2. 粤港澳环境质量协同创新联合实验室, 广州 511443;
3. 北京雪迪龙科技股份有限公司, 北京 102206;
4. 东莞市生态环境局, 东莞 523009
2. Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 511443, China;
3. Beijing SDL Technology Co., Ltd., Beijing 102206, China;
4. Dongguan Ecological Environmental Bureau, Dongguan 523009, China
挥发性有机物(volatile organic compounds, VOCs)作为大气中重要痕量气体[1], 在促进臭氧(O3)和其他氧化剂产生的同时[2, 3], 还能够生成二次有机气溶胶(SOA), 进而驱动细颗粒物(PM2.5)浓度的积累[4~7].近年来由臭氧和PM2.5主导的污染事件在中国许多城市频繁发生, 对区域气候和人体健康造成不利影响, 而VOCs在其中扮演着关键角色[8~10].VOCs的一次来源主要包括生物源排放和人类生产活动中涉及的各种人为源排放[11, 12].在全球尺度上, 生物源与人为源VOCs的排放比约为9∶1, 而在中国, 这一比例大约是1.7∶1[2].因此, 人为源对中国VOCs总排放量的贡献极其重要.
一项针对中国地区的VOCs排放清单研究表明, 在6个主要人为源中, 工业过程源在VOCs总排放量中占主导地位(46%), 其次是溶剂使用源(18%)[13].工业相关的排放已成为近年来中国VOCs总排放量持续增长的主要驱动力[14], 而工业地区作为工业排放集中地, 具有VOCs排放量大且组分多样等特点, 经常被视为VOCs排放热点[15~18].截至目前, 全球许多地区已经广泛报道了不同工业地区VOCs的排放水平和化学组成等信息.例如, 在加拿大艾伯塔省的油砂工业区中总挥发性有机物(total volatile organic compounds, TVOC)以烷烃为主(48%), 其次是酮类(30.9%)[19]; 在韩国蔚山综合工业区, 甲苯是最丰富的VOCs物种, 其次是乙酸乙酯[20]; 而在泰国以工业过程和石化工业为主要排放贡献的工业区, 烯烃是环境大气中VOCs的主要贡献来源(4.0%~60.7%)[21].
中国近年来工业发展迅速, 有研究报道了不同工业区的排放成分谱特征及对环境VOCs浓度的影响, 包括石化工业区[22]、精细化工厂[15~18, 22]、炼油厂[23]、焦炭厂[24]、冶铁厂[24]和车辆制造工业区[25]等.但针对轻工业行业(如家具制造和制鞋等行业)的研究多数为根据源排放测试构建行业VOCs源成分谱[26, 27], 对于表征轻工业集中地区环境VOCs特征的研究则相对较少, 而这类研究能够更直观地表明工业排放对环境VOCs的综合影响.此外, 现有研究中关于工业地区VOCs数据的获取主要为离线方法[23, 24]或使用快速在线走航监测[15, 28], 有限的样品数量通常难以有效揭示关键VOCs组分短期或长期的趋势变化.此外, 已有研究表明, 含氧挥发性有机物(oxygenated volatile organic compounds, OVOCs)是工业地区环境大气中VOCs体积分数的重要贡献来源[22, 24, 29], 但大部分研究未进行对OVOCs的同步监测.
珠江三角洲地区是中国四大工业基地之一, 其特点是以轻工业为主的综合性工业基地, 已有大量研究阐述了珠三角地区的VOCs污染特征和其来源[6, 30~33].东莞市作为珠三角地区工业化程度最高的城市之一, 其主导产业为家具制造、制鞋和印刷等与溶剂使用密切相关行业.已有研究结果表明, 东莞市贡献了珠三角地区VOCs总排放量的18.2%, 与溶剂使用相关的排放达到东莞市VOCs排放总量的一半以上[34~37].本研究于2021年夏初在东莞市某工业地区, 通过在线质谱技术对环境大气中包含OVOCs在内的74种VOCs进行同步测量, 分析了VOCs组成及来源, 并评估各类型VOCs对二次污染物的贡献.本研究将加深现有研究对工业区环境VOCs特征的理解, 以期对珠三角工业地区建立有效的空气污染控制策略和梳理VOCs重点研究方向提供启示.
1 材料与方法 1.1 采样地点厚街镇是东莞市工业活动最密集的地区之一, 截至2019年底, 厚街镇拥有各类企业2.67万家, 以家具制造业和制鞋业作为优势产业.采样地点位于东莞市厚街镇的环境空气VOCs监测站(113°38′22″E, 22°55′29″N, 如图 1), 仪器放置在建筑楼顶的监测站房中, 距地面约30 m, 周围无高层建筑物, 采样点周边区域分布着大量的制鞋、家具制造、印刷和塑料制品等工厂企业, 能够在一定程度上表征工业区的大气化学组分特征.
![]() |
图 1 采样点位置示意 Fig. 1 Map of sample site in this study |
VOCs在线分析系统包括在线气相色谱仪(GC-866, Chromatotec Inc., 法国)与质子转移反应飞行时间质谱仪(PTR-ToF-MS, Kore Inc., 英国).GC-866具有两个独立的高性能气相色谱火焰电离检测器(GC-FID), 能够在线分析C2~C12烃类化合物.PTR-ToF-MS是一种软电离的在线质谱技术, 不需要样品的预处理就能实时测量大气中痕量VOCs的丰度水平[38], 在本次观测中主要用于OVOCs组分测量.观测期间, GC-866的检测限为0.01×10-9~0.38×10-9, PTR-ToF-MS的检测限为0.10×10-9~0.42×10-9.有关上述仪器更详细的信息可以参考文献[32, 39]中的描述.
