GAO Xiu-fang1     
1. School of Resources and Environment, Yangtze University, Wuhan 430100, China;
2. Yangtze River Scientific Research Institute, Yangtze River Water Resources Commission, Wuhan 430010, China;
3. Engineering Research Center of Mountain Flood Geological Disaster Prevention and Control, Ministry of Water Resources, Wuhan 430010, China
Abstract: Soil erosion is the main driving force of soil organic carbon (SOC) loss and plays an important role in the global carbon cycle. It is helpful to understand the mechanism of SOC loss under soil erosion by evaluating the main driving factors of SOC loss under soil erosion and their influence degree. Therefore, based on 24 cases published in domestic and foreign journals from 2007 to 2021, this study investigated the effects of soil erosion on SOC loss in China under different climatic factors (climate types, rainfall, and rainfall intensity) and soil factors (soil types, bulk density, and aggregate size) by using Meta-analysis. The results showed that: ① compared with that under no erosion disturbance, the SOC content under erosion decreased significantly (overall decreased 16.0%), showing obvious negative response characteristics. ② Under the erosion background, the negative response degree of SOC to different factors was as follows: rainfall intensity (65.0%)>mean annual rainfall (24.3%)>soil types (21.4%)>bulk density (20.2%)>aggregate size (16.5%)>climate types (9.1%). ③ Principal component analysis showed that climate was the dominant factor affecting SOC loss, and rainfall intensity was again shown to be the key factor. In this study, the characteristics and influencing factors of SOC loss under soil erosion in China were analyzed, which provided theoretical reference for the systematic understanding of the role of soil erosion in the carbon cycle.
Key words: soil erosion      soil organic carbon(SOC)      climate factors      soil factors      Meta-analysis     

土壤碳库是陆地生态系统碳库中最大的碳库, 据估计, 其碳储量约为大气碳库的2~3倍和植被碳库的3~4倍[1].土壤有机碳(soil organic carbon, SOC)作为土壤碳库的主要组成部分, 其动态变化主要受到土壤侵蚀的作用[2, 3].土壤侵蚀是一种常见的自然地理现象和土壤退化过程, 包括表土的分离、分解、迁移和沉积, 其通过影响土壤表层物质的再分布, 进而影响SOC的动态变化[1~3].全球每年因土壤侵蚀造成的土壤碳发生迁移分布的量达到10~50亿t[4].据估算[5], 中国土壤总有机碳库接近90 Pg.然而, 作为世界上水土流失较为严重的国家之一[6], 自1970年以来我国土壤碳库损失量已高达70 Tg[7], 其中土壤侵蚀发挥了十分重要的驱动作用.初步研究显示[6, 8], 我国每年因土壤侵蚀导致的有机碳流失量(以C计)约占到总流失量的25.7%, 高达(180±80)Mt·a-1.鉴于此, 探明土壤侵蚀对SOC动态过程的作用机制对于全球碳循环研究具有重要意义.

土壤侵蚀对SOC流失的作用受到许多因素的影响, 如地形、土壤、植被和气候等, 其中气候因素和土壤因素被证实为最强烈的因素[9, 10].侵蚀对SOC流失的作用过程从微观上看是降雨侵蚀力与土壤抗蚀性的相对抗, 一方面, 降雨侵蚀力为SOC的迁移提供动力; 另一方面, 土壤抗蚀性阻抗降雨冲刷侵蚀强度, 减少SOC流失[11].有研究表明, 土壤侵蚀对土壤碳流失过程的影响主要受控于气候因素和土壤因素[12, 13].有研究发现气候因素中降雨量只有达到一定程度才会发生土壤侵蚀[14], 但降雨径流会冲刷土壤颗粒导致土壤团聚体破碎释放SOC[15, 16].针对降雨强度对SOC流失的影响, Strickland等[17]和Ramos等[18]认为在大降雨强度下更容易发生SOC流失, 然而Jacinthe等[19]却认为在较大的降雨强度下, SOC流失反而减少, Beguería等[10]甚至认为降雨强度与SOC流失之间没有显著的关系.土壤因素方面, 有研究认为土壤类型是影响SOC含量的主要因素, 土壤容重与SOC呈显著负相关[20, 21], 并且发现土壤侵蚀过程中SOC的动态变化还与不同粒级团聚体的分布情况有关[22], SOC流失与团聚体粒径之间存在显著负相关关系[23, 24], 这一现象的出现被认为是含有较高SOC的团聚体被雨滴形成的薄片流优先运移所致[25].然而, 这些研究大多集中在土壤侵蚀对SOC作用的单一因素上, 在大尺度上系统性探索其主要驱动因素及其影响机制尚不多见.

鉴于此, 本研究利用已在中国开展的24项研究的数据进行Meta分析, 系统性探索SOC流失对土壤侵蚀的响应.目标包括:①揭示土壤侵蚀与SOC含量变化的关系; ②厘清土壤侵蚀作用于SOC含量变化的驱动因素; ③研究各驱动因素在土壤侵蚀-SOC含量关系与作用机制中的贡献特征; ④分析土壤侵蚀影响SOC含量变化的主导因素及其影响机制.本研究将有助于深入理解土壤侵蚀对于陆地碳循环中的驱动过程, 以期为当前“碳达峰与碳中和”战略实施提供科学依据.

1 材料与方法 1.1 文献检索

利用Web of Science(https://www.webofscience.com)、中国知网(CNKI, https://kns.cnki.net)和万方(https://www.wanfangdata.com.cn)的中英文数据库, 以“soil erosion”、“water erosion”、“SOC and soil erosion”、“rainfall or rain erosion”、“土壤侵蚀”、“土壤有机碳”、“有机碳”、“降雨侵蚀”、“水蚀”和“侵蚀”等为关键词进行文献检索, 筛选收集发表于2007~2021年的“土壤侵蚀与有机碳”相关研究论文进行Meta分析(图 1).

