环境科学  2023, Vol. 44 Issue (7): 3990-3996   PDF    
Co(Ⅱ)活化过一硫酸盐降解氨基三亚甲基膦酸的性能及反应机制
朱敬林1,2, 汪舒3     
1. 安徽理工大学地球与环境学院, 淮南 232001;
2. 南京大学环境学院, 污染控制与资源化国家重点实验室, 南京 210023;
3. 合肥工业大学资源与环境工程学院, 合肥 230009
摘要: Co(Ⅱ)活化过一硫酸盐(PMS)能有效降解有机膦酸, 但氨基有机膦酸的降解机制并不明确.以氨基三亚甲基膦酸(NTMP)为例, 采用电子顺磁共振波谱(EPR)、自由基捕获实验和化学探针实验等探究其在Co(Ⅱ)/PMS体系下的降解机制, 并分析了NTMP可能的降解路径和影响其降解的因素.结果表明, Co(Ⅱ)/PMS体系20 min内NTMP已经被完全降解, 反应60 min后, 78.3% NTMP被氧化生成正磷酸盐(PO43-).1O2、HO·和SO4-·对Co(Ⅱ)/PMS体系氧化NTMP的贡献较小, Co(Ⅱ)-PMS络合物是NTMP降解的主要活性氧化物种.NTMP与Co(Ⅱ)-PMS络合物反应, 使其C—N键和C—P键断裂生成多种含膦酸基团的中间产物, 并最终被氧化为PO43-.随着PMS投加量和Co(Ⅱ)投加量的增加, NTMP氧化过程中PO43-的产生率显著增加.此外, HCO3-和天然有机物(NOM)的存在显著抑制了Co(Ⅱ)/PMS体系PO43-的产生.研究进一步完善了有机膦酸在Co(Ⅱ)/PMS体系下的氧化机制, 为废水中有机膦酸的去除提供参考.
关键词: Co(Ⅱ)      过一硫酸盐(PMS)      氨基三亚甲基膦酸(NTMP)      正磷酸盐(PO43-)      非自由基机制     
Performance and Reaction Mechanism of Co(Ⅱ) Mediated Activation of Peroxymonosulfate for Degrading Nitrilotris (Methylene Phosphonic Acid)
ZHU Jing-lin1,2 , WANG Shu3     
1. School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China;
2. State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China;
3. School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
Abstract: Co(Ⅱ) mediated activation of peroxymonosulfate (PMS) could degrade phosphonate effectively, whereas the degradation of amino phosphonate remains unclear. Herein, nitrilotris (methylene phosphonic acid) (NTMP) was used as a target pollutant; the degradation mechanism was investigated using the electron paramagnetic resonance spectrum (EPR), free radical trapping experiments, and chemical probe experiments; and the possible degradation pathways of NTMP and the influencing factors were analyzed. The results showed that NTMP was completely degraded within 20 min in the Co(Ⅱ)/PMS system, and 78.3% of NTMP was oxidized to orthophosphate (PO43-) after 60 min of reaction. The Co(Ⅱ)-PMS complex was the main active oxidizing species, whereas 1O2, HO·, and SO4-·contributed little to the oxidation of NTMP in the Co(Ⅱ)/PMS system. A variety of intermediates containing phosphate groups were obtained through the breakage of the C—N bond and C—P bond as NTMP reacted with the Co(Ⅱ)-PMS complex and finally were oxidized to PO43-. With the increase in PMS dosage and Co(Ⅱ) dosage, the generation rate of PO43- during the oxidation process of NTMP was significantly improved. In addition, the presence of HCO3- and natural organic matter (NOM) greatly inhibited the generation of PO43- in the Co(Ⅱ)/PMS system. This study further improved the oxidation mechanism of phosphonate in the Co(Ⅱ)/PMS system and provides a reference for the removal of phosphonate in wastewater.
Key words: Co(Ⅱ)      peroxymonosulfate (PMS)      nitrilotris (methylene phosphonic acid) (NTMP)      orthophosphate (PO43-)      nonradical mechanism     