VOCs采样时间为2021年4月17~27日, 观测期间, 在线GC-866时间分辨率为1 h, 并于观测前进行PAMS标气标定.PTR-ToF-MS的时间分辨率为10 s, 每天采用定制VOCs标气在干燥(RH<1%)条件和环境湿度条件下分别进行标定.此外, 为了避免仪器背景对观测数据的影响, PTR-ToF-MS使用带有环境湿度的洁净空气每30 min进行一次背景测量.其中, 洁净空气由环境空气通入定制催化箱后得到的, 催化箱中具有加热到365℃的铂丝催化剂, 能够有效去除VOCs组分并保留环境湿度.两台仪器均放置在监测站房中, 仪器的进样管路均配备单独采样泵持续抽入环境空气, 以缩短环境空气在管路中的停留时间, 降低观测数据的不确定性[40].
1.3 臭氧生成潜势(OFP)和·OH反应活性计算VOCs是生成臭氧的重要前体物, 由于不同VOCs物种之间的化学反应活性存在显著差异, 不同VOCs物种对O3的相对形成贡献也不同.本研究采用最大增量反应性(maximum incremental reactivity, MIR)来估算不同VOCs物种的臭氧生成潜势(ozone formation potential, OFP).MIR是一个广泛使用的概念, 主要用于评估不同VOCs物种在O3生成中的贡献, 通过将VOCs物种体积分数乘以相应的MIR值来计算单个VOCs物种的OFP[41].对于VOCs物种i, 其OFP可以通过式(1)进行计算:
![]() |
(1) |
式中, [VOCi]为观测中VOC物种i的体积分数, MIRi为对应VOCs物种i的最大增量反应性[42].
·OH反应活性(k·OH)可以用于确定大气痕量气体对·OH的总体影响, 其中VOCs的·OH反应活性可以有效地表征各种VOCs对与二次污染物形成相关的大气化学反应的贡献[43, 44].通常总·OH反应活性为VOCs和无机气体的·OH反应活性总和[44, 45], 本研究只讨论VOCs贡献的·OH反应活性.·OH反应活性被定义为反应物体积分数乘以与·OH的气相反应速率常数, 对于VOCs物种i, 它的k·OH可以通过式(2)进行计算:
![]() |
(2) |
式中, [VOCi]为观测中VOC物种i的体积分数, k·OH+VOCi为对应VOCs物种i与·OH的反应速率常数, 各种VOCs的速率常数参考文献[1, 46, 47]中的结果.
2 结果与讨论 2.1 VOCs体积分数特征分析本研究选择了74种VOCs物种进行分析(29种烷烃、11种烯烃、1种炔烃、17种芳香烃和16种OVOCs), 使用TVOC表示它们的总和.图 2展示了观测期间的各类VOCs组分体积分数之和的时间序列, φ(TVOC)在观测期间波动较大(9.9×10-9~245.6×10-9), 平均值为(81.9±45.4)×10-9, 显著高于中国其他大型城市的水平(29.1×10-9~59.4×10-9, 表 1).本研究中烷烃、烯烃、炔烃和芳香烃分别占总TVOC体积分数的(25.1±7.9)%、(2.5±1.1)%、(1.6±0.7)%和(19.4±6.0)%, 而OVOCs占比最高, 达到了(51.5±9.6)%, 并且其占比随着TVOCs体积分数的升高而逐渐增大(图 3).
![]() |
图 2 观测期间各VOCs组分体积分数的时间序列 Fig. 2 Time series of concentration of each VOCs component during the observation period |
![]() |
表 1 中国其他城市VOCs组分体积分数和占比1) Table 1 Volume mixing ratio and proportion of VOCs components in other cities in China |
![]() |
图 3 不同TVOC体积分数下各VOCs组分在TVOC中的占比 Fig. 3 Proportion of each VOCs components in TVOC under different TVOC concentrations |
以往国内针对工业区的研究中烷烃通常是占比最高的组分(约为40%~50%)[17, 25, 54, 55], 例如叶露等[25]在汽车工业区的研究中, 发现园区大气中TVOC的体积分数为26.5×10-9, 其中烷烃占比为50.2%, 其次是芳香烃为22.4%, Zhang等[54]在石化产业区的研究中发现TVOC平均体积分数为94.14×10-9, 以烷烃(41.8%)和芳香烃(20.1%)为主, 对比发现, 两个工业区中烷烃的占比均大于本研究的结果, 主要原因是上述两项研究缺乏对OVOCs的监测.另外在不考虑OVOCs时, 研究地区芳香烃的占比几乎是上述两个工业区的两倍, 这是由于本研究的工业区中溶剂使用源的芳香烃排放比重较大.由于大部分工业区研究缺乏对OVOCs的监测, 这可能引起人们对工业地区OVOCs的重要性缺少认知, 而本研究的数据表明了OVOCs在工业地区的重要性.
