环境科学  2023, Vol. 44 Issue (9): 4906-4914   PDF    
太湖水华前表层水CDOM的光谱特征与来源解析
王永强1,2,3, 卢少勇1,2, 黄蔚4, 韩镇阳1,2, 国晓春1,2     
1. 中国环境科学研究院环境基准与风险评估国家重点实验室, 北京 100012;
2. 中国环境科学研究院湖泊水污染治理与生态修复技术国家工程实验室, 北京 100012;
3. 哈尔滨工业大学环境学院, 哈尔滨 150090;
4. 中国科学院南京地理与湖泊研究所湖泊与环境国家重点实验室, 南京 210008
摘要: 有色溶解性有机质(CDOM)是水生态系统中营养盐生物地球化学循环的重要环节,为探究太湖水华前表层水中CDOM的组分特征与来源,采用紫外-可见光谱与激发发射矩阵荧光光谱-平行因子分析(EEM-PARAFAC)技术对表层水中的CDOM组分进行了解析,结合CDOM光学参数(a355、SUVA254a250/a365、FI、BIX和HIX)辨识其空间差异与污染来源,并与太湖CDOM组分历史数据进行了初步对比.结果表明,a355、SUVA254a250/a365显示太湖东部表层水CDOM呈现高浓度、高芳香性和低相对分子量的特征,而北部与之相反.平行因子分析法从CDOM中分离出4个组分,类酪氨酸(C1)、两种类色氨酸(C2、C4)和类富里酸(C3),且主要组分C1与C2和C3组分具有较强的线性关系,不同组分来自相似污染源,荧光指数显示,太湖CDOM不同区域间受内源与陆源输入影响存在差异,但整体腐殖化程度较低.这表明太湖CDOM组分以类蛋白(C1、C2和C4)为主(>85%)且以自生源为主,可生化利用性好.
关键词: 太湖      有色溶解性有机质(CDOM)      水华前      激发发射矩阵荧光光谱-平行因子分析(EEM-PARAFAC)      荧光指数     
Spectral Characteristics and Source Analysis of Chromophoric Dissolved Organic Matter in Surface Water of Taihu Lake Before Cyanobacterial Blooming
WANG Yong-qiang1,2,3 , LU Shao-yong1,2 , HUANG Wei4 , HAN Zhen-yang1,2 , GUO Xiao-chun1,2     
1. State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China;
2. National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China;
3. School of Environment, Harbin Institute of Technology, Harbin 150090, China;
4. State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
Abstract: Chromophoric dissolved organic matter (CDOM) is an important part of the nutrient biogeochemical cycle in aquatic ecosystems. To explore the characteristics and sources of CDOM components in the surface water of Taihu Lake, UV-visible spectroscopy and excitation emission matrix fluorescence spectroscopy-parallel factor analysis were used to analyze CDOM components in surface water. Combined with CDOM optical parameters (a355, SUVA254, a250/a365, FI, BIX, and HIX), the spatial differences and pollution sources were identified, and a preliminary comparison was made between this study and the historical data of CDOM components in Taihu Lake. According to the results, a355, SUVA254, and a250/a365 showed the characteristics of high concentration, high aromatic ability, and low relative molecular weight of CDOM in the surface water of the eastern part of Taihu Lake; however, the northern part showed the opposite characteristics. Four components were isolated from CDOM using parallel factor analysis: one tyrosine-like (C1), two types of tryptophan (C2 and C4), and one fulionic acid (C3). The main component C1 had a strong linear relationship with the C2 and C3 components, suggesting that different components originated from similar pollution sources. The fluorescence index showed that CDOM in different areas of Taihu Lake were differently affected by endogenous and terrestrial inputs; however, the overall humification degree was low. This indicated that the CDOM components in Taihu Lake were primarily protein-like (C1, C2, and C4) (>85%) and autogenous, with good biochemical availability.
Key words: Taihu Lake      chromophoric dissolved organic matter(CDOM)      before cyanobacterial blooming      excitation emission matrix fluorescence spectroscopy-parallel factor analysis (EEM-PARAFAC)      fluorescence index     

溶解性有机物(dissolved organic matter, DOM)指通过动植物、微生物腐解等过程产生的一类复杂的混合有机物[1], 有色溶解有机物(chromophoric dissolved organic matter, CDOM)是DOM的一种光学活性成分, 在紫外和可见光区域具有良好的吸收性能.CDOM可以影响疏水有机物/重金属等物质的吸附、解析、富集或降解等过程, 其反应性直接取决于它的组成和结构特征[2].同时, CDOM作为湖泊富营养化状况的重要指示因子, 在碳、氮和磷等元素的生物地球化学循环中起着重要的作用[3, 4].因此, 有必要厘清湖泊中CDOM的来源与结构特征.