有机膦酸是一类重要的有机磷污染物, 其含有一个或多个膦酸基团[C—PO(OH)2], 常作为络合剂、阻垢剂和漂白剂被广泛应用于纺织、造纸和电镀等行业[1~3].据报道, 污水处理厂各个处理工艺单元中有机膦酸的浓度为131~384 μg·L-1, 在总有机磷中所占比例高(10% ~40%)[1].在自然环境中, 通过微生物的作用有机膦酸可被缓慢降解为正磷酸盐(PO43-), 因而有机膦酸的直接排放具有潜在的水体富营养化风险[2].此外, 有机膦酸可通过光解或水解生成具有潜在致癌性和遗传毒性的产物(如草甘膦和氨甲基膦酸)[4, 5], 且具有再活化沉积物中有毒重金属的风险[2], 在水处理过程中有机膦酸的存在能干扰磷酸盐的沉淀[2, 6].然而由于有机膦酸所含C—P键十分稳定且能与金属离子发生强螯合作用, 常用除磷技术(如生物法、沉淀和吸附等)对有机膦酸的去除效果并不理想[7~12].因此, 研发高效的有机膦酸去除技术具有十分重要的意义.

近年来, 基于羟基自由基(HO·) 和硫酸根自由基(SO4-·)等的高级氧化技术已广泛用于有机膦酸的去除[13~19].例如, Xu等[20]研究发现O3和HO·两者与PBTCA的反应均具有较高的反应速率常数, 能有效氧化2-膦酸丁烷-1, 2, 4-三羧酸(PBTCA)为PO43-.Wang等[21]采用UV/过二硫酸盐(PDS)体系氧化氨基三亚甲基膦酸(NTMP).结果表明, SO4-·与NTMP反应可使NTMP高效氧化为PO43-.尽管如此, 以自由基为主要活性氧化物种的反应体系易受到实际水体中水体基质(如有机物、CO32-和Cl-等)的干扰, 使得有机膦酸的氧化效率显著降低[22].显而易见, 减少水体基质竞争以提高活性氧化物种利用率是有机膦酸去除的关键.

和自由基机制相比, 以非自由基机制为主导的氧化体系受水体基质干扰更小, 对有机污染物的降解表现出更强的选择性[23~27].有研究发现, 当配体存在时, 过渡金属活化过硫酸盐更易诱导生成高选择性的活性氧化物种[28~30]. 例如, Chen等[31]通过研究Cu(Ⅱ)催化PDS降解头孢氨苄(CFX)的催化行为和机制时发现, CFX与Cu(Ⅱ)配位后增加了Cu(Ⅱ)的电子密度, 有利于电子从Cu(Ⅱ)转移到PDS, 且反应过程中主要活性氧化物种为Cu(Ⅲ).有机膦酸兼有污染物与配体的双重属性, 在过渡金属活化过程中有机膦酸的降解亦具有较高的选择性, 且有机膦酸所含官能团对其降解影响较大[32~34].Nowack等[35]发现Mn(Ⅱ)/O2体系可通过分子内电子转移过程氧化NTMP、乙二胺四亚甲基膦酸(EDTMP)和二乙烯三胺五亚甲基膦酸(DTPMP)等氨基有机膦酸, 但对不含N的羟基乙叉二膦酸(HEDP)几乎没有效果.然而, 对于Co(Ⅱ)催化过一硫酸盐(PMS)体系, 其氧化HEDP的主要活性氧化物种为Co(Ⅱ)-PMS络合物而非自由基, 但并未深入探究氨基有机膦酸的氧化机制[34].

为进一步探究含N氨基有机膦酸在Co(Ⅱ)/PMS体系下的氧化机制, 本文以典型的氨基有机膦酸NTMP作为研究对象, 采用电子顺磁共振波谱(EPR)、自由基捕获实验和化学探针实验等探究了Co(Ⅱ)/PMS体系氧化NTMP反应过程中的主要活性氧化物种; 分析了该反应体系下NTMP降解的中间产物和其可能的降解路径; 考察了溶液化学性质(如pH、PMS投加量和Co(Ⅱ)投加量等)、水中常见阴离子和天然有机物(NOM)对Co(Ⅱ)/PMS体系氧化NTMP的影响.本研究旨在为废水中有机膦酸的去除提供新思路和新方法.

1 材料与方法 1.1 实验原料

过硫酸氢钾复合盐(oxone)、六水合硝酸钴[Co(NO3)2·6H2 O]、叔丁醇(TBA)、玫瑰红(RB)、2, 2, 6, 6-四甲基哌啶(TEMP)、亚硫酸钠(Na2SO3)、抗坏血酸、四水合钼酸铵、酒石酸锑钾、甲基苯基亚砜(PMSO)和甲基苯基砜(PMSO2)等试剂均购买于Sigma-Aldrich公司(分析纯), NTMP购买于国药基团化学试剂公司(分析纯), 二甲基吡啶N-氧化物(DMPO)购买于日本东仁化学科技股份有限公司, TMSCHN2购买于Adamas公司(分析纯).实验用水均来自Milli-Q超纯水系统.