表 2列举了研究期间组成占比排名前20的物种.烷烃中正丁烷与丙烷的体积分数最高, 分别为(4.0±2.3)×10-9和(3.7±2.0)×10-9, 其体积分数水平低于石化工业区的体积分数水平(8.64×10-9和7.46×10-9)[54], 但高于一些城市站点的结果[16, 56].与珠三角地区以往的研究结果类似, 本研究中甲苯、间/对-二甲苯和邻-二甲苯是芳香烃中体积分数最高的物种[31, 34, 35], 体积分数分别为(6.0±6.0)×10-9、(4.9±3.6)×10-9和(2.0±1.5)×10-9.甲醇、乙酸乙酯和甲基乙基酮(MEK)是本研究中体积分数最高的OVOCs物种, 分别为(14.5±10.0)×10-9、(7.8±5.9)×10-9和(6.5±8.2)×10-9.甲醇作为大气中仅次于甲烷的第二丰富的有机气体, 是许多城市地区的主要OVOCs物种, 例如深圳(6.1×10-9)、北京(19.7×10-9)和匹兹堡(2.35×10-9~14.6×10-9)[57, 58], 研究地区甲醇与乙酸乙酯(r=0.86)和甲苯(r=0.81)具有较强的相关性, 表明它们可能具有相同来源.
![]() |
表 2 组成占比及OFP值和·OH反应活性贡献率排名前20的VOCs物种/% Table 2 Top 20 VOCs species of volume mixing ratio, OFP, and ·OH reactivity and their contribution/% |
2.2 VOCs特征比值分析
一些典型VOCs物种的体积分数比值具有指示剂, 可用于解析其来源以及提供光化学和大气迁移过程等重要信息[59~61].
甲苯与苯的体积分数比值(T/B)通常用作评估交通排放及工业活动排放的指标, 以往的研究表明甲苯和二甲苯普遍来源于机动车尾气、溶剂使用和工业活动排放等[50, 62].世界上许多城市地区车辆排放特征中T/B通常在2.0左右[35], 当T/B大于5甚至更高时, 可认为受工业排放的强烈影响[35, 63].这是由于甲苯被广泛用作溶剂, 而苯在工业中的使用相对较少, 因此典型溶剂使用源排放的气团能够显着提高环境大气中的T/B[34].在本次观测期间T/B的平均值为24.6±20.4, 较高的T/B表明了溶剂使用源对环境大气中VOCs组分的严重影响.
通常认为正丁烷与丙烷来自液化石油气逸散和石化工业[17, 64, 65], 但一些轻工业活动中也可能会排放正丁烷与丙烷, 例如塑料注塑和焊接工艺过程存在高体积分数的正丁烷与丙烷的排放[27].丙烷与正丁烷的比值可以进一步指示两种物种的来源, 观测期间丙烷/正丁烷的平均值为1.0±0.4, 高于在汽油车尾气中的比值(0.49), 低于液化石油气中的比值(6.12)[65], 而与塑料注塑(1.28)[27]、印刷车间(0.96)[60]的排放比值比较接近.因此, 这两种小分子烷烃可能主要来自工业活动的排放, 例如注塑和印刷行业, 本次观测的丙烷与正丁烷比值结果更可能代表了复杂工业排放环境下的特征比值.
其中乙酸乙酯和甲苯是化工行业中广泛使用的溶剂[15], 也在印刷、家具制造、涂料制造和制鞋等行业中排放显著[26, 41].乙酸乙酯与甲苯在研究地区被认为主要来自一次源排放, 并且体积分数具有较高的相关性(r=0.75).本研究期间乙酸乙酯与甲苯的体积分数比值为1.6, 接近家具喷涂的排放比值(1.85~2.19), 介于印刷(0.09~18.25)和制鞋(0.31~2.89)的排放比值区间[26], 这表明乙酸乙酯和甲苯主要来自当地的溶剂使用源排放贡献.
2.3 VOCs的日变化特征大气污染物的昼夜变化特征是气象条件、污染源排放和大气化学反应的综合结果, 图 4中展示了本次观测中典型VOCs物种的日变化曲线.
![]() |
阴影表示标准差 图 4 观测期间典型VOCs日变化曲线 Fig. 4 Diurnal variations in representative VOCs species during the observation period |
丙烷与正丁烷的日变化呈现整体平稳和中午体积分数降低的特点, 中午时段的体积分数下降可能是由于边界层升高时污染物在垂直方向上的稀释和中午较为剧烈的光化学反应共同导致[63].由于本研究的观测地点附近没有石化工业区, 因此丙烷与正丁烷可能来自液化石油气逸散或塑料制造业等相关排放[19].而液化石油气主要用于居民烹饪[65], 但在烹饪时间段未观测到明显的峰值出现, 因此小分子烷烃更可能来自工业活动排放, 例如塑料注塑等工艺过程, 这与根据VOCs比值判断的结果相同.涉及这类工艺的工厂通常24 h连续运转, 与丙烷与正丁烷的日变化曲线波动相对较小吻合.
乙烯与丙烯表现出明显的双峰型日变化特征, 峰值出现在早晚高峰时段, 而在正午和夜间时段体积分数出现低值并且大小基本相等, 这种日变化特征表明乙烯和丙烯在研究地区主要受机动车排放影响.乙炔通常被认为是机动车排放的示踪物[50], 在本次观测中乙炔和乙烯之间存在良好的相关性(r=0.82), 表明它们可能同样来自机动车排放源[62, 66], 乙烯和丙烯的日变化峰值低于北京(2.02×10-9、0.46×10-9)[67]和广州(2.99×10-9、1.32×10-9)[68]观测的体积分数均值, 这可能与研究地区机动车保有量相对较低有关.