CDOM物质组成复杂且具有连续的分子量分布和多官能团结构, 因此难以对其中的各类物质进行精准测量.随着光谱技术的发展, 使用紫外-可见吸收和荧光光谱来表征CDOM, 并通过激发-发射矩阵(EEM)荧光光谱结合平行因子法(PARAFAC)来分析CDOM的结构以及组成特征, 具有灵敏度高、样品不破坏、选择性好和可定量表征荧光DOM组成等特点[5~7].Zhou等[8]采用平行因子法解析博斯腾湖CDOM主要组成为类蛋白质与类腐殖质, 将CDOM与环境因素进行主成分分析发现湖内类蛋白质占比受盐度影响高于支流.Feng等[9]使用EEM-PARAFAC鉴定出南四湖中3种荧光物质(包括UVC类腐殖质、UVA类腐殖质和类酪氨酸成分), 发现不同采样点DOM组分分布差异明显, 南四湖以UVA类腐殖质组分为主, 荧光光谱指标表明DOM的来源主要来自外源或陆地输入.激发发射矩阵荧光光谱-平行因子分析(excitation emission matrix fluorescence spectroscopy-parallel factor analysis, EEM-PARAFAC)作为获取CDOM特征的监测工具, 尽管无法与核磁共振或傅里叶变换离子回旋共振质谱等高分辨率方法的准确性相媲美[10, 11], 但是仪器成本低廉、实验操作简单而更易被广泛应用, 这使其成为表征和跟踪水生生态系统中CDOM的一种很有前景的方法.

太湖作为我国五大淡水湖泊之一, 多年来深受富营养化问题的困扰, 夏季“蓝藻水华”频发.而自2019年“新冠疫情”暴发后, 流域内的生产生活方式发生了极大的改变, 这不可避免地影响了湖泊内CDOM的汇入, 使得水质呈向好趋势.根据江苏省生态环境厅发布消息显示:2021年上半年太湖藻情持续好转, 蓝藻水华发生次数同比减少11次; 平均面积与湖体藻密度同比减少30%以上[12].京杭大运河苏南段受疫情影响导致地区内各行业停工, 水质参数和荧光成分均降至低位, 而国内疫情得到控制后, 又呈现逐渐上升趋势[13].因此, 疫情背景下水华前CDOM的组分变化与来源差异值得深入探究, 以期为太湖富营养化的管控提供重要理论支撑.

1 材料与方法 1.1 研究区域概况

太湖是中国第三大浅水淡水湖, 地跨3省1市(苏、浙、皖和沪), 流域面积3.69万km2, 水域面积6 137 km2, 西部多丘陵, 东部以平原水网为主, 位于长江三角洲的核心区域, 具有人口密集、经济发达和城市化高等特点[14], 十几年来一直受到严重的蓝藻水华等问题的困扰[15].

1.2 样品的采集与处理

在太湖共设置43个采样点(图 1), 将太湖划分为近湖心、竺山湾、梅梁湾、贡湖湾、东太湖、东太湖湾和西太湖这7个区域, 于2021年4月13~17日太湖蓝藻暴发前(通常于5月进入蓝藻水华高发期)进行采样, 使用聚乙烯瓶低温保存, 运回实验室后48 h内完成后续实验.表层水样品经0.22 μm的醋酸纤维素滤膜过滤后, 依托中国环境科学研究院湖泊水污染治理与生态修复技术国家工程实验室, 采用TOC分析仪(岛津TOC-LCPN)测定样品DOC质量浓度.根据获得DOC结果对水样进行稀释, 统一至10 mg·L-1左右以消除内滤波效应, 然后扫描DOM三维荧光光谱.

图 1 太湖采样点位置示意 Fig. 1 Sampling sites in Taihu Lake

三维荧光光谱采用日立F-7000荧光光谱分析仪进行测定.激发光源为150W氙灯, PMT电压设为700 V.扫描波长范围设定:激发波长200~450 nm, 发射波长为250~600 nm, 激发与发射波长狭缝宽度均为5 nm, 响应时间设为自动, 扫描速度设为2 400 nm·min-1[16], 扫描光谱进行仪器自动校正, 水样装入1 cm石英荧光样品池中测量.

紫外-可见吸收光谱扫描:将水样经0.22 μm的醋酸纤维素滤膜过滤后使用紫外-可见分光光光度计(UV756CRT, 上海佑科)对样品进行紫外-可见光光谱扫描, 以超纯水作为空白, 扫描波长为200~900 nm, 步长为1 nm, 中速扫描, 使用1 cm石英比色皿.