图 1 文献筛选 Fig. 1 Literature screening

为满足Meta分析标准, 获得高质量数据集, 用以下标准进行文章筛选:①研究试验为田间定位试验; ②试验中必须包括对照组(无侵蚀影响)和处理组(侵蚀影响); ③所提供的土壤侵蚀数据有试验的样本重复数、标准差和有机碳数据; ④研究地点在中国.根据筛选标准, 最终获得24篇符合要求的文献以及122组数据.

为满足来自不同研究独立观察的统计要求, 收集每一个试验的最后一次观察数据.所选取的指标, 如地点位置、pH、侵蚀类型、气候类型、土壤容重、土壤类型和年均温度的数据直接从收集文献中的文字内容和表格获取, 而降雨量、降雨强度、SOC和团聚体粒径的数据使用GetData(版本2.20)从筛选文献的图中提取.

1.2 数据分组

气候类型、降雨量、降雨强度、土壤类型、容重和团聚体粒径等因子均会影响SOC流失对土壤侵蚀的响应, 本文对已有数据进行分组, 试图研究某一特定因素如何调控土壤侵蚀对SOC流失的影响, 具体分类见表 1.

表 1 数据分类依据 Table 1 Data classification basis

1.3 Meta分析

使用Hedges等[26]、Lajeunesse[27]和张彦军等[28]的Meta分析方法来分析数据.通过MetaWin2.1软件, 分别输入处理组和对照组SOC的均值(mean)、标准差(SD)、样本数量(N)和分类变量, 计算响应比(RR).根据响应比(RR)来反映土壤侵蚀对SOC的影响程度[26].

(1)

式中, Xt为土壤侵蚀条件下的SOC均值, Xc为无土壤侵蚀条件下的SOC均值, RR>0, 表明土壤侵蚀对响应变量具有正响应, 即土壤侵蚀会增加SOC的流失.RR的方差(v)计算公式为:

(2)

式中, NtNc分别是土壤侵蚀和无土壤侵蚀的样本数量, SDc和SDt分别是对照组和处理组的方差(SD=SE )[27].

使用MetaWin2.1软件计算响应比, 再用随机效应模型计算平均加权响应比RR++

(3)

加权标准误差(S)的计算公式为:

(4)

95%置信区间(95%CI)的计算公式为:

(5)

式中, i=1, 2, 3, …, m; j=1, 2, 3, …, k; m是组的数量, k为第i组中的比较数量, Wij为RR++的权重, RR++为正值时则为正响应, 否则为负响应.当置信区间包含0, 土壤侵蚀对SOC不显著(P>0.05).当置信区间全部大于0, 土壤侵蚀显著增加SOC(P < 0.05), 反之, 土壤侵蚀显著减少SOC(P < 0.05)[28, 29].

2 结果与分析 2.1 SOC流失对土壤侵蚀的响应特征

土壤侵蚀造成SOC流失, SOC对土壤侵蚀表现出明显的负响应特征.从图 2可以看出, SOC对土壤侵蚀的响应比为-0.160, 置信区间为-0.267~-0.054, P < 0.05, 说明土壤侵蚀对SOC具有显著负响应, 即土壤侵蚀导致SOC的流失.研究结果显示, 气候类型、降雨量、降雨强度、容重、土壤类型和团聚体粒径导致SOC含量显著下降(P < 0.05).各因子通过影响土壤侵蚀进而导致SOC含量下降的程度为:降雨强度(65.0%)>年均降雨量(24.3%)>土壤类型(21.4%)>容重(20.2%)>团聚体粒径(16.5%)>气候类型(9.1%).

数据以具有95%置信区间的加权响应比表示, 括号中的数值为样本中数据个数, *表示具有统计意义(P < 0.05) 图 2 气候因素(气候类型、年均降雨量和降雨强度)和土壤因素(容重、团聚体粒径和土壤类型)的加权响应比 Fig. 2 Weighted response ratios of climatic factors (climate type, average annual rainfall, and rainfall intensity) and soil factors(bulk density, aggregate size, and soil type)

2.2 SOC流失响应土壤侵蚀的驱动因素分析

气候因素是影响SOC流失的重要因素, 主要包括气候类型、降雨量和降雨强度等因子.除大陆性气候和亚热带季风气候下土壤侵蚀对SOC流失的影响显著外[图 3(a), P < 0.05], SOC的减少在其他不同气候类型下差异不显著(P>0.05).其中, 大陆性气候下SOC减少程度最大(52.3%, P < 0.05), 亚热带季风气候下SOC减少程度最小(14.6%, P < 0.05).

数据以具有95%置信区间的加权响应比表示, 括号中的数值为样本中数据个数, *表示具有统计意义(P < 0.05) 图 3 加权响应比在不同气候类型、年均降雨量和降雨强度的变化特征 Fig. 3 Variation characteristics of weighted response ratio in different climate types, average annual rainfall, and rainfall intensity

考虑降雨量的整体数据, 除降雨量 < 500 mm条件下的侵蚀发生对SOC的影响不显著外[图 3(b), P>0.05], 其他不同降雨量条件下SOC流失对土壤侵蚀的响应差异均显著(P < 0.05).以未发生土壤侵蚀作为对照, 土壤侵蚀作用下的SOC含量减少程度在不同降雨量下呈现出500~1 000 mm(35.3%)>1 000~1 500 mm(20.7%)[图 3(b)]的趋势, RR值随降雨量的增加也逐渐减少.

在降雨强度整体数据中, 以未发生土壤侵蚀为对照, 除了降雨强度为1.0~2 mm·min-1时不显著外(P>0.05), 土壤侵蚀作用下不同降雨强度均显著减少SOC含量, 减少程度范围在4.5%~123.0%之间[图 3(c)].在降雨强度 < 1mm·min-1和>2mm·min-1时SOC含量分别减少4.5%和123.0%.

土壤特性也是影响SOC流失的一个重要因素, 相关因子包括土壤容重、团聚体粒径和土壤类型, 图 4分别为土壤容重、土壤团聚体粒径以及土壤类型下SOC受土壤侵蚀影响的加权响应比.在土壤侵蚀条件下, SOC含量在容重影响下呈现减少的趋势[图 4(a), P < 0.05], 显著下降20.2%.