1.2 实验方法

(1) Co(Ⅱ)/PMS降解NTMP实验所有实验均在50 mL锥形瓶中进行, 反应过程中采用磁力搅拌控制水浴锅反应温度为20℃, 并对反应液进行搅拌使其充分混合.首先向锥形瓶中加入一定浓度的PMS和NTMP, 并用0.1 mol·L-1 HNO3/NaOH调节反应液pH至预先设定的值, 随后加入Co(Ⅱ)开始反应.按预先设定取样时间取1 mL反应液, 并加入25 μL 1 mol·L-1 Na2SO3淬灭反应, 随后样品用于测定NTMP和PO43-的浓度.此外, 共存物质的影响实验和上述实验过程类似, 在反应开始前将一定浓度的SO42-、NO3-、Cl-、HCO3-和NOM加入反应液后调节pH至7.0.

(2) 光激发RB降解NTMP实验采用六联荧光灯作为光源(输出功率:4 W, PhiliPDS Co.), NTMP降解的动力学实验在250 mL圆柱形石英反应器中进行.反应液包括0.05 mmol·L-1 RB和10 μmol·L-1 NTMP, 用0.1 mol·L-1 HNO3/NaOH调节反应液pH至7, 然后开启光源开始反应.按设定取样时间取1 mL反应液, 并加入25 μL 1 mol·L-1 Na2SO3终止反应, 然后样品用于PO43-浓度的测定.

1.3 分析方法

采用液相色谱-质谱联用仪(LC-MS)分析NTMP和其降解产物的浓度[36].总磷(TP)和PO43-的浓度通过磷钼蓝-抗坏血酸分光光度法在700 nm处测定.此外, TP测定前需用过硫酸钾对样品进行消解.PMSO和PMSO2的浓度用Ultimate 3000超高效液相色谱仪(UHPLC, Dionex, 美国)进行测定, 检测波长分别为230 nm和215 nm, 液相色谱柱为C18色谱柱, 流动相为乙腈和甲酸水(0.1%)(2 ∶8, 体积比), 流速为1.0 mL·min-1.采用碘量分光光度法分析PMS的浓度[37].通过电子顺磁共振光谱仪(EPR, EMX-10/12, Bruker, Germany)对SO4-·、HO·和1O2进行定性检测.

2 结果与讨论 2.1 Co(Ⅱ)/PMS体系降解NTMP

反应60 min后, 单独PMS体系几乎不能降解NTMP, 且反应过程中没有观测到PO43-的产生(图 1).对于Co(Ⅱ)/PMS体系, 在20 min内NTMP已经被完全降解, 相应地, 随着反应时间的延长, NTMP氧化过程中PO43-的产生量逐渐增多, 反应结束时, NTMP中78.3%的TP(以P计)转化为PO43-.此外, NTMP氧化过程中PO43-的产生率先慢后快, 表明NTMP的氧化过程是一个逐步产生PO43-的过程.

实验条件:[Co(Ⅱ)]0=0.85 μmol·L-1, [NTMP]0=10 μmol·L-1, [PMS]0=0.2 mmol·L-1, 初始pH=7.0 图 1 Co(Ⅱ)/PMS体系下NTMP的降解和PO43-的产生 Fig. 1 Degradation of NTMP and the generation of PO43- in the Co(Ⅱ)/PMS system

2.2 反应机制分析

采用EPR、自由基捕获实验和化学探针实验进一步分析Co(Ⅱ)/PMS体系氧化NTMP过程中主要的活性氧化物种.如图 2(a)所示, 以TEMP作为自旋捕获剂, Co(Ⅱ)/PMS体系检测到TEMPO的信号, 说明该体系产生了1O2.此外, 加入NTMP后, Co(Ⅱ)/PMS体系TEMPO信号强度增强, 表明Co(Ⅱ)/PMS体系1O2的产生得到促进.尽管如此, 通过UV/RB体系分析1O2对NTMP氧化的贡献[图 2(b)], 反应60 min后UV/RB体系未观测到明显的PO43-产生, 表明1O2对NTMP氧化转化为PO43-的作用可忽略.