1.3 光谱分析

紫外-可见吸收光谱:吸收系数(aλ)计算公式见式(1):

(1)

式中, aλ为波长λ处的吸收系数, m-1; Aλ为波长λ处的吸光度; A0为680~700 nm波段的吸光度平均值, 通过减去A0来扣除仪器本身的基线漂移和散射等影响; L为比色皿宽度, m. a355为355 nm处的吸收系数, 可以用来表示CDOM的含量.SUVA254a355与DOC质量浓度的比值用以评价CDOM的芳香性, 值越大表示组分中所含苯环化合物越多, 有机质的腐殖化程度也越高. a250/a365为吸收系数, a250a365的比值可以用于表征CDOM的相对分子量, 其比值越高表明分子量越小[17].

三维荧光光谱:光谱数据用仪器自带软件Hitachi FL Solutions Application读取并导出, 然后用软件MATLAB 2019a中DOMFlour工具箱对三维荧光光谱矩阵的PARAFAC分析, 异常值去除及PARAFAC模型有效性验证参考王书航[5]和张广彩等[16]的研究, 最终经过反复迭代确定合适的DOM组分数[18].并对DOM的荧光指数FI、自生源指数BIX和腐殖化指数HIX进行计算[17, 19, 20].

1.4 数据处理与绘图

使用Excel 2016分析数据, Arcmap 10.2、Matlab 2019a和OriginPro 9.1软件绘制采样点分布、三维荧光组分和荧光光谱参数图等.

2 结果与讨论 2.1 紫外-可见吸收光谱

太湖表层水中CDOM吸收系数a355的范围为0.81~6.91 m-1, 平均值为2.73 m-1[图 2(a)].可以看出, 贡湖湾和东太湖区域的a355的平均值较高, 分别为3.61 m-1和3.74 m-1, 说明两个区域内表层水中CDOM的浓度水平较高, 竺山湾的a355平均值最低, 为1.72 m-1.而石玉等[21]在2017年的研究发现由于大量陆源CDOM输入, 太湖竺山湾和梅梁湾表层水CDOM浓度最大, 与本研究结果相反, 这说明目前太湖流域外源污染输入发生了转变.由图 2(b)可知SUVA254的范围为0.45~3.80 L·(mg·m)-1, 平均值为1.93 L·(mg·m)-1, CDOM芳香性由高到低依次为:贡湖湾>东太湖>近湖心>西太湖>东太湖湾>梅梁湾>竺山湾.图 2(c)a250/a365的变化范围为3.84~12.13, 平均值为6.99, 综合其与SUVA254a250/a365空间分布趋势可以看出, 贡湖湾和东太湖CDOM浓度相对较高, 以低相对分子量的高芳香性物质为主, 而竺山湾和梅梁湾以低浓度水平和高相对分子量的低芳香性物质为主.

图 2 CDOM紫外-可见吸收光谱参数的空间分布特征 Fig. 2 Spatial distribution characteristics of UV-visible absorption spectrum parameters of CDOM

2.2 荧光组分特征

太湖表层水中CDOM经PARAFAC解析出4种荧光组分C1~C4.如图 3(a1)~3(a8)所示, 组分C1(Ex=275 nm, Em=320 nm)为类酪氨酸, 其峰值对应传统意义上的自生源类蛋白荧光峰B峰[22].组分C2(Ex=240/290 nm, Em=340 nm)为类色氨酸[23], 与传统意义上的T峰位置比较相近, 可能源自细菌参与的蓝藻生物质降解[24].组分C3(Ex=270 nm, Em=430 nm)为类富里酸, 与传统A峰相比有一定的红移, 属于紫外区类富里酸, 主要源自土壤有机质的陆地输入[25], 组分C4(Ex=260 nm, Em=355 nm)接近T1峰仍可归为类色氨酸, 主要来源于微生物及细菌代谢[22].4种CDOM荧光组分中(C1~C4)的占比分别为13.39%~54.48%、25.32%~38.73%、2.44%~15.44%和7.26%~58.13%[图 3(b)], 类酪氨酸组分C1占比平均值最高, 为47.05%, 类色氨酸组分(C2和C4)占比其次, 分别为29.53%和12.17%, 类富里酸组分C3占比仅为11.25%. Jiang等[26]在长寿湖也发现两个蛋白质样峰, 包括色氨酸(T)和酪氨酸(B)氨基酸样成分, 受陆源影响还有两个腐殖质样峰(A和C).王爽等[17]在2019~2021年对太湖流域内南白荡表层水中DOM多次采样研究, 主要含有类酪氨酸、陆源类腐殖酸和类色氨酸等常见荧光组分, 以生物内源为主.