数据以具有95%置信区间的加权响应比表示, 括号中的数值为样本中数据个数, *表示具有统计意义(P < 0.05) 图 4 SOC在容重、不同团聚体粒径和土壤类型下对土壤侵蚀的加权响应比 Fig. 4 Weighted response ratio of SOC to soil erosion under bulk density, different aggregate size, and soil types

以未发生土壤侵蚀作对照组, 可以观察到土壤侵蚀对SOC含量减少程度因团聚体粒径的不同而发生显著差异[图 4(b), RR=-0.165], 但是只有团聚体粒径 < 0.053 mm时对SOC含量呈显著影响(P < 0.05).并且, 团聚体粒径 < 0.053 mm时, SOC减少的程度最大, 为29.9%(RR=-0.299, P < 0.05).

相较于对照组, 除了紫色土和黄壤对SOC含量影响不显著外(P>0.05), 不同土壤类型对土壤侵蚀影响SOC含量变化表现为显著负响应[图 4(c), P < 0.05], 土壤侵蚀作用下SOC的减少幅度在不同土壤类型间呈现黑土(55.5%, P < 0.05)>红壤(16.4%, P < 0.05)的趋势.

2.3 SOC流失响应比与驱动因素的相关性分析

图 5显示, SOC流失响应比与年平均气温(MAT)不相关(r=-0.107 5, P=0.308 0), 与pH显著相关(r=0.337 8, P=0.038 1).当pH为4.81时, 土壤侵蚀对SOC流失的作用最强, SOC响应比随着pH值的减少呈上升趋势.

图 5 SOC响应比(RR)与年平均温度(MAT)和pH的关系 Fig. 5 Correlation between SOC response ratio (RR) and mean annual temperature (MAT) and pH

SOC流失响应比与降雨量呈显著正相关关系[图 6(a), r=0.220 8, P=0.041 1], 与降雨强度呈显著负相关关系[图 6(b), r=-0.249 2, P=0.048 9]; 此外, SOC流失响应比与容重[图 6(c), r=0.944 4, P=0.015 6]呈正相关关系, 与土壤团聚体粒径[图 6(d), r=-0.448 1, P=0.014 8]呈显著负相关关系.

阴影部分为95%置信带, 红线为数据点的线性拟合 图 6 SOC响应比(RR)与年平均降雨量、降雨强度、容重和团聚体粒径的RR关系 Fig. 6 Correlation between SOC response ratio (RR) and annual average rainfall, rainfall intensity, bulk density, and aggregate size

2.4 SOC流失响应土壤侵蚀的主成分分析

SOC流失对土壤侵蚀的响应受到多种因子的影响.主成分分析结果显示, 前3个主成分累计贡献率达到95.8%. 根据累计贡献率≥85.0%的原则[30], 这3个主成分可以代表 9个性状中95.8%的信息.由图 7可知, PC1贡献率为54.9%, 载荷较高的性状是降雨强度、气候类型、容重和降雨量, 表明这4个性状主要与影响土壤侵蚀的气候和土壤因素密切相关; PC2贡献率为34.4%, 载荷较高的性状是土壤类型、含水量和团聚体粒径; PC3贡献率为6.5%, 载荷较高的性状是土壤深度和pH.原数据变量中降雨强度、气候类型、容重、降雨量、土壤类型、含水量和土壤团聚体粒径对土壤侵蚀驱动SOC流失的影响程度较大, 其中, 降雨强度为关键影响因子.

图 7 SOC对土壤侵蚀响应的主成分分析 Fig. 7 Principal component analysis of SOC response to soil erosion

3 讨论 3.1 土壤侵蚀对SOC流失的影响

本研究结果显示, 土壤侵蚀导致SOC流失, 这与以往大多数研究的结论一致[31~34].气候因素通过改变土壤侵蚀强度来影响土壤结构和微生物的降解能力, 进而影响SOC矿化流失程度[35], 并且不同土壤团聚体组成、土壤类型和土壤结构也会影响SOC含量[36].早期研究发现[37~39], 土壤侵蚀对有机碳的影响与土壤类型密切相关, 不同土壤类型主要通过影响土壤抗蚀性和微生物活性来影响SOC含量[9, 40].土壤侵蚀条件下气候和土壤因素与SOC呈现显著相关关系, 且在气候和土壤因素对SOC的响应比中, 降雨强度响应比最大, 气候类型响应比最小.这一结果表明, 与其他因子相比, 降雨强度导致SOC流失的影响程度更大[41, 42].因此, 往后研究可以从气候因素(气候类型、降雨量、降雨强度)和土壤因素(土壤类型、容重、土壤团聚体粒径)入手, 有助于深入理解土壤侵蚀与碳流失动态的影响过程.

3.2 SOC流失响应土壤侵蚀的气候因素分析

本研究结果显示, 土壤侵蚀背景下SOC流失与气候因素显著相关.首先, 受土壤侵蚀直接驱动, 不同气候类型条件下SOC含量多数显著降低, 但仅大陆性气候和亚热带季风气候条件下SOC流失对土壤侵蚀的响应显著, 这可能归因于:①大陆性气候和亚热带季风气候降雨量大且降雨频繁, 容易引发水蚀; ②半干旱气候分布在降雨较少的较干旱地区, 缺乏土壤侵蚀发生的条件[43].可能SOC含量在温暖潮湿的气候中比干燥凉爽的气候变化更大[44].例如Ogle等[45]发现在热带/暖温带湿润气候的表层土壤中的有机碳含量更多.其次, 降雨量和降雨强度均对SOC含量的降低有显著影响, SOC流失量随降雨强度的增大而增大[46].降雨量与降雨强度影响土壤侵蚀, 两者共同作用使SOC流失程度达到最大[47], 例如Bird等[48]认为SOC的储量取决于气候条件, 特别是降雨条件.但降雨量 < 500 mm时没有统计意义, 其原因可能在于只有达到一定程度的降雨才会导致SOC的显著流失[31, 49].