(a)TEMP存在下不同反应体系的EPR谱图, (b)UV/RB体系下PO43-的产生; 实验条件:[Co(Ⅱ)]0=0.85 μmol·L-1, [NTMP]0=10 μmol·L-1, [RB]0=0.05 mmol·L-1, [PMS]0=0.2 mmol·L-1, [TEMP]0=10 mmol·L-1, 初始pH=7.0 图 2 Co(Ⅱ)/PMS体系下1O2对NTMP氧化的贡献 Fig. 2 Role of 1O2 in the oxidation of NTMP in the Co(Ⅱ)/PMS system

图 3(a)所示, 以DMPO作为自旋捕获剂, 由于Co(Ⅱ)浓度低(0.85 μmol·L-1), Co(Ⅱ)/PMS体系没有观测到任何自由基的信号峰.尽管如此, 加入NTMP后Co(Ⅱ)/PMS可观测到明显的DMPOX信号, 说明Co(Ⅱ)/PMS体系活性氧化物种的数量增加. 据报道, 在自由基过程或非自由基过程下DMPO均能被氧化为DMPOX[38, 39].采用自由基捕获实验进一步分析NTMP氧化过程中主要的活性氧化物种, 以TBA作为SO4-·/HO·的捕获剂[k(HO·)为3.8~7.6×108 L·(mol·s)-1, k(SO4-·)为4~9.1×105 L·(mol·s)-1][40], 分析SO4-·/HO·对Co(Ⅱ)/PMS体系氧化NTMP的贡献.由于SO4-·和HO·与NTMP的反应速率常数分别为2.9×107 L·(mol·s)-1和1.1×108 L·(mol·s)-1 [21], 因此, 理论上100 mmol·L-1 TBA能完全淬灭Co(Ⅱ)/PMS体系反应过程中产生的SO4-·和HO·.然而, 加入100 mmol·L-1 TBA后, Co(Ⅱ)/PMS体系PO43-的产生率没有显著的降低.因此, SO4-·和HO·对NTMP氧化为PO43-过程中所起的作用较小, DMPOX的信号是由非自由基反应过程氧化DMPO产生.

(a)DMPO存在下不同反应体系的EPR谱图, (b)TBA捕获实验, 实验条件:[Co(Ⅱ)]0=0.85 μmol·L-1, [NTMP]0=10 μmol·L-1, [PMS]0=0.2 mmol·L-1, [DMPO]0=100 mmol·L-1, 初始pH=7.0 图 3 Co(Ⅱ)/PMS体系下自由基对NTMP氧化的贡献 Fig. 3 Role of free radical in the oxidation of NTMP in the Co(Ⅱ)/PMS system

近年来, 有研究表明Co(Ⅱ)-PMS络合物是Co(Ⅱ)/PMS体系主要的活性氧化物种, 可用PMSO作为化学探针分子分析该体系下的氧化机制[34, 41].PMSO2的转化率[η(PMSO2)]定义为PMSO2的产生量与PMSO消耗量之比[42, 43].如图 4, Co(Ⅱ)/PMS体系PMSO2的转化率为58.5%, 加入NTMP后, PMSO2的转化率仍有49.7%, 表明该反应过程中同时存在单电子转移和氧转移反应过程, NTMP存在下未改变Co(Ⅱ)/PMS体系的氧化机制.因此, Co(Ⅱ)-PMS络合物是该反应体系主要的活性氧化物种, 对NTMP的氧化起主要作用.

实验条件:[Co(Ⅱ)]0=0.85 μmol·L-1, [PMSO]0=20 μmol·L-1, [PMS]0=0.1 mmol·L-1, 初始pH=7.0 图 4 不同反应体系下η (PMSO2)值 Fig. 4 Values of η (PMSO2) in different reaction systems

2.3 降解产物分析

图 5进一步分析了Co(Ⅱ)/PMS体系氧化NTMP反应过程中NTMP的降解产物.Co(Ⅱ)/PMS体系氧化NTMP的降解产物有亚氨基二亚甲基膦酸(IDMP)、氨甲基膦酸(AMPA)、羟甲基膦酸(HMP)和PO43-.根据各含磷物质在反应过程中的浓度变化(即P平衡), 推测出NTMP降解的可能途径见图 6.NTMP主要通过C—N键和C—P键断裂两种方式被氧化降解, 首先NTMP被Co(Ⅱ)-PMS络合物攻击使得C—N键断裂生成IDMP和HMP, 随后IDMP进一步被氧化为AMPA和HMP.同样, AMPA亦会与Co(Ⅱ)-PMS络合物反应生成HMP, 最终HMP被氧化生成PO43-.