(a)荧光组分C1~C4; (b)各组分占比 图 3 PARAFAC模型输出4个组分的荧光特征 Fig. 3 PARAFAC model output showing fluorescence signatures of four components identified

太湖表层水中以类蛋白(C1、C2和C4)为主.类蛋白物质多为低分子量和不稳定的有机物质, 主要受微生物代谢影响, 易作为营养源被利用转化为无机物.Zhao等[27]在富营养化湖泊洱海表层水中分离出4种CDOM组分, 其中类蛋白质占比最高(41.98%), 而滇池由于受大型植物与藻类分布以及流入河流的影响, DOM成分容易腐殖化, 导致腐殖质类物质成为重要的DOM组分[28].水环境中类蛋白物质还会受人类活动和环境条件等多种因素影响.Lyu等[7]研究发现在城市化水域由于人类活动会导致DOM中蛋白质成分显著增加, 同时夏季光照充足, 光降解在腐殖质组分的降解中也起到了重要的作用, 降低表层水中腐殖质组分的占比, 光降解可以通过去除或者转化水中的DOM来影响其生物利用度与最终归趋[29, 30].此外, 雨水作为湖泊CDOM湿沉降的重要过程, 也是容易被忽略的污染源之一, 其与太湖水中CDOM和营养物质存在密切联系, 年贡献率可达11.7%, 在一定程度上也影响类蛋白物质的含量[4].

Wang等[31]也发现不同来源CDOM中, 蛋白质组分和腐殖质组分之间因存在相互作用而具有较强的相关性.因此, 对主要组分C1与C2~C4组分的荧光强度FMax进行线性拟合发现, C1与C2(R2=0.73, P < 0.05)及C1与C3(R2=0.87, P < 0.05)之间呈现线性关系, C1与C2和C3的线性关系较强[图 4(a)4(b)].C1与C4关系较弱[图 4(c)], 主要原因是近湖心1和2号点位荧光强度差异较大导致, 当剔除两个点位再对C1与C4进行线性拟合后发现有良好的线性关系[图 4(d)], 这说明在CDOM向湖中心传输过程中, 类蛋白质物质组分可能受微生物或浮游植物代谢等影响发生了变化.Zhang等[32]在实验中发现了源自本土浮游植物和大型植物的CDOM荧光包含腐殖酸和富里酸特征, 虽然类似于从陆源(如土壤)输入的特征, 但实际上是在植物衰亡和微生物降解过程中释放的.Zhou等[24]也指出蓝藻水华暴发过程中大量CDOM来自于微生物内源, 使得表层水中大多CDOM具有同源性.

(a)C1与C2拟合; (b)C1与C3拟合; (c)C1与C4拟合; (d)C1与C4拟合(不含1、2号近湖心点位荧光数据) 图 4 C1与C2~C4组分的最大荧光强度(FMax)线性拟合 Fig. 4 Linear relationship between FMax of C1 and C2-C4

2.3 DOM荧光指数

DOM荧光指数通常用来指示DOM来源以及各来源贡献率高低, 其中荧光指数(FI)用以表示CDOM来源, 当FI>1.9、FI < 1.4和1.4 < FI < 1.9时分别表示CDOM主要来自于藻类或微生物分解的内源代谢产物、陆地外源输入有机物和兼具内外来源.腐殖化指数(HIX)数值越大表示CDOM腐殖化程度越高.自生源指数(BIX)表征各荧光组分的自生源特征以及DOM的生物可利用性, 当BIX>0.8时为强自生源性, BIX < 0.8时表示自生源不明显.如图 5所示, FI、HIX和BIX的范围分别为0.67~5.69、0.21~0.76和0.68~4.12, 总体来说水体DOM腐殖化程度较低, 以自生源为主, 生物可利用性较高[33].从图 5(a)可以看出:腐殖化程度由高到低依次为:贡湖湾>东太湖>竺山湾>梅梁湾>西太湖>东太湖湾>近湖心; 生物可利用性由高到低依次为:近湖心>竺山湾>东太湖湾>梅梁湾>贡湖湾>西太湖>东太湖.