有学者研究气候变化与土壤侵蚀的关系认为[50, 51], 降雨强度变化会导致侵蚀率变化, 这一结论与本研究的一致.但本研究结果显示降雨强度1.0~2 mm·min-1时对SOC含量不显著, 这与王文欣等[52]研究发现SOC流失量随降雨强度加大而增大的结果不一致, 导致这种结果的原因可能是不同降雨量和降雨强度改变土壤通气性、土壤质地、微生物量及活性等的强度不一, 进而导致SOC含量变化不同[53].例如Jacinthe等[19]通过研究降雨特征对侵蚀土壤碳流失的影响, 发现在低强度降雨中损失的土壤碳比高强度降雨流失的多.但在高降雨强度下地表结构逐渐压实, 团聚体分离破碎, 孔隙堵塞, 地表径流增大, 表层土壤侵蚀增强[54, 55].有研究预测[56], 到2090年, 全球土壤侵蚀将因气候变化而增加9.0%, 表明未来研究应特别关注气候因素对SOC流失的重要性.

3.3 SOC流失响应土壤侵蚀的土壤因素分析

本研究结果显示, SOC的响应比在黑土中明显大于红壤, 而黄壤和紫色土对SOC含量变化的影响不显著, 与已有研究结果不一致.陈心桐等[57]发现不同土壤类型之间的SOC含量差异显著, 其中黄壤显著大于紫色土.彭浩等[58]也通过研究土壤类型对坡面产流和降雨条件下泥沙流失的影响, 发现不同土壤类型下的土壤侵蚀量呈现红壤>紫色土>黄壤的特征.这可能是由于不同土壤类型的复杂性(土壤质地和结构等), 导致SOC含量存在较大差异[59].例如黄壤中的固结物质含量小, 土壤结构稳定性和抗侵蚀性较差, 易被降雨侵蚀[60].而红壤透水性差, 导致降雨过程中地表径流大, 造成土壤流失量增大[61].也有研究发现黄壤的侵蚀强度一般高于红壤, 黄壤的SOC侵蚀量约为黑土的1.80倍[62].研究结果显示, 与碱性环境相比, 土壤侵蚀在酸性环境中对SOC流失的作用程度更大.可能是降雨的发生降低了土壤pH, 而土壤微生物在弱酸环境中活性更强, 进而加快SOC分解速率[28, 63].

土壤容重的变化与土壤孔隙密切相关, 其对土壤侵蚀强度有显著影响[64, 65].有研究显示, 容重与土壤侵蚀作用下SOC含量变化显著相关, 土壤容重与土壤抗冲能力关系密切, 通过影响土壤的大孔隙数量来影响土壤渗透能力[66].有研究发现土壤容重越大时, 土壤的大孔隙数量变少, 进而使得土壤渗透率减小, 地表径流增加, 土壤侵蚀强度增大[67].而当土壤容重低, 土层松散时, 土壤的抗蚀性越强[68].例如郑世清等[69]通过研究土壤容重与土壤侵蚀入渗关系, 发现随着土壤容重的增大, 土壤侵蚀量增大; 沈奕彤等[70]通过分析在土壤容重影响下黑土坡面养分流失情况, 也发现随着土壤容重增大, 入渗率变小, 地面径流增加, 导致侵蚀强度显著增加.程圣东等[71]和徐燕等[72]也发现容重越大, 孔隙度越小, 土壤侵蚀越严重.

土壤团聚体作为土壤的结构单元, 其稳定性不仅影响土壤侵蚀过程, 还在较大程度上控制着SOC的封存与流失[73, 74].土壤侵蚀破坏团聚体结构, 暴露包裹于其中的有机碳, 从而加速SOC矿化[75].本研究显示, 与无土壤侵蚀相比较, SOC流失量随着团聚体粒径变化表现出显著差异, 特别是在团聚体粒径 < 0.053 mm下SOC含量减少程度最大.这有可能是因为微团聚体易受水蚀搬动, 破碎速度加快, 封存于其中的SOC更容易流失, 例如Li等[76]和Fu等[77]认为微团聚体迁移搬运过程易造成孔隙减少且形成板结, 土壤下渗率减少, 径流侵蚀强度增大; 而大团聚体破碎速度较慢, 更稳定而不易被崩解, SOC的流失量减少[78].但也有相反的理论, Ma等[79]发现在高降雨强度下, 大团聚体更容易发生机械破碎; Mamedov等[80]也发现黏粒含量较高的团聚体不易被侵蚀搬运, 因为该类团聚体粘结力大, 难以被侵蚀搬运, 机械破碎.但不可否认的是, 土壤团聚体对土壤侵蚀下SOC的变化的影响是显著的.

4 结论

(1) 土壤侵蚀导致SOC流失, 显著降低SOC含量, SOC含量在绝大多数气候和土壤因素条件下对土壤侵蚀表现出显著的负响应特征.

(2) 不同气候因子(降雨强度、降雨量和气候类型)对SOC流失呈显著负响应, 其中降雨强度对侵蚀作用下SOC流失的影响程度最大, 表现为:高降雨强度(>2mm·min-1)>低降雨强度(< 1mm·min-1).

(3) 土壤因素对土壤侵蚀驱动SOC流失具有重要影响, 所选取土壤因子中, 团聚体粒径影响程度最小, 土壤类型影响程度最大, 二者相差1.30倍.土壤侵蚀作用下, 不同团聚体粒径对SOC流失程度的影响最大是微团聚体(< 0.053 mm).

(4) 侵蚀背景下, 气候因素对SOC流失的影响程度是土壤因素的1.69倍, 成为影响SOC流失的主导因素, 而降雨强度在众多因子中对SOC流失影响程度最大, 成为关键作用因子.