实验条件:[Co(Ⅱ)]0=0.85 μmol·L-1, [NTMP]0=10 μmol·L-1, [PMS]0=0.2 mmol·L-1, 初始pH=7.0 图 5 Co(Ⅱ)/PMS体系下NTMP的降解产物随时间的变化曲线 Fig. 5 Profiles of the degradation products of NTMP in the Co(Ⅱ)/PMS system

图 6 Co(Ⅱ)/PMS体系NTMP降解的可能路径 Fig. 6 Proposed pathways for NTMP degradation in the Co(Ⅱ)/PMS system

2.4 溶液化学性质的影响

溶液初始pH对Co(Ⅱ)/PMS体系氧化NTMP的影响见图 7(a).随着初始pH由4.0增加至7.0, NTMP氧化过程中PO43-的产生率由14.6%增加至78.3%, 但进一步增加溶液pH, PO43-的产生率急剧下降.这可能是由于pH的增加提高了NTMP的去质子化程度, 从而使得Co(Ⅱ)—NTMP络合物所带的负电荷更负, 不利于与PMS配位形成NTMP-Co(Ⅱ)-PMS活性氧化物种.如图 7(b)所示, 随着PMS投加量的增加, Co(Ⅱ)/PMS体系氧化NTMP生成PO43-的效率也会相应增加, 当PMS投加量由0.05 mmol·L-1增加至0.3 mmol·L-1, NTMP氧化过程中PO43-的产生率由63.6%增加至78.8%.此外, 还考察了Co(Ⅱ)投加量对Co(Ⅱ)/PMS氧化NTMP的影响[图 7(c)].显而易见, Co(Ⅱ)投加量和Co(Ⅱ)/PMS体系PO43-的产生率呈正相关, 这是因为Co(Ⅱ)投加量的增加将促进反应过程中NTMP-Co(Ⅱ)-PMS活性氧化物种的生成, 从而加快NTMP的氧化.

(a)pH的影响, (b)PMS投加量的影响, (c)Co(Ⅱ)投加量的影响; 实验条件:[Co(Ⅱ)]0=0.85 μmol·L-1, [NTMP]0=10 μmol·L-1, [PMS]0=0.2 mmol·L-1, 初始pH=7.0 图 7 溶液化学性质对Co(Ⅱ)/PMS体系PO43-生成的影响 Fig. 7 Effects of solution chemical properties on the production of PO43- in the Co(Ⅱ)/PMS system

2.5 共存物质的影响

水中共存物质对Co(Ⅱ)/PMS体系氧化NTMP的影响如图 8(a)所示.反应60 min后, 10 mmol·L-1 SO42-、NO3-和Cl-存在下对Co(Ⅱ)/PMS氧化NTMP产生PO43-的影响不大, 但10 mmol·L-1 HCO3-的加入使得Co(Ⅱ)/PMS体系PO43-的产生率仅为19.7%, 极大抑制了PO43-的生成, 这可能是由于HCO3-的加入导致Co的存在形态发生改变, 不利于活性氧化物种NTMP-Co(Ⅱ)-PMS的形成[44].此外, HCO3-和PMS直接反应也能抑制NTMP的氧化[45].类似地, NOM的加入也对Co(Ⅱ)/PMS体系PO43-的产生具有负面影响, 反应60 min后, 仅观测到51.5% NTMP被氧化为PO43-, 这可能是由于NOM能和PMS直接反应或NOM和NTMP发生竞争反应抑制了活性氧化物种的形成[46].此外, 进一步分析了不同共存物质存在下Co(Ⅱ)/PMS体系PMS的分解率[图 8(b)], 加入10 mmol·L-1 SO42-、NO3-和Cl-对Co(Ⅱ)/PMS体系PMS的分解率影响不大, 而HCO3-和NOM的存在均抑制了反应过程中PMS的分解, 这与不同共存物质存在条件下Co(Ⅱ)/PMS体系PO43-的产生率一致.

实验条件:[Co(Ⅱ)]0=0.85 μmol·L-1, [NTMP]0=10 μmol·L-1, [共存阴离子]0=10 mmol·L-1, [NOM]0(以C计)=5 mg·L-1, [PMS]0=0.2 mmol·L-1, 初始pH=7.0, 反应时间=60 min 图 8 共存物质对Co(Ⅱ)/PMS体系PO43-生成的影响及其相应的PMS分解率 Fig. 8 Effects of coexisting substances on the production of PO43- in the Co(Ⅱ)/PMS system and the corresponding decomposition rate of PMS

3 结论

(1) Co(Ⅱ)/PMS体系NTMP的降解和PO43-的产生率呈正相关, 当反应结束时, Co(Ⅱ)/PMS体系PO43-的产生率为78.3%.