甲苯、二甲苯、甲醇、乙酸乙酯和MEK相似的日变化表明它们来自相同的排放源贡献, 其日变化特点是具有两个峰值, 分别对应09:00和21:00前后, 并且21:00的体积分数峰值远高于09:00的体积分数峰值.在这里考虑了3种可能原因:①夜间VOCs的化学消耗途径相对白天减弱.上午VOCs可通过化学反应或光解被大量消耗, 而这种消耗机制在夜间较弱, 从而造成在夜间VOCs更容易积累的现象[69].但监测点靠近排放源, 污染物可能不具备足够的反应时间[17, 65].②夜间边界层下降导致的局地污染积累可能会造成VOCs在近地面的体积分数增长[70].边界层的物理作用通常会影响几乎所有的一次排放的VOCs, 但烷烃和烯烃却未出现类似芳香烃和OVOCs的日变化特征, 因此边界层降低可能并不是主要原因.③排放源具有明显的排放强度日变化, 即排放活动主要集中在下午至夜间.物种的体积分数水平在16:00左右达到下午的峰值水平, 继续积累至21:00后出现了快速的体积分数下降, 说明排放源在这个时间段可能存在1d中最强烈的芳香烃和OVOCs排放活动.以上纳入考虑的3个原因可能共同作用导致部分芳香烃和OVOCs出现特殊的日变化特征, 但推测最重要的原因是相关排放源的排放强度在16:00~21:00大幅度升高.发现排放强度具有日间变化对工业地区VOCs监测研究及管控等工作具有一定的启示意义, 例如对VOCs进行管控时考虑日间排放强度变化可能引起的环境效应.
2.4 VOCs的臭氧生成潜势与·OH反应活性分析本研究基于观测期间的VOCs测量结果, 进行了VOCs物种的OFP和·OH反应活性的计算及分析, 用于评估VOCs物种对二次污染物形成的贡献.
观测期间OFP均值为(334.1±45.4)×10-9, 表 2中总结了对OFP贡献率前20的物种, 其中间/对-二甲苯、甲苯、邻-二甲苯、甲醛、丙烯醛、MEK和乙醛共贡献了超过65%的OFP.此外对OFP贡献率前10的物种均为芳香烃和OVOCs, 表明研究地区芳香烃和OVOCs对臭氧二次生成的重要性.在图 5(b)中展示了5种VOCs组分对OFP的贡献率, 芳香烃与OVOCs对OFP的贡献率最大, 分别是56.4%和26.7%.部分研究强调芳香烃对VOCs的臭氧生成潜势的重要贡献[71, 72], 这是由于芳香烃具有的高碳数和高MIR值, 比如在广州地区发现芳香烃贡献了70%的OFP[73].研究地区烯烃对OFP的贡献率仅有6.8%, 不同于部分研究中烯烃对OFP存在重要贡献的结论[74], 烯烃对OFP的贡献率相对较低, 主要是由于其环境体积分数较低的原因.此外, 烷烃和炔烃的贡献率仅为9.9%和0.2%.OFP评估结果表明控制该地区的芳香烃和OVOCs来源对于缓解当地及周边地区臭氧污染非常重要.
![]() |
(a)VOCs各组分的组成占比, (b)VOCs各组分对总OFP的贡献率, (c)VOCs各组分对总·OH反应活性的贡献率 图 5 各VOCs组分的组成占比及对总OFP和总·OH反应活性的贡献率 Fig. 5 Contribution of alkanes, alkenes, alkynes, aromatics, and OVOCs to volume mixing ratio, OFP and ·OH reactivity |
基于·OH反应活性的研究分析, 发现观测期间VOCs的·OH总反应活性的范围为1.5~44.2 s-1, 平均值为(14.8±7.8) s-1, 高于城市地区的研究结果, 如广州(10.9 s-1)、上海(6.2 s-1)、北京(7.1 s-1)、南京(10.4 s-1)和重庆(8.9 s-1)[22, 73].表 2中列举了对·OH反应活性贡献率前20的物种, 其中间/对-二甲苯、乙酸乙酯、苯乙烯和丙烯醛是最重要的·OH反应活性贡献物种.总·OH反应活性的日变化曲线如图 6所示, 表现出上午和夜间双峰型的特征, 夜间总·OH反应活性峰值达到上午峰值的2倍, 并且主要由芳香烃和OVOCs物种贡献.OVOCs体积分数与总·OH反应活性的小时均值具有较高的相关性(r=0.90), 这表明了OVOCs对·OH反应活性的重要影响.图 5(c)展示了VOCs组分对总·OH反应活性的贡献率, 其中OVOCs与芳香烃的贡献率最大, 分别为40.0%和35.9%, 烷烃、烯烃和炔烃仅占总·OH反应活性的11.1%、12.9%和0.2%.在研究地区OVOCs对·OH反应活性的贡献率(13.0%~62.3%)高于南京工业地区(9%~17%)[21], 这是由于本研究检测的OVOCs物种种类更多, 并且OVOCs物种在研究地区体积分数水平相对更高.尽管OVOCs反应速率常数普遍低于其他烃类, 但工业地区高丰度的OVOCs对总反应活性的贡献仍非常显著.OVOCs的·OH反应活性较高, 说明其清除过程需要消耗大量的氧化剂(·OH), 并且在氧化降解过程中可能生成臭氧和SOA, 这些数据从·OH反应活性的角度强调了OVOCs在二次污染物形成中所具有的重要作用, 此外OVOCs可能是以往研究中臭氧或SOA前体物缺失的重要组成部分, 未来对于工业地区·OH反应活性的研究中需要更加重视OVOCs物种.