参考文献
[1] Lal R. Soil erosion and the global carbon budget[J]. Environment International, 2003, 29(4): 437-450. DOI:10.1016/S0160-4120(02)00192-7
[2] Berhe A A, Harden J W, Torn M S, et al. Linking soil organic matter dynamics and erosion-induced terrestrial carbon sequestration at different landform positions[J]. Journal of Geophysical Research: Biogeosciences, 2008, 113(G4). DOI:10.1029/2008JG000751
[3] Wang X, Cammeraat E L H, Cerli C, et al. Soil aggregation and the stabilization of organic carbon as affected by erosion and deposition[J]. Soil Biology and Biochemistry, 2014, 72: 55-65. DOI:10.1016/j.soilbio.2014.01.018
[4] Berhe A A, Harte J, Harden J W, et al. The significance of the erosion-induced terrestrial carbon sink[J]. BioScience, 2007, 57(4): 337-346. DOI:10.1641/B570408
[5] 郑聚锋, 程琨, 潘根兴, 等. 关于中国土壤碳库及固碳潜力研究的若干问题[J]. 科学通报, 2011, 56(26): 2162-2173.
Zheng J F, Cheng K, Pan G X, et al. Perspectives on studies on soil carbon stocks and the carbon sequestration potential of China[J]. Chinese Science Bulletin, 2011, 56(26): 2162-2173.
[6] 覃乾. 黄土丘陵区侵蚀坡面土壤有机碳稳定性研究[D]. 杨凌: 西北农林科技大学, 2019.
Qin Q. Soil organic carbon stability on eroded slope land in the hilly loess plateau[D]. Yangling: Northwest A&F University, 2019.
[7] 李长生. 土壤碳储量减少: 中国农业之隐患──中美农业生态系统碳循环对比研究[J]. 第四纪研究, 2000, 20(4): 345-350.
Li C S. Loss of soil carbon threatens chinese agriculture: a comparison on agroecosystem carbon pool in China and the U.S.[J]. Quaternary Sciences, 2000, 20(4): 345-350. DOI:10.3321/j.issn:1001-7410.2000.04.005
[8] Yue Y, Ni J R, Ciais P, et al. Lateral transport of soil carbon and land-atmosphere CO2 flux induced by water erosion in China[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(24): 6617-6622.
[9] Martínez-Mena M, López J, Almagro M, et al. Organic carbon enrichment in sediments: effects of rainfall characteristics under different land uses in a Mediterranean area[J]. CATENA, 2012, 94: 36-42. DOI:10.1016/j.catena.2011.02.005
[10] Beguería S, Angulo-Martínez M, Gaspar L, et al. Detachment of soil organic carbon by rainfall splash: experimental assessment on three agricultural soils of Spain[J]. Geoderma, 2015, 245-246: 21-30. DOI:10.1016/j.geoderma.2015.01.010
[11] Stallard R F. Terrestrial sedimentation and the carbon cycle: coupling weathering and erosion to carbon burial[J]. Global Biogeochemical Cycles, 1998, 12(2): 231-257. DOI:10.1029/98GB00741
[12] He N, Yu Q, Wu L, et al. Carbon and nitrogen store and storage potential as affected by land-use in a Leymus chinensis grassland of northern China[J]. Soil Biology and Biochemistry, 2008, 40(12): 2952-2959. DOI:10.1016/j.soilbio.2008.08.018
[13] Tang X Y, Liu S G, Liu J X, et al. Effects of vegetation restoration and slope positions on soil aggregation and soil carbon accumulation on heavily eroded tropical land of Southern China[J]. Journal of Soils and Sediments, 2010, 10(3): 505-513. DOI:10.1007/s11368-009-0122-9
[14] Elwell H A, Stocking M A. Correction [to "'Parameters for estimating annual runoff and soil loss from agricultural lands in Rhodesia' by H. A. Elwell and M. A. Stocking"][J]. Water Resources Research, 1976, 12(1): 124-124. DOI:10.1029/WR012i001p00124
[15] Jin K, Cornelis W M, Gabriels D, et al. Residue cover and rainfall intensity effects on runoff soil organic carbon losses[J]. CATENA, 2009, 78(1): 81-86. DOI:10.1016/j.catena.2009.03.001
[16] Rimal B K, Lal R. Soil and carbon losses from five different land management areas under simulated rainfall[J]. Soil and Tillage Research, 2009, 106(1): 62-70. DOI:10.1016/j.still.2009.09.014
[17] Strickland T C, Truman C C, Frauenfeld B. Variable rainfall intensity effects on carbon characteristics of eroded sediments from two coastal plain ultisols in Georgia[J]. Journal of Soil and Water Conservation, 2005, 60(3): 142-147.
[18] Ramos M C, Martínez-Casasnovas J A. Nutrient losses by runoff in vineyards of the Mediterranean Alt Penedès region (NE Spain)[J]. Agriculture, Ecosystems & Environment, 2006, 113(1-4): 356-363.
[19] Jacinthe P A, Lal R, Owens L B, et al. Transport of labile carbon in runoff as affected by land use and rainfall characteristics[J]. Soil and Tillage Research, 2004, 77(2): 111-123. DOI:10.1016/j.still.2003.11.004
[20] 许信旺, 潘根兴, 曹志红, 等. 安徽省土壤有机碳空间差异及影响因素[J]. 地理研究, 2007, 26(6): 1077-1086.
Xu X W, Pan G X, Cao Z H, et al. A study on the influence of soil organic carbon density and its spatial distribution in Anhui Province of China[J]. Geographical Research, 2007, 26(6): 1077-1086. DOI:10.3321/j.issn:1000-0585.2007.06.002