(2) Co(Ⅱ)-PMS络合物是NTMP降解的主要活性氧化物种, 而1O2、HO·和SO4-·对NTMP氧化的贡献较小.

(3) 在Co(Ⅱ)/PMS体系下, NTMP主要通过C—N键和C—P键断裂方式被氧化生成IDMP、AMPA、HMP和PO43-等中间产物.

(4) 在pH=6.0时, Co(Ⅱ)/PMS体系氧化NTMP生成的PO43-速率最快; 反应过程中PMS投加量和Co(Ⅱ)投加量的增加均能提高反应过程中PO43-的产生率.

(5) SO42-、NO3-和Cl-的存在对Co(Ⅱ)/PMS氧化NTMP产生PO43-的影响不大, 但PO43-的产生率明显受到HCO3-和NOM的制约.

参考文献
[1] Rott E, Happel O, Armbruster D, et al. Behavior of PBTC, HEDP, and aminophosphonates in the process of wastewater treatment[J]. Water, 2019, 12(1). DOI:10.3390/w12010053
[2] Rott E, Steinmetz H, Metzger J W. Organophosphonates: a review on environmental relevance, biodegradability and removal in wastewater treatment plants[J]. Science of the Total Environment, 2018, 615: 1176-1191. DOI:10.1016/j.scitotenv.2017.09.223
[3] Lei Y, Saakes M, Van Der Weijden R D, et al. Electrochemically mediated calcium phosphate precipitation from phosphonates: implications on phosphorus recovery from non-orthophosphate[J]. Water Research, 2020, 169. DOI:10.1016/j.watres.2019.115206
[4] Grandcoin A, Piel S, Baurès E. Aminomethylphosphonic acid (AMPA) in natural waters: its sources, behavior and environmental fate[J]. Water Research, 2017, 117: 187-197. DOI:10.1016/j.watres.2017.03.055
[5] Lesueur C, Pfeffer M, Fuerhacker M. Photodegradation of phosphonates in water[J]. Chemosphere, 2005, 59(5): 685-691. DOI:10.1016/j.chemosphere.2004.10.049
[6] Nowack B. Environmental chemistry of phosphonates[J]. Water Research, 2003, 37(11): 2533-2546. DOI:10.1016/S0043-1354(03)00079-4
[7] Fischer K. Sorption of chelating agents (HEDP and NTA) onto mineral phases and sediments in aquatic model systems: Part Ⅱ: Sorption onto sediments and sewage sludges[J]. Chemosphere, 1992, 24(1): 51-62. DOI:10.1016/0045-6535(92)90566-A
[8] Horstmann B, Grohmann A. Untersuchungen zur biologischen abbaubarkeit von phosphonaten[J]. Vom Wasser, 1988, 70: 163-178.
[9] Nowack B. The behavior of phosphonates in wastewater treatment plants of Switzerland[J]. Water Research, 1998, 32(4): 1271-1279. DOI:10.1016/S0043-1354(97)00338-2
[10] Zenobi M C, Hein L, Rueda E. The effects of 1-hydroxyethane-(1, 1-diphosphonic acid) on the adsorptive partitioning of metal ions onto γ-AlOOH[J]. Journal of Colloid and Interface Science, 2005, 284(2): 447-454. DOI:10.1016/j.jcis.2004.10.017
[11] Gu A Z, Liu L, Neethling J B, et al. Treatability and fate of various phosphorus fractions in different wastewater treatment processes[J]. Water Science & Technology, 2011, 63(4): 804-810.
[12] Arnaldos M, Pagilla K. Effluent dissolved organic nitrogen and dissolved phosphorus removal by enhanced coagulation and microfiltration[J]. Water Research, 2010, 44(18): 5306-5315. DOI:10.1016/j.watres.2010.06.066
[13] Huang N, Wang W L, Xu Z B, et al. UV/chlorine oxidation of the phosphonate antiscalant 1-Hydroxyethane-1, 1-diphosphonic acid (HEDP) used for reverse osmosis processes: Organic phosphorus removal and scale inhibition properties changes[J]. Journal of Environmental Management, 2019, 237: 180-186.
[14] Rott E, Minke R, Bali U, et al. Removal of phosphonates from industrial wastewater with UV/Fe, Fenton and UV/Fenton treatment[J]. Water Research, 2017, 122: 345-354. DOI:10.1016/j.watres.2017.06.009
[15] Liu B M, Liu Z X, Yu P, et al. Enhanced removal of tris(2-chloroethyl) phosphate using a resin-based nanocomposite hydrated iron oxide through a Fenton-like process: Capacity evaluation and pathways[J]. Water Research, 2020, 175. DOI:10.1016/j.watres.2020.115655
[16] 胡昊, 潘顺龙, 聂溪, 等. CoFe2O4的制备及其对有机膦酸的去除性能研究[J]. 环境科学学报, 2022, 42(8): 156-165.