![]() |
图 6 观测期间VOCs总·OH反应活性日变化 Fig. 6 Diurnal profiles of total ·OH reactivity of VOCs during the observation period |
(1) 本研究基于PTR-ToF-MS和GC-FID在线测量技术, 在珠三角典型工业地区进行了全面的VOCs测量.本研究期间φ(TVOC)平均值为81.9×10-9, OVOCs和芳香烃是工业地区环境大气中TVOC的主要组成成分.
(2) 根据源解析结果, 研究地区重要的芳香烃及OVOCs物种都受到溶剂使用源一次排放的直接影响, C2~C3烯烃主要受到机动车排放影响.
(3) 根据物种日变化特征分析发现, 工业活动的污染物排放强度可能在1 d中有所变化, 排放活动更可能集中在16:00~21:00之间.
(4) 值得注意的是, 工业地区大气环境中的OVOCs占VOCs总体积分数的51.5%, 此外还贡献了40.0%的总·OH反应活性以及26.7%的总OFP, 这说明OVOCs在工业区具有巨大排放量以及对二次污染形成的重要贡献.
(5) 考虑到OVOCs的权重会在气团老化后进一步增加, OVOCs在工业园区和下风向地区的二次污染形成过程中将扮演更加重要角色.因此未来有必要加强对工业地区及下风向地区OVOCs组分及化学过程的关注, 从而科学调整空气污染控制策略.
[1] | Atkinson R, Arey J. Atmospheric degradation of volatile organic compounds[J]. Chemical Reviews, 2003, 103(12): 4605-4638. DOI:10.1021/cr0206420 |
[2] | Mozaffar A, Zhang Y L, Fan M Y, et al. Characteristics of summertime ambient VOCs and their contributions to O3 and SOA formation in a suburban area of Nanjing, China[J]. Atmospheric Research, 2020, 240. DOI:10.1016/j.atmosres.2020.104923 |
[3] | Qu H, Wang Y H, Zhang R X, et al. Chemical production of oxygenated volatile organic compounds strongly enhances Boundary-Layer oxidation chemistry and ozone production[J]. Environmental Science & Technology, 2021, 55(20): 13718-13727. |
[4] | Sheng J J, Zhao D L, Ding D P, et al. Characterizing the level, photochemical reactivity, emission, and source contribution of the volatile organic compounds based on PTR-TOF-MS during winter haze period in Beijing, China[J]. Atmospheric Research, 2018, 212: 54-63. DOI:10.1016/j.atmosres.2018.05.005 |
[5] | Ehn M, Thornton J A, Kleist E, et al. A large source of low-volatility secondary organic aerosol[J]. Nature, 2014, 506(7489): 476-479. DOI:10.1038/nature13032 |
[6] | He Z R, Wang X M, Ling Z H, et al. Contributions of different anthropogenic volatile organic compound sources to ozone formation at a receptor site in the Pearl River Delta region and its policy implications[J]. Atmospheric Chemistry and Physics, 2019, 19(13): 8801-8816. DOI:10.5194/acp-19-8801-2019 |
[7] | Kuang Y, He Y, Xu W Y, et al. Photochemical aqueous-phase reactions induce rapid daytime formation of oxygenated organic aerosol on the North China Plain[J]. Environmental Science & Technology, 2020, 54(7): 3849-3860. |
[8] | Wang Y M, Wang Y H, Tang G Q, et al. High gaseous carbonyl concentrations in the upper boundary layer in Shijiazhuang, China[J]. Science of the Total Environment, 2021, 799. DOI:10.1016/j.scitotenv.2021.149438 |
[9] | Zhao R J, Yin B H, Zhang N, et al. Aircraft-based observation of gaseous pollutants in the lower troposphere over the Beijing-Tianjin-Hebei region[J]. Science of the Total Environment, 2021, 773. DOI:10.1016/j.scitotenv.2020.144818 |
[10] | Dong Y M, Li J, Guo J P, et al. The impact of synoptic patterns on summertime ozone pollution in the North China Plain[J]. Science of the Total Environment, 2020, 735. DOI:10.1016/j.scitotenv.2020.139559 |
[11] | Sharma N, Agarwal A K, Eastwood P, et al. Air pollution and control (Energy, Environment, and Sustainability)[M]. Singapore.: Springer, 2018. |
[12] | Yáñez-Serrano A M, Nölscher A C, Bourtsoukidis E, et al. Monoterpene chemical speciation in a tropical rainforest: variation with season, height, and time of dayat the Amazon Tall Tower Observatory (ATTO)[J]. Atmospheric Chemistry and Physics, 2018, 18(5): 3403-3418. DOI:10.5194/acp-18-3403-2018 |
[13] | Sun W, Shao M, Granier C, et al. Long-Term trends of anthropogenic SO2, NOx, CO, and NMVOCs emissions in China[J]. Earth's Future, 2018, 6(8): 1112-1133. DOI:10.1029/2018EF000822 |
[14] | Li B W, Ho S S H, Li X H, et al. A comprehensive review on anthropogenic volatile organic compounds (VOCs) emission estimates in China: comparison and outlook[J]. Environment International, 2021, 156. DOI:10.1016/j.envint.2021.106710 |
[15] | Huang Y Z, Che X, Jin D, et al. Mobile monitoring of VOCs and source identification using two direct-inlet MSs in a large fine and petroleum chemical industrial park[J]. Science of the Total Environment, 2022, 823. DOI:10.1016/j.scitotenv.2022.153615 |