图 5 太湖CDOM的荧光指数FI-HIX和FI-BIX分布 Fig. 5 FI-HIX and FI-BIX distributions of CDOM in Taihu Lake

近湖心的1号和2号点位BIX>4远高于其他点位, 生物可利用性较高, 而FI指数表示1点位DOM为陆源输入, 2点位则以内源性有机物为主, 值得注意的是两个点位均处于蓝藻水华高发区[34], 这说明导致太湖不同区域水华的原因可能存在区别.除了氮磷元素的过量输入导致藻类水华频发外, 藻类和浮游生物对外源输入响应不明显, 即使控制了外源氮和磷的输入, 内源输入仍然对富营养化和水华产生重要影响[35].梅梁湾的BIX>0.8, FI指数平均值>1.9, 说明主要来自于由微生物分解的内源性代谢产物.有研究也表明太湖流域受外源贡献类腐殖质荧光成分从河流到湖泊明显减少, 而类蛋白质荧光成分明显增加[36].贡湖湾北侧以内源性有机质(FI>2.2)为主, 可能受贡湖湾湿地公园与大溪港湿地公园的影响, 陆源有机物输入较少, 而南侧为旅游度假区且靠近工业园区, 导致部分陆源性有机质的输入增加(1.1 < FI < 2.8).东太湖湾和西太湖(36、40和43号点位除外)CDOM则兼具陆源和内源的特征[37], 且HIX指数显示东太湖湾区域(30~36点位)作为太湖出湖口, 其DOM腐殖化程度呈逐渐升高趋势.

2.4 与现有太湖CDOM研究对比

太湖作为流域内城市人口生产生活以及工农业活动污水的蓄积库, CDOM来自陆地河流输入、沉积物释放和湖内浮游植物降解, 并在太湖的微生物代谢和强烈的光氧化等作用下发生分解, 剩余难降解的CDOM向下游及底质中传输[38].这就导致CDOM组分与来源受时间推移、环境条件改变、蓝藻水华暴发和外源污染输入波动等因素影响会不断发生变化.有研究较早开始使用三维荧光技术分析太湖水体溶解性有机质, 发现不同时期太湖中CDOM组分存在差异[24, 32, 39].总结太湖表层水体CDOM的历史研究发现(表 1), CDOM来源解析大多为3~5种组分, 主要有类腐殖质、类富里酸、类色氨酸和类酪氨酸等, 类腐殖质又可细分为微生物源腐殖质、陆源腐殖质、农业类腐殖质物质或红移微生物类腐殖质物质等[24, 40], 类富里酸细分为紫外光区和可见光区类富里酸[41], 以及高激发区/低激发区类色氨酸和类酪氨酸等[6].

表 1 近年来相关研究中太湖CDOM荧光组分1)/% Table 1 Studies on fluorescence components of CDOM in Taihu Lake in recent years/%

从近年研究结果来看, 宋晓娜等[39]、Zhang等[41]和胡琼丹等[42]在太湖蓝藻水华暴发时进行采样研究, 均发现20%以上类富里酸物质.太湖除了富营养化与有害蓝藻水华问题外, 黑水团问题(一种蓝藻水华腐烂降解后释放的大量溶解性有机物形成的黑色水体)同样会对CDOM产生影响[43].Zhou等[24]研究黑水团污染现象出现时, 分析太湖表层水CDOM组分发现了26.3%的类腐殖质.上述研究均发现蓝藻水华导致类富里酸和类腐殖质占比的增加与类蛋白物质的占比降低, 因为蓝藻水华在一定程度上会改变水体DOC的组成和反应性[41], 这就意味着CDOM的成分也会随之发生较大的变化.有研究证实了在富营养化湖泊中类蛋白质成分与浮游植物密切相关, 氮磷可以通过影响浮游植物, 进而促进DOM转化[27].总的来说, 太湖水华前CDOM组成以类蛋白物质(类色氨酸与类酪氨酸)为主, 新冠疫情下太湖表层水CDOM组分中类蛋白物质占比达到历史最高水平, 为88.75%.Duan等[44]在2020年1月进行采样分析也发现类蛋白物质占比高于暴发期, 为CDOM主要组分.这可能是由于疫情管控下来自生产生活的氮磷污染输入减少抑制了浮游植物的生长, 削弱了CDOM的转化过程.

3 结论

(1) 太湖表层水中a355、SUVA254a250/a365参数表明太湖东部贡湖湾与东太湖等区域CDOM呈现高浓度、高芳香性和低相对分子量特征, 北部竺山湾与梅梁湾区域则以低浓度、低芳香性和高相对分子量的CDOM为主.不同湖区表层水中CDOM来源存在差异, 梅梁湾CDOM以内源为主, 而贡湖湾、东太湖湾和西太湖区域CDOM兼具内源与陆源的双重特征.

(2) 太湖表层水中CDOM组分有4类:类酪氨酸C1、类色氨酸C2、类富里酸C3和类色氨酸C4, 类蛋白与类腐殖质物质呈现较强的相关性.总体来说, 新冠疫情下太湖水华前CDOM中类蛋白物质为主要组分, 腐殖化程度较低, 以自生源为主且生物可利用性较高.