Hu H, Pan S L, Nie X, et al. Preparation of CoFe2O4 as catalyst for the removal of phosphonates[J]. Acta Scientiae Circumstantiae, 2022, 42(8): 156-165.
[17] Barrett K A, McBride M B. Oxidative degradation of glyphosate and aminomethylphosphonate by manganese oxide[J]. Environmental Science & Technology, 2005, 39(23): 9223-9228.
[18] Nowack B, Stone A T. Homogeneous and heterogeneous oxidation of nitrilotrismethylenephosphonic acid (NTMP) in the presence of manganese(Ⅱ, Ⅲ) and molecular oxygen[J]. The Journal of Physical Chemistry B, 2002, 106(24): 6227-6233. DOI:10.1021/jp014293+
[19] Martin P R, Buchner D, Jochmann M A, et al. Two pathways compete in the Mn(Ⅱ)-catalyzed oxidation of aminotrismethylene phosphonate (ATMP)[J]. Environmental Science & Technology, 2022, 56(7): 4091-4100.
[20] Xu Z B, Wang W L, Huang N, et al. 2-Phosphonobutane-1, 2, 4-tricarboxylic acid (PBTCA) degradation by ozonation: kinetics, phosphorus transformation, anti-precipitation property changes and phosphorus removal[J]. Water Research, 2019, 148: 334-343. DOI:10.1016/j.watres.2018.10.038
[21] Wang Z, Chen G D, Patton S, et al. Degradation of nitrilotris-methylenephosphonic acid (NTMP) antiscalant via persulfate photolysis: Implications on desalination concentrate treatment[J]. Water Research, 2019, 159: 30-37. DOI:10.1016/j.watres.2019.04.051
[22] Sun S H, Wang S, Ye Y X, et al. Highly efficient removal of phosphonates from water by a combined Fe(Ⅲ)/UV/co-precipitation process[J]. Water Research, 2019, 153: 21-28. DOI:10.1016/j.watres.2019.01.007
[23] Luo R, Li M Q, Wang C H, et al. Singlet oxygen-dominated non-radical oxidation process for efficient degradation of bisphenol A under high salinity condition[J]. Water Research, 2019, 148: 416-424. DOI:10.1016/j.watres.2018.10.087
[24] Huang K Z, Zhang H C. Direct electron-transfer-based peroxymonosulfate activation by iron-doped manganese oxide (δ-MnO2) and the development of galvanic oxidation processes (GOPs)[J]. Environmental Science & Technology, 2019, 53(21): 12610-12620.
[25] Li H C, Shan C, Pan B C. Fe(Ⅲ)-doped g-C3N4 mediated peroxymonosulfate activation for selective degradation of phenolic compounds via high-valent iron-oxo species[J]. Environmental Science & Technology, 2018, 52(4): 2197-2205.
[26] Yun E T, Lee J H, Kim J, et al. Identifying the nonradical mechanism in the peroxymonosulfate activation process: singlet oxygenation versus mediated electron transfer[J]. Environmental Science & Technology, 2018, 52(12): 7032-7042.
[27] Gao Y W, Chen Z H, Zhu Y, et al. New Insights into the generation of singlet oxygen in the metal-free peroxymonosulfate activation process: important role of electron-deficient carbon atoms[J]. Environmental Science & Technology, 2020, 54(2): 1232-1241.
[28] Lee J, Von Gunten U, Kim J H. Persulfate-based advanced oxidation: Critical assessment of opportunities and roadblocks[J]. Environmental Science & Technology, 2020, 54(6): 3064-3081.
[29] Li H C, Shan C, Li W, et al. Peroxymonosulfate activation by iron(Ⅲ)-tetraamidomacrocyclic ligand for degradation of organic pollutants via high-valent iron-oxo complex[J]. Water Research, 2018, 147: 233-241. DOI:10.1016/j.watres.2018.10.015
[30] Yang Z C, Qian J S, Shan C, et al. Toward selective oxidation of contaminants in aqueous systems[J]. Environmental Science & Technology, 2021, 55(21): 14494-14514.
[31] Chen J B, Zhou X F, Sun P Z, et al. Complexation enhances Cu(Ⅱ)-activated peroxydisulfate: a novel activation mechanism and Cu(Ⅲ) contribution[J]. Environmental Science & Technology, 2019, 53(20): 11774-11782.