[16] | Jia C H, Mao X X, Huang T, et al. Non-methane hydrocarbons (NMHCs) and their contribution to ozone formation potential in a petrochemical industrialized city, Northwest China[J]. Atmospheric Research, 2016, 169: 225-236. DOI:10.1016/j.atmosres.2015.10.006 |
[17] | Shao P, An J L, Xin J Y, et al. Source apportionment of VOCs and the contribution to photochemical ozone formation during summer in the typical industrial area in the Yangtze River Delta, China[J]. Atmospheric Research, 2016, 176-177: 64-74. DOI:10.1016/j.atmosres.2016.02.015 |
[18] | Sharma S, Giri B, Patel K S. Ambient volatile organic compounds in the atmosphere of industrial central India[J]. Journal of Atmospheric Chemistry, 2016, 73(4): 381-395. DOI:10.1007/s10874-016-9329-5 |
[19] | Bari A, Kindzierski W B, Spink D. Twelve-year trends in ambient concentrations of volatile organic compounds in a community of the Alberta Oil Sands Region, Canada[J]. Environment International, 2016, 91: 40-50. DOI:10.1016/j.envint.2016.02.015 |
[20] | Kim M J, Seo Y K, Kim J H, et al. Impact of industrial activities on atmospheric volatile organic compounds in Sihwa-Banwol, the largest industrial area in South Korea[J]. Environmental Science and Pollution Research, 2020, 27(23): 28912-28930. DOI:10.1007/s11356-020-09217-x |
[21] | Pinthong N, Thepanondh S, Kondo A. Source identification of VOCs and their environmental health risk in a petrochemical industrial area[J]. Aerosol and Air Quality Research, 2022, 22(2). DOI:10.4209/aaqr.210064 |
[22] | Mozaffar A, Zhang Y L, Lin Y C, et al. Measurement report: high contributions of halocarbon and aromatic compounds to atmospheric volatile organic compounds in an industrial area[J]. Atmospheric Chemistry and Physics, 2021, 21(23): 18087-18099. DOI:10.5194/acp-21-18087-2021 |
[23] | Zhang Z J, Yan X Y, Gao F L, et al. Emission and health risk assessment of volatile organic compounds in various processes of a petroleum refinery in the Pearl River Delta, China[J]. Environmental Pollution, 2018, 238: 452-461. DOI:10.1016/j.envpol.2018.03.054 |
[24] | Shi J W, Deng H, Bai Z P, et al. Emission and profile characteristic of volatile organic compounds emitted from coke production, iron smelt, heating station and power plant in Liaoning Province, China[J]. Science of the Total Environment, 2015, 515-516: 101-108. DOI:10.1016/j.scitotenv.2015.02.034 |
[25] |
叶露, 邰菁菁, 俞华明. 汽车工业区大气挥发性有机物(VOCs)变化特征及来源解析[J]. 环境科学, 2021, 42(2): 624-633. Ye L, Tai Q Q, Yu H M. Characteristics and source apportionment of volatile organic compounds (VOCs) in the automobile industrial park of Shanghai[J]. Environmental Science, 2021, 42(2): 624-633. DOI:10.13227/j.hjkx.202005207 |
[26] | Zheng J Y, Yu Y F, Mo Z W, et al. Industrial sector-based volatile organic compound (VOC) source profiles measured in manufacturing facilities in the Pearl River Delta, China[J]. Science of the Total Environment, 2013, 456-457: 127-136. DOI:10.1016/j.scitotenv.2013.03.055 |
[27] | Tang J H, Chu K W, Chan L Y, et al. Non-methane hydrocarbon emission profiles from printing and electronic industrial processes and its implications on the ambient atmosphere in the Pearl River Delta, South China[J]. Atmospheric Pollution Research, 2014, 5(1): 151-160. DOI:10.5094/APR.2014.019 |
[28] |
王红丽, 高雅琴, 景盛翱, 等. 基于走航监测的长三角工业园区周边大气挥发性有机物污染特征[J]. 环境科学, 2021, 42(3): 1298-1305. Wang H L, Gao Y Q, Jing S A, et al. Characterization of volatile organic compounds (VOCs) using mobile monitoring around the industrial parks in the Yangzte River Delta region of China[J]. Environmental Science, 2021, 42(3): 1298-1305. DOI:10.13227/j.hjkx.202007265 |
[29] | Na K, Kim Y P, Moon K C, et al. Concentrations of volatile organic compounds in an industrial area of Korea[J]. Atmospheric Environment, 2001, 35(15): 2747-2756. DOI:10.1016/S1352-2310(00)00313-7 |
[30] | Liu Y, Shao M, Lu S H, et al. Volatile organic compound (VOC) measurements in the pearl river delta (PRD) region, China[J]. Atmospheric Chemistry and Physics, 2008, 8(6): 1531-1545. DOI:10.5194/acp-8-1531-2008 |
[31] | Tang J H, Chan L Y, Chan C Y, et al. Characteristics and diurnal variations of NMHCs at urban, suburban, and rural sites in the Pearl River Delta and a remote site in South China[J]. Atmospheric Environment, 2007, 41(38): 8620-8632. DOI:10.1016/j.atmosenv.2007.07.029 |