参考文献
[1] Bao Y, Huang T, Ning C W, et al. Changes of DOM and its correlation with internal nutrient release during cyanobacterial growth and decline in Lake Chaohu, China[J]. Journal of Environmental Sciences, 2023, 124: 769-781. DOI:10.1016/j.jes.2022.02.019
[2] Guéguen C, Burns D C, Mcdonald A, et al. Structural and optical characterization of dissolved organic matter from the lower Athabasca River, Canada[J]. Chemosphere, 2012, 87(8): 932-937. DOI:10.1016/j.chemosphere.2012.01.047
[3] Li D B, Pan B Z, Zheng X, et al. CDOM in the source regions of the Yangtze and Yellow Rivers, China: optical properties, possible sources, and their relationships with environmental variables[J]. Environmental Science and Pollution Research, 2020, 27(26): 32856-32873. DOI:10.1007/s11356-020-09385-w
[4] Zhang Y L, Gao G, Shi K, et al. Absorption and fluorescence characteristics of rainwater CDOM and contribution to Lake Taihu, China[J]. Atmospheric Environment, 2014, 98: 483-491. DOI:10.1016/j.atmosenv.2014.09.038
[5] 王书航, 王雯雯, 姜霞, 等. 基于三维荧光光谱—平行因子分析技术的蠡湖CDOM分布特征[J]. 中国环境科学, 2016, 36(2): 517-524.
Wang S H, Wang W W, Jiang X, et al. Distribution of chromophoric dissolved organic matter in Lihu Lake using excitation-emission matrix fluorescence and parallel factor analysis[J]. China Environmental Science, 2016, 36(2): 517-524. DOI:10.3969/j.issn.1000-6923.2016.02.031
[6] 李莹杰, 吴易雯, 张列宇, 等. 基于平行因子法分析湖泊沉积物间隙水中DOM的三维荧光光谱[J]. 信阳师范学院学报(自然科学版), 2015, 28(4): 507-512.
Li Y J, Wu Y W, Zhang L Y, et al. The analysis for 3-D fluorescence spectra of dissolve organic matter in lakes' sediment pore water based on parallel factor method[J]. Journal of Xinyang Normal University (Natural Science Edition), 2015, 28(4): 507-512. DOI:10.3969/j.issn.1003-0972.2015.04.011
[7] Lyu L L, Liu G, Shang Y X, et al. Characterization of dissolved organic matter (DOM) in an urbanized watershed using spectroscopic analysis[J]. Chemosphere, 2021, 277. DOI:10.1016/j.chemosphere.2021.130210
[8] Zhou L, Zhou Y Q, Hu Y, et al. Hydraulic connectivity and evaporation control the water quality and sources of chromophoric dissolved organic matter in Lake Bosten in arid northwest China[J]. Chemosphere, 2017, 188: 608-617. DOI:10.1016/j.chemosphere.2017.09.006
[9] Feng L K, Zhang J, Fan J L, et al. Tracing dissolved organic matter in inflowing rivers of Nansi Lake as a storage reservoir: implications for water-quality control[J]. Chemosphere, 2022, 286. DOI:10.1016/j.chemosphere.2021.131624
[10] Cortés-Francisco N, Harir M, Lucio M, et al. High-field FT-ICR mass spectrometry and NMR spectroscopy to characterize DOM removal through a nanofiltration pilot plant[J]. Water Research, 2014, 67: 154-165. DOI:10.1016/j.watres.2014.08.046
[11] 杜瑛珣, 戴家如, 张巧颖, 等. 太湖草、藻湖区沉积物WSOM组成和分子结构分析[J]. 环境科学, 2022, 43(8): 4108-4117.
Du Y X, Dai J R, Zhang Q Y, et al. Spectroscopic and molecular characterization of water soluble organic matter from sediments in the macrophyte-dominated and algae-dominated zones of Taihu Lake[J]. Environmental Science, 2022, 43(8): 4108-4117.
[12] 江苏省生态环境厅. 2021年上半年度太湖水质藻情情况[EB/OL]. http://sthjt.jiangsu.gov.cn/art/2021/8/4/art_83587_10106879.html, 2021-08-04.
[13] Shen J, Liu C Y, Lv Q, et al. Novel insights into impacts of the COVID-19 pandemic on aquatic environment of Beijing-Hangzhou Grand Canal in southern Jiangsu region[J]. Water Research, 2021, 193. DOI:10.1016/j.watres.2021.116873
[14] 罗敏纳, 孙蓓丽, 朱冰川, 等. 太湖流域浮游植物功能类群分布特征及其与环境因子的关系[J]. 湖泊科学, 2022, 34(5): 1471-1488.
Luo M N, Sun B L, Zhu B C, et al. Distribution characteristics of phytoplankton functional groups and their relationship with environmental factors in Taihu Basin[J]. Journal of Lake Sciences, 2022, 34(5): 1471-1488.