[21] Prietzel J, Christophel D. Organic carbon stocks in forest soils of the German Alps[J]. Geoderma, 2014, 221-222: 28-39. DOI:10.1016/j.geoderma.2014.01.021
[22] Beuselinck L, Steegen A, Govers G, et al. Characteristics of sediment deposits formed by intense rainfall events in small catchments in the Belgian Loam Belt[J]. Geomorphology, 2000, 32(1-2): 69-82. DOI:10.1016/S0169-555X(99)00068-9
[23] Wang Z G, Govers G, Van Oost K, et al. Soil organic carbon mobilization by interrill erosion: Insights from size fractions[J]. Journal of Geophysical Research: Earth Surface, 2013, 118(2): 348-360. DOI:10.1029/2012JF002430
[24] Shi P, Schulin R, et al. Erosion-induced losses of carbon, nitrogen, phosphorus and heavy metals from agricultural soils of contrasting organic matter management[J]. Science of the Total Environment, 2018, 618: 210-218. DOI:10.1016/j.scitotenv.2017.11.060
[25] Asadi H, Moussavi A, Ghadiri H, et al. Flow-driven soil erosion processes and the size selectivity of sediment[J]. Journal of Hydrology, 2011, 406(1-2): 73-81. DOI:10.1016/j.jhydrol.2011.06.010
[26] Hedges L V, Gurevitch J, Curtis P S. The Meta-analysis of response ratios in experimental ecology[J]. Ecology, 1999, 80(4): 1150-1156. DOI:10.1890/0012-9658(1999)080[1150:TMAORR]2.0.CO;2
[27] Lajeunesse M J. On the Meta-analysis of response ratios for studies with correlated and multi-group designs[J]. Ecology, 2011, 92(11): 2049-2055. DOI:10.1890/11-0423.1
[28] 张彦军, 党水纳, 任媛媛, 等. 基于Meta分析的土壤呼吸对凋落物输入的响应[J]. 生态环境学报, 2020, 29(3): 447-456.
Zhang Y J, Dang S N, Ren Y Y, et al. Response of soil respiration to surface litter input based on a Meta-analysis[J]. Ecology and Environmental Sciences, 2020, 29(3): 447-456.
[29] Xiao H B, Shi Z H, Li Z W, et al. Responses of soil respiration and its temperature sensitivity to nitrogen addition: a meta-analysis in China[J]. Applied Soil Ecology, 2020, 150. DOI:10.1016/j.apsoil.2019.103484
[30] 要燕杰, 高翔, 吴丹, 等. 小麦农艺性状与品质特性的多元分析与评价[J]. 植物遗传资源学报, 2014, 15(1): 38-47.
Yao Y J, Gao X, Wu D, et al. Multivariate analysis and evaluation of agronomic and quality traits based on principal components in wheat[J]. Journal of Plant Genetic Resources, 2014, 15(1): 38-47.
[31] Truman C C, Strickland T C, Potter T L, et al. Variable rainfall intensity and tillage effects on runoff, sediment, and carbon losses from a loamy sand under simulated rainfall[J]. Journal of Environmental Quality, 2007, 36(5): 1495-1502. DOI:10.2134/jeq2006.0018
[32] Li Z W, Nie X D, Chang X F, et al. Characteristics of soil and organic carbon loss induced by water erosion on the Loess Plateau in China[J]. PLoS One, 2016, 11(4). DOI:10.1371/journal.pone.0154591
[33] Nie X D, Li Z W, He J J, et al. Enrichment of organic carbon in sediment under field simulated rainfall experiments[J]. Environmental Earth Sciences, 2015, 74(6): 5417-5425. DOI:10.1007/s12665-015-4555-8
[34] Polyakov V, Lal R. Modeling soil organic matter dynamics as affected by soil water erosion[J]. Environment International, 2004, 30(4): 547-556. DOI:10.1016/j.envint.2003.10.011
[35] 郭广芬, 张称意, 徐影. 气候变化对陆地生态系统土壤有机碳储量变化的影响[J]. 生态学杂志, 2006, 25(4): 435-442.
Guo G F, Zhang C Y, Xu Y. Effects of climate change on soil organic carbon storage in terrestrial ecosystem[J]. Chinese Journal of Ecology, 2006, 25(4): 435-442. DOI:10.3321/j.issn:1000-4890.2006.04.017
[36] 覃智莲, 杨孝民, 宋照亮, 等. 成土母质和土地利用方式对土壤有机碳化学组成的影响[J]. 土壤通报, 2020, 51(3): 621-629.
Qin Z L, Yang X M, Song Z L, et al. Effects of parent materials and land uses on soil organic carbon fractions[J]. Chinese Journal of Soil Science, 2020, 51(3): 621-629.
[37] Chamizo S, Rodríguez-Caballero E, Román J R, et al. Effects of biocrust on soil erosion and organic carbon losses under natural rainfall[J]. CATENA, 2017, 148: 117-125. DOI:10.1016/j.catena.2016.06.017
[38] Schmidt G, Illiger P, Kudryavtsev A E, et al. Physical soil properties and erosion[A]. In: Frühauf M, Guggenberger G, Meinel T, et al. (Eds. ). KULUNDA: Climate smart agriculture: south siberian agro-steppe as pioneering region for sustainable land use[M]. Cham: Springer, 2020. 155-166.
[39] 贾莲莲, 高海东, 樊冰, 等. 中国北方风蚀水蚀侵蚀动力时空分布特征[J]. 水土保持研究, 2017, 24(3): 19-23.
Jia L L, Gao H D, Fan B, et al. Spatiotemporal characteristics of water-wind erosion dynamics over Northern China[J]. Research of Soil and Water Conservation, 2017, 24(3): 19-23.
[40] Sequeira C H, Wills S A, Seybold C A, et al. Predicting soil bulk density for incomplete databases[J]. Geoderma, 2014, 213: 64-73. DOI:10.1016/j.geoderma.2013.07.013
[41] Girmay G, Singh B R, Nyssen J, et al. Runoff and sediment-associated nutrient losses under different land uses in Tigray, Northern Ethiopia[J]. Journal of Hydrology, 2009, 376(1-2): 70-80. DOI:10.1016/j.jhydrol.2009.07.066