[32] | Pei C L, Yang W Q, Zhang Y L, et al. Decrease in ambient volatile organic compounds during the COVID-19 lockdown period in the Pearl River Delta region, south China[J]. Science of the Total Environment, 2022, 823. DOI:10.1016/j.scitotenv.2022.153720 |
[33] | Yuan B, Chen W J, Shao M, et al. Measurements of ambient hydrocarbons and carbonyls in the Pearl River Delta (PRD), China[J]. Atmospheric Research, 2012, 116: 93-104. DOI:10.1016/j.atmosres.2012.03.006 |
[34] | Chan L Y, Chu K W, Zou S C, et al. Characteristics of nonmethane hydrocarbons (NMHCs) in industrial, industrial-urban, and industrial-suburban atmospheres of the Pearl River Delta (PRD) region of south China[J]. Journal of Geophysical Research: Atmospheres, 2006, 111(D11). DOI:10.1029/2005JD006481 |
[35] | Barletta B, Meinardi S, Simpson I J, et al. Ambient mixing ratios of nonmethane hydrocarbons (NMHCs) in two major urban centers of the Pearl River Delta (PRD) region: Guangzhou and Dongguan[J]. Atmospheric Environment, 2008, 42(18): 4393-4408. DOI:10.1016/j.atmosenv.2008.01.028 |
[36] | Mo Z W, Shao M, Liu Y, et al. Species-specified VOC emissions derived from a gridded study in the Pearl River Delta, China[J]. Scientific Reports, 2018, 8(1). DOI:10.1038/s41598-018-21296-y |
[37] | Yin S S, Zheng J Y, Lu Q, et al. A refined 2010-based VOC emission inventory and its improvement on modeling regional ozone in the Pearl River Delta Region, China[J]. Science of the Total Environment, 2015, 514: 426-438. DOI:10.1016/j.scitotenv.2015.01.088 |
[38] | Yuan B, Koss A R, Warneke C, et al. Proton-transfer-reaction mass spectrometry: applications in atmospheric sciences[J]. Chemical Reviews, 2017, 117(21): 13187-13229. DOI:10.1021/acs.chemrev.7b00325 |
[39] | González-Méndez R, Watts P, Olivenza-León D, et al. Enhancement of compound selectivity using a radio frequency ion-funnel proton transfer reaction mass spectrometer: improved specificity for explosive compounds[J]. Analytical Chemistry, 2016, 88(21): 10624-10630. DOI:10.1021/acs.analchem.6b02982 |
[40] | Tanimoto H, Kameyama S, Iwata T, et al. Measurement of air-sea exchange of dimethyl sulfide and acetone by PTR-MS coupled with gradient flux technique[J]. Environmental Science & Technology, 2014, 48(1): 526-533. |
[41] | Ou J M, Zheng J Y, Li R R, et al. Speciated OVOC and VOC emission inventories and their implications for reactivity-based ozone control strategy in the Pearl River Delta region, China[J]. Science of the Total Environment, 2015, 530-531: 393-402. DOI:10.1016/j.scitotenv.2015.05.062 |
[42] | Carter W P L. Updated maximum incremental reactivity scale and hydrocarbon bin reactivities for regulatory applications[EB/OL]. https://intra.engr.ucr.edu/~carter/SAPRC/MIR10.pdf, 2010-01-28. |
[43] | Yang Y D, Shao M, Wang X M, et al. Towards a quantitative understanding of total OH reactivity: a review[J]. Atmospheric Environment, 2016, 134: 147-161. DOI:10.1016/j.atmosenv.2016.03.010 |
[44] | Wu C H, Wang C M, Wang S H, et al. Measurement report: important contributions of oxygenated compounds to emissions and chemistry of volatile organic compounds in urban air[J]. Atmospheric Chemistry and Physics, 2020, 20(23): 14769-14785. DOI:10.5194/acp-20-14769-2020 |
[45] | Pfannerstill E Y, Reijrink N G, Edtbauer A, et al. Total OH reactivity over the Amazon rainforest: variability with temperature, wind, rain, altitude, time of day, season, and an overall budget closure[J]. Atmospheric Chemistry and Physics, 2021, 21(8): 6231-6256. DOI:10.5194/acp-21-6231-2021 |
[46] | Atkinson R, Baulch D L, Cox R A, et al. Evaluated kinetic and photochemical data for atmospheric chemistry: Volume Ⅱ - gas phase reactions of organic species[J]. Atmospheric Chemistry and Physics, 2006, 6(11): 3625-4055. DOI:10.5194/acp-6-3625-2006 |
[47] | Mellouki A, Ammann M, Cox R A, et al. Evaluated kinetic and photochemical data for atmospheric chemistry: Volume Ⅷ- gas-phase reactions of organic species with four, or more, carbon atoms (≥C4)[J]. Atmospheric Chemistry and Physics, 2021, 21(6): 4797-4808. DOI:10.5194/acp-21-4797-2021 |