[15] Qin B Q, Paerl H W, Brookes J D, et al. Why Lake Taihu continues to be plagued with cyanobacterial blooms through 10 years (2007-2017) efforts[J]. Science Bulletin, 2019, 64(6): 354-356. DOI:10.1016/j.scib.2019.02.008
[16] 张广彩, 于会彬, 徐泽华, 等. 基于三维荧光光谱结合平行因子法的蘑菇湖上覆水溶解性有机质特征分析[J]. 生态与农村环境学报, 2019, 35(7): 933-939.
Zhang G C, Yu H B, Xu Z H, et al. The characteristics of dissolved organic matter in the overlying water of Moguhu Lake based on three dimensional fluorescence spectrum and parallel factor method[J]. Journal of Ecology and Rural Environment, 2019, 35(7): 933-939.
[17] 王爽, 王三秀, 黄清辉. 太湖流域南白荡表层水中溶解有机质赋存特征与来源[J]. 环境科学学报, 2022, 42(11): 139-148.
Wang S, Wang S X, Huang Q H. Characteristics and sources of dissolved organic matter in the surface water of Nanbaidang Lake in the Taihu Lake Basin[J]. Acta Scientiae Circumstantiae, 2022, 42(11): 139-148.
[18] 程云轩, 赵可, 张越, 等. 松花湖沉积物溶解性有机质荧光光谱特性[J]. 环境科学, 2022, 43(4): 1941-1949.
Cheng Y X, Zhao K, Zhang Y, et al. Fluorescence spectral characteristics of dissolved organic matter in Songhua Lake sediment[J]. Environmental Science, 2022, 43(4): 1941-1949.
[19] Weishaar J L, Aiken G R, Bergamaschi B A, et al. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon[J]. Environmental Science & Technology, 2003, 37(20): 4702-4708.
[20] 吕伟伟, 姚昕, 张保华, 等. 太湖颗粒态有机质的荧光特征及环境指示意义[J]. 环境科学, 2018, 39(5): 2056-2066.
Lü W W, Yao X, Zhang B H, et al. Fluorescent characteristics and environmental significance of particulate organic matter in Lake Taihu, China[J]. Environmental Science, 2018, 39(5): 2056-2066.
[21] 石玉, 周永强, 张运林, 等. 太湖有色可溶性有机物组成结构对不同水文情景的响应[J]. 环境科学, 2018, 39(11): 4915-4924.
Shi Y, Zhou Y Q, Zhang Y L, et al. Response of chromophoric dissolved organic matter composition to different hydrological scenarios in large eutrophic Lake Taihu[J]. Environmental Science, 2018, 39(11): 4915-4924.
[22] He W, Hur J. Conservative behavior of fluorescence EEM-PARAFAC components in resin fractionation processes and its applicability for characterizing dissolved organic matter[J]. Water Research, 2015, 83: 217-226. DOI:10.1016/j.watres.2015.06.044
[23] Xu H C, Cai H Y, Yu G H, et al. Insights into extracellular polymeric substances of cyanobacterium Microcystis aeruginosa using fractionation procedure and parallel factor analysis[J]. Water Research, 2013, 47(6): 2005-2014.
[24] Zhou Y Q, Jeppesen E, Zhang Y L, et al. Chromophoric dissolved organic matter of black waters in a highly eutrophic Chinese lake: freshly produced from algal scums?[J]. Journal of Hazardous Materials, 2015, 299: 222-230.
[25] Garcia R D, del Carmen Diéguez M, Gerea M, et al. Characterisation and reactivity continuum of dissolved organic matter in forested headwater catchments of Andean Patagonia[J]. Freshwater Biology, 2018, 63(9): 1049-1062.
[26] Jiang T, Chen X S, Wang D Y, et al. Dynamics of dissolved organic matter (DOM) in a typical inland lake of the Three Gorges Reservoir area: fluorescent properties and their implications for dissolved mercury species[J]. Journal of Environmental Management, 2018, 206: 418-429.
[27] Zhao Y Q, Shen J, Feng J M, et al. Relative contributions of different sources to DOM in Erhai Lake as revealed by PLS-PM[J]. Chemosphere, 2022, 299. DOI:10.1016/j.chemosphere.2022.134377
[28] He J, Wu X, Zhi G Q, et al. Fluorescence characteristics of DOM and its influence on water quality of rivers and lakes in the Dianchi Lake basin[J]. Ecological Indicators, 2022, 142. DOI:10.1016/j.ecolind.2022.109088
[29] Song X Y, Zhao M Y, Chen A Q, et al. Effects of input of terrestrial materials on photodegradation and biodegradation of DOM in rivers: the case of Heilongjiang River[J]. Journal of Hydrology, 2022, 609. DOI:10.1016/j.jhydrol.2022.127792