[42] Martínez-Mena M, Albaladejo J, Castillo V M. Factors influencing surface runoff generation in a Mediterranean semi-arid environment: Chicamo watershed, SE Spain[J]. Hydrological Processes, 1998, 12(5): 741-754. DOI:10.1002/(SICI)1099-1085(19980430)12:5<741::AID-HYP622>3.0.CO;2-F
[43] 周旗, 赵景波, 苏敏, 等. 西安地区全新世气候变化与土壤侵蚀研究[J]. 土壤学报, 2021, 58(6): 1404-1415.
Zhou Q, Zhao J B, Su M, et al. Climate change and soil erosion in holocene in Xi'an Area[J]. Acta Pedologica Sinica, 2021, 58(6): 1404-1415.
[44] Ogle S M, Breidt F J, Paustian K. Agricultural management impacts on soil organic carbon storage under moist and dry climatic conditions of temperate and tropical regions[J]. Biogeochemistry, 2005, 72(1): 87-121. DOI:10.1007/s10533-004-0360-2
[45] Ogle S M, Alsaker C, Baldock J, et al. Climate and soil characteristics determine where no-till management can store carbon in soils and mitigate greenhouse gas emissions[J]. Scientific Reports, 2019, 9(1). DOI:10.1038/s41598-019-47861-7
[46] 秦伟, 左长清, 晏清洪, 等. 红壤裸露坡地次降雨土壤侵蚀规律[J]. 农业工程学报, 2015, 31(2): 124-132.
Qin W, Zuo C Q, Yan Q H, et al. Regularity of individual rainfall soil erosion in bare slope land of red soil[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(2): 124-132.
[47] Mccorkle E P, Berhe A A, Hunsaker C T, et al. Tracing the source of soil organic matter eroded from temperate forest catchments using carbon and nitrogen isotopes[J]. Chemical Geology, 2016, 445: 172-184. DOI:10.1016/j.chemgeo.2016.04.025
[48] Bird M, Santrùcková H, Lloyd J, et al. Global soil organic carbon pool[J]. Global Biogeochemical Cycles in the Climate System, 2001, 185-199. DOI:10.1016/B978-012631260-7/50016-9
[49] Frauenfeld B, Truman C. Variable rainfall intensity effects on runoff and interrill erosion from two Coastal Plain Ultisols in Georgia[J]. Soil Science, 2004, 169(2): 143-154. DOI:10.1097/01.ss.0000117784.98510.46
[50] Routschek A, Schmidt J, Kreienkamp F. Impact of climate change on soil erosion — A high-resolution projection on catchment scale until 2100 in Saxony/Germany[J]. CATENA, 2014, 121: 99-109. DOI:10.1016/j.catena.2014.04.019
[51] Routschek A, Schmidt J, Enke W, et al. Future soil erosion risk — Results of GIS-based model simulations for a catchment in Saxony/Germany[J]. Geomorphology, 2014, 206: 299-306. DOI:10.1016/j.geomorph.2013.09.033
[52] 王文欣, 庄义琳, 庄家尧, 等. 不同降雨强度下坡地覆盖对土壤有机碳流失的影响[J]. 水土保持学报, 2013, 27(4): 62-66.
Wang W X, Zhuang Y L, Zhuang J Y, et al. Effects of downhill coverage on soil organic carbon loss under different rainfall intensities[J]. Journal of Soil and Water Conservation, 2013, 27(4): 62-66.
[53] 李如剑, 张彦军, 赵慢, 等. 坡度和降雨影响土壤CO2通量和有机碳流失的模拟研究[J]. 环境科学学报, 2016, 36(4): 1336-1342.
Li R J, Zhang Y J, Zhao M, et al. Simulation on the effects of slope and rainfall on soil CO2 flux and SOC loss[J]. Acta Scientiae Circumstantiae, 2016, 36(4): 1336-1342.
[54] Shi Z H, Yan F L, Li L, et al. Interrill erosion from disturbed and undisturbed samples in relation to topsoil aggregate stability in red soils from subtropical China[J]. CATENA, 2010, 81(3): 240-248.
[55] Lu J, Zheng F L, Li G F, et al. The effects of raindrop impact and runoff detachment on hillslope soil erosion and soil aggregate loss in the Mollisol region of Northeast China[J]. Soil and Tillage Research, 2016, 161: 79-85.
[56] Yang D W, Kanae S, Oki T, et al. Global potential soil erosion with reference to land use and climate changes[J]. Hydrological Processes, 2003, 17(14): 2913-2928.
[57] 陈心桐, 徐天乐, 李雪静, 等. 中国北方自然生态系统土壤有机碳含量及其影响因素[J]. 生态学杂志, 2019, 38(4): 1133-1140.
Chen X T, Xu T L, Li X J, et al. Soil organic carbon concentrations and the influencing factors in natural ecosystems of northern China[J]. Chinese Journal of Ecology, 2019, 38(4): 1133-1140.
[58] 彭浩, 李忠武, 刘春, 等. 湘中低山丘陵区坡面产流输沙对降雨、土壤类型及水保措施的综合响应特征[J]. 水土保持学报, 2019, 33(2): 60-67.
Peng H, Li Z W, Liu C, et al. Comprehensive response characteristics of runoff and sediment yield on rainfall, soil type and water conservation measures in hilly area of central Hunan Province[J]. Journal of Soil and Water Conservation, 2019, 33(2): 60-67.
[59] 黄耀, 刘世梁, 沈其荣, 等. 环境因子对农业土壤有机碳分解的影响[J]. 应用生态学报, 2002, 13(6): 709-714.
Huang Y, Liu S L, Shen Q R, et al. Influence of environmental factors on the decomposition of organic carbon in agricultural soils[J]. Chinese Journal of Applied Ecology, 2002, 13(6): 709-714.
[60] Fu Y, Yang M X, Li G L, et al. Selectivity of aggregate fractions for loess soils under different raindrop diameters[J]. Journal of Soils and Sediments, 2021, 21(1): 189-202.