[32] Sun S H, Shan C, Yang Z C, et al. Self-enhanced selective oxidation of phosphonate into phosphate by Cu(Ⅱ)/H2 O2: Performance, mechanism, and validation[J]. Environmental Science & Technology, 2022, 56(1): 634-641.
[33] Naqvi K R, Marsh J, Chechik V. Formation of self-inhibiting copper(Ⅱ) nanoparticles in an autocatalytic Fenton-like reaction[J]. Dalton Transactions, 2014, 43(12): 4745-4751. DOI:10.1039/C3DT53617C
[34] Zhu J L, Wang S, Li H C, et al. Degradation of phosphonates in Co(Ⅱ)/peroxymonosulfate process: performance and mechanism[J]. Water Research, 2021, 202. DOI:10.1016/j.watres.2021.117397
[35] Nowack B, Stone A T. Degradation of nitrilotris(methylenephosphonic acid) and related (amino)phosphonate chelating agents in the presence of manganese and molecular oxygen[J]. Environmental Science & Technology, 2000, 34(22): 4759-4765.
[36] Wang S, Sun S H, Shan C, et al. Analysis of trace phosphonates in authentic water samples by pre-methylation and LC-Orbitrap MS/MS[J]. Water Research, 2019, 161: 78-88. DOI:10.1016/j.watres.2019.05.099
[37] Liang C J, Huang C F, Mohanty N, et al. A rapid spectrophotometric determination of persulfate anion in ISCO[J]. Chemosphere, 2008, 73(9): 1540-1543. DOI:10.1016/j.chemosphere.2008.08.043
[38] Wang Y B, Zhao X, Cao D, et al. Peroxymonosulfate enhanced visible light photocatalytic degradation bisphenol A by single-atom dispersed Ag mesoporous g-C3N4 hybrid[J]. Applied Catalysis B: Environmental, 2017, 211: 79-88. DOI:10.1016/j.apcatb.2017.03.079
[39] Li X N, Huang X, Xi S B, et al. Single cobalt atoms anchored on porous N-doped graphene with dual reaction sites for efficient Fenton-like catalysis[J]. Journal of the American Chemical Society, 2018, 140(39): 12469-12475. DOI:10.1021/jacs.8b05992
[40] Zhu J L, Li H C, Shan C, et al. Trace Co2+ coupled with phosphate triggers efficient peroxymonosulfate activation for organic degradation[J]. Journal of Hazardous Materials, 2021, 409. DOI:10.1016/j.jhazmat.2020.124920
[41] Li H C, Zhao Z H, Qian J S, et al. Are free radicals the primary reactive species in Co(Ⅱ)-mediated activation of peroxymonosulfate? New evidence for the role of the Co(Ⅱ)-peroxymonosulfate complex[J]. Environmental Science & Technology, 2021, 55(9): 6397-6406.
[42] Wang Z, Qiu W, Pang S Y, et al. Effect of chelators on the production and nature of the reactive intermediates formed in Fe(Ⅱ) activated peroxydisulfate and hydrogen peroxide processes[J]. Water Research, 2019, 164. DOI:10.1016/j.watres.2019.114957
[43] Wang Z, Jiang J, Pang S Y, et al. Is sulfate radical really generated from peroxydisulfate activated by iron(Ⅱ) for environmental decontamination?[J]. Environmental Science & Technology, 2018, 52(19): 11276-11284.
[44] Huang Z F, Yao Y Y, Lu J T, et al. The consortium of heterogeneous cobalt phthalocyanine catalyst and bicarbonate ion as a novel platform for contaminants elimination based on peroxymonosulfate activation[J]. Journal of Hazardous Materials, 2016, 301: 214-221. DOI:10.1016/j.jhazmat.2015.08.063
[45] Giannakis S, Lin K Y A, Ghanbari F. A review of the recent advances on the treatment of industrial wastewaters by Sulfate Radical-based Advanced Oxidation Processes (SR-AOPs)[J]. Chemical Engineering Journal, 2021, 406. DOI:10.1016/j.cej.2020.127083
[46] Jia J L, Liu D M, Tian J Y, et al. Visible-light-excited humic acid for peroxymonosulfate activation to degrade bisphenol A[J]. Chemical Engineering Journal, 2020, 400. DOI:10.1016/j.cej.2020.125853