[30] Hansen A M, Kraus T E C, Pellerin B A, et al. Optical properties of dissolved organic matter (DOM): effects of biological and photolytic degradation[J]. Limnology and Oceanography, 2016, 61(3): 1015-1032.
[31] Wang Z G, Cao J, Meng F G. Interactions between protein-like and humic-like components in dissolved organic matter revealed by fluorescence quenching[J]. Water Research, 2015, 68: 404-413.
[32] Zhang Y L, Liu X H, Wang M Z, et al. Compositional differences of chromophoric dissolved organic matter derived from phytoplankton and macrophytes[J]. Organic Geochemistry, 2013, 55: 26-37.
[33] Bittar T B, Vieira A A H, Stubbins A, et al. Competition between photochemical and biological degradation of dissolved organic matter from the cyanobacteria Microcystis aeruginosa[J]. Limnology and Oceanography, 2015, 60(4): 1172-1194.
[34] 张虎军, 宋挺, 朱冰川, 等. 太湖蓝藻水华暴发程度年度预测[J]. 中国环境监测, 2022, 38(1): 157-164.
Zhang H J, Song T, Zhu B C, et al. Annual forecast of the extent of cyanobacteria bloom in Taihu Lake[J]. Environmental Monitoring in China, 2022, 38(1): 157-164.
[35] Gao J K, Liu G L, Li X W, et al. Organic carbon quantity and composition jointly modulate the differentiation of nitrate reduction pathways in sediments of the Chinese eutrophic lake, Lake Chaohu[J]. Water Research, 2022, 220. DOI:10.1016/j.watres.2022.118720
[36] Yao X, Zhang Y L, Zhu G W, et al. Resolving the variability of CDOM fluorescence to differentiate the sources and fate of DOM in Lake Taihu and its tributaries[J]. Chemosphere, 2011, 82(2): 145-155.
[37] McKnight D M, Boyer E W, Westerhoff P K, et al. Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity[J]. Limnology and Oceanography, 2001, 46(1): 38-48.
[38] 秦伯强. 太湖生态与环境若干问题的研究进展及其展望[J]. 湖泊科学, 2009, 21(4): 445-455.
Qin B Q. Progress and prospect on the eco-environmental research of Lake Taihu[J]. Journal of Lake Sciences, 2009, 21(4): 445-455.
[39] 宋晓娜, 于涛, 张远, 等. 利用三维荧光技术分析太湖水体溶解性有机质的分布特征及来源[J]. 环境科学学报, 2010, 30(11): 2321-2331.
Song X N, Yu T, Zhang Y, et al. Distribution characterization and source analysis of dissolved organic matters in Taihu Lake using three dimensional fluorescence excitation-emission matrix[J]. Acta Scientiae Circumstantiae, 2010, 30(11): 2321-2331.
[40] Zhou Y Q, Yao X L, Zhang Y L, et al. Response of dissolved organic matter optical properties to net inflow runoff in a large fluvial plain lake and the connecting channels[J]. Science of the Total Environment, 2018, 639: 876-887.
[41] Zhang X K, Li B L, Deng J M, et al. Regional-scale investigation of dissolved organic matter and lead binding in a large impacted lake with a focus on environmental risk assessment[J]. Water Research, 2020, 172. DOI:10.1016/j.watres.2020.115478
[42] 胡琼丹, 王华静, 李锦, 等. 太湖秋季入湖水源中DOM的光谱学特征及通量[J]. 环境科学与技术, 2015, 38(3): 152-158.
Hu Q D, Wang H J, Li J, et al. Various inflows to Taihu Lake in autumn: spectroscopy characteristics and DOM flux[J]. Environmental Science & Technology, 2015, 38(3): 152-158.
[43] Qin B Q, Li W, Zhu G W, et al. Cyanobacterial bloom management through integrated monitoring and forecasting in large shallow eutrophic Lake Taihu (China)[J]. Journal of Hazardous Materials, 2015, 287: 356-363.
[44] Duan Z P, Tan X, Ali I, et al. Comparison of organic matter (OM) pools in water, suspended particulate matter, and sediments in eutrophic Lake Taihu, China: implication for dissolved OM tracking, assessment, and management[J]. Science of the Total Environment, 2022, 845. DOI:10.1016/j.scitotenv.2022.157257
[45] Zhang W, Zhou Y Q, Jeppesen E, et al. Linking heterotrophic bacterioplankton community composition to the optical dynamics of dissolved organic matter in a large eutrophic Chinese lake[J]. Science of the Total Environment, 2019, 679: 136-147.