[61] 唐泽军, 雷廷武, 张晴雯, 等. 雨滴溅蚀和结皮效应对土壤侵蚀影响的试验研究[J]. 土壤学报, 2004, 41(4): 632-635.
Tang Z J, Lei T W, Zhang Q W, et al. Quantitative determination of the impacts of raindrop splash and crust on soil erosion with ree experimental data[J]. Acta Pedologica Sinica, 2004, 41(4): 632-635.
[62] Gao X, Hu Y X, Sun Q Q, et al. Erosion-induced carbon losses and CO2 emissions from Loess and Black soil in China[J]. CATENA, 2018, 171: 533-540.
[63] 尹云锋, 蔡祖聪. 不同类型土壤有机碳分解速率的比较[J]. 应用生态学报, 2007, 18(10): 2251-2255.
Yin Y F, Cai Z C. Organic carbon decomposition rate in different soil types[J]. Chinese Journal of Applied Ecology, 2007, 18(10): 2251-2255.
[64] 郑纪勇, 邵明安, 张兴昌. 黄土区坡面表层土壤容重和饱和导水率空间变异特征[J]. 水土保持学报, 2004, 18(3): 53-56.
Zheng J Y, Shao M A, Zhang X C. Spatial variation of surface soil's bulk density and saturated hydraulic conductivity on slope in loess region[J]. Journal of Soil and Water Conservation, 2004, 18(3): 53-56.
[65] 李志洪, 王淑华. 土壤容重对土壤物理性状和小麦生长的影响[J]. 土壤通报, 2000, 31(2): 55-57.
Li Z H, Wang S H. Effects of soil bulk density on soil physical properties and wheat growth[J]. Chinese Journal of Soil Science, 2000, 31(2): 55-57.
[66] 曾健, 费良军, 裴青宝. 土壤容重对红壤水分垂直入渗特性的影响[J]. 排灌机械工程学报, 2017, 35(12): 1081-1087.
Zeng J, Fei L J, Fei Q B. Influence of soil bulk density on soil water infiltration characteristics in water vertical movement for red loams[J]. Journal of Drainage and Irrigation Machinery Engineering, 2017, 35(12): 1081-1087.
[67] 曹尤淞, 李和平, 肖波. 秸秆覆盖量对不同容重黑土坡耕地水土流失的影响[J]. 水土保持通报, 2021, 41(3): 56-61.
Cao Y S, Li H P, Xiao B. Effects of straw mulching on soil and water loss under different soil bulk densities on slope cropland in black soil region[J]. Bulletin of Soil and Water Conservation, 2021, 41(3): 56-61.
[68] 渠开跃, 冯慧敏, 代力民, 等. 辽东山区不同林型土壤有机碳剖面分布特征及碳储量研究[J]. 土壤通报, 2009, 40(6): 1316-1320.
Qu K Y, Feng H M, Dai L M, et al. Profile distribution and storage of soil organic carbon of main forest types in Eastern Mountainous Region of Liaoning[J]. Chinese Journal of Soil Science, 2009, 40(6): 1316-1320.
[69] 郑世清, 周佩华. 土壤容重和降雨强度与土壤侵蚀和入渗关系的定量分析[J]. 中国科学院西北水土保持研究所集刊, 1988, 7(1): 53-56.
Zheng S Q, Zhou P H. Quantitative analysis of the relationship between soil bulk density and rainfall intensity and soil erosion and infiltration[J]. Journal of Northwest Institute of Soil and Water Conservation, Chinese Academy of Sciences, 1988, 7(1): 53-56.
[70] 沈奕彤, 郭成久, 金珊, 等. 土壤容重对黑土坡面养分流失的影响[J]. 水土保持学报, 2016, 30(1): 26-30.
Shen Y T, Guo C J, Jin S, et al. Effect of soil bulk density on nutrient loss of black soil slope[J]. Journal of Soil and Water Conservation, 2016, 30(1): 26-30.
[71] 程圣东, 李占斌, 李强. 干热河谷地区土壤物理特性对土壤侵蚀的影响[J]. 水资源与水工程学报, 2008, 19(5): 38-41.
Cheng S D, Li Z B, Li Q. Effect of soil physical properties to soil erosion in dry and hot valley of Jinshajiang River[J]. Journal of Water Resources and Water Engineering, 2008, 19(5): 38-41.
[72] 徐燕, 龙健. 贵州喀斯特山区土壤物理性质对土壤侵蚀的影响[J]. 水土保持学报, 2005, 19(1): 157-159, 175.
Xu Y, Long J. Effect of soil physical properties on soil erosion in Guizhou Karst mountainous region[J]. Journal of Soil and Water Conservation, 2005, 19(1): 157-159, 175.
[73] Oades J M, Waters A G. Aggregate hierarchy in soils[J]. Soil Research, 1991, 29(6): 815-828.
[74] Six J, Bossuyt H, Degryze S, et al. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics[J]. Soil and Tillage Research, 2004, 79(1): 7-31.
[75] 刘强, 穆兴民, 高鹏, 等. 土壤水力侵蚀对土壤质量理化指标影响的研究综述[J]. 水土保持研究, 2020, 27(6): 386-392.
Liu Q, Mu X M, Gao P, et al. Review of studies on the effects of soil water erosion on physical and chemical properties of soil quality[J]. Research of Soil and Water Conservation, 2020, 27(6): 386-392.
[76] Li G L, Zheng T H, Fu Y, et al. Soil detachment and transport under the combined action of rainfall and runoff energy on shallow overland flow[J]. Journal of Mountain Science, 2017, 14(7): 1373-1383.
[77] Fu Y, Li G L, Zheng T H, et al. Splash detachment and transport of loess aggregate fragments by raindrop action[J]. CATENA, 2017, 150: 154-160.
[78] Puget P, Chenu C, Balesdent J. Dynamics of soil organic matter associated with particle-size fractions of water-stable aggregates[J]. European Journal of Soil Science, 2000, 51(4): 595-605.
[79] Ma R M, Li Z X, Cai C F, et al. The dynamic response of splash erosion to aggregate mechanical breakdown through rainfall simulation events in Ultisols (subtropical China)[J]. CATENA, 2014, 121: 279-287.
[80] Mamedov A I, Shainberg I, Levy G J. Wetting rate and sodicity effects on interrill erosion from semi-arid Israeli soils[J]. Soil and Tillage Research, 2002, 68(2): 121-132.