[48] | Liu Y F, Song M D, Liu X G, et al. Characterization and sources of volatile organic compounds (VOCs) and their related changes during ozone pollution days in 2016 in Beijing, China[J]. Environmental Pollution, 2020, 257. DOI:10.1016/j.envpol.2019.113599 |
[49] | Hui L R, Liu X G, Tan Q W, et al. Characteristics, source apportionment and contribution of VOCs to ozone formation in Wuhan, Central China[J]. Atmospheric Environment, 2018, 192: 55-71. DOI:10.1016/j.atmosenv.2018.08.042 |
[50] | Song M D, Tan Q W, Feng M, et al. Source apportionment and secondary transformation of atmospheric nonmethane hydrocarbons in Chengdu, southwest China[J]. Journal of Geophysical Research: Atmospheres, 2018, 123(17): 9741-9763. DOI:10.1029/2018JD028479 |
[51] | Li Y D, Yin S S, Yu S J, et al. Characteristics, source apportionment and health risks of ambient VOCs during high ozone period at an urban site in central plain, China[J]. Chemosphere, 2020, 250. DOI:10.1016/j.chemosphere.2020.126283 |
[52] |
景盛翱, 高雅琴, 沈建东, 等. 杭州市城区挥发性有机物污染特征及反应活性[J]. 环境科学, 2020, 41(12): 5306-5315. Jing S A, Gao Y Q, Shen J D, et al. Characteristics and reactivity of ambient VOCs in urban Hangzhou, China[J]. Environmental Science, 2020, 41(12): 5306-5315. DOI:10.13227/j.hjkx.202004021 |
[53] | Huang Y, Ling Z H, Lee S C, et al. Characterization of volatile organic compounds at a roadside environment in Hong Kong: an investigation of influences after air pollution control strategies[J]. Atmospheric Environment, 2015, 122: 809-818. DOI:10.1016/j.atmosenv.2015.09.036 |
[54] | Zhang Y C, Li R, Fu H B, et al. Observation and analysis of atmospheric volatile organic compounds in a typical petrochemical area in Yangtze River Delta, China[J]. Journal of Environmental Sciences, 2018, 71: 233-248. DOI:10.1016/j.jes.2018.05.027 |
[55] |
库盈盈, 任万辉, 苏枞枞, 等. 沈阳市不同功能区挥发性有机物分布特征及臭氧生成潜势[J]. 环境科学, 2021, 42(11): 5201-5209. Ku Y Y, Ren W H, Su C C, et al. Pollution characteristics and ozone formation potential of ambient VOCs in different functional zones of Shenyang, China[J]. Environmental Science, 2021, 42(11): 5201-5209. DOI:10.3969/j.issn.1000-6923.2021.11.028 |
[56] |
武彩虹. 广州城市地区大气挥发性有机物(VOCs)反应活性贡献研究[D]. 广州: 暨南大学, 2020. Wu C H. Reactivity contribution of volatile organic compounds (VOCs) in Guangzhou urban region[D]. Guangzhou: Jinan University, 2020. |
[57] | Huang X F, Zhang B, Xia S Y, et al. Sources of oxygenated volatile organic compounds (OVOCs) in urban atmospheres in North and South China[J]. Environmental Pollution, 2020, 261. DOI:10.1016/j.envpol.2020.114152 |
[58] | Millet D B, Donahue N M, Pandis S N, et al. Atmospheric volatile organic compound measurements during the Pittsburgh Air Quality Study: results, interpretation, and quantification of primary and secondary contributions[J]. Journal of Geophysical Research: Atmospheres, 2005, 110(D7). DOI:10.1029/2004JD004601 |
[59] | Parrish D D, Stohl A, Forster C, et al. Effects of mixing on evolution of hydrocarbon ratios in the troposphere[J]. Journal of Geophysical Research: Atmospheres, 2007, 112(D10). DOI:10.1029/2006JD007583 |
[60] | Yuan B, Shao M, Lu S H, et al. Source profiles of volatile organic compounds associated with solvent use in Beijing, China[J]. Atmospheric Environment, 2010, 44(15): 1919-1926. DOI:10.1016/j.atmosenv.2010.02.014 |
[61] | Bari A, Kindzierski W B. Ambient volatile organic compounds (VOCs) in Calgary, Alberta: sources and screening health risk assessment[J]. Science of the Total Environment, 2018, 631-632: 627-640. DOI:10.1016/j.scitotenv.2018.03.023 |
[62] | Liu Y, Shao M, Fu L L, et al. Source profiles of volatile organic compounds (VOCs) measured in China: Part Ⅰ[J]. Atmospheric Environment, 2008, 42(25): 6247-6260. DOI:10.1016/j.atmosenv.2008.01.070 |
[63] | Kumar A, Singh D, Kumar K, et al. Distribution of VOCs in urban and rural atmospheres of subtropical India: temporal variation, source attribution, ratios, OFP and risk assessment[J]. Science of the Total Environment, 2018, 613-614: 492-501. DOI:10.1016/j.scitotenv.2017.09.096 |
[64] | McCarthy M C, Aklilu Y A, Brown S G, et al. Source apportionment of volatile organic compounds measured in Edmonton, Alberta[J]. Atmospheric Environment, 2013, 81: 504-516. DOI:10.1016/j.atmosenv.2013.09.016 |
[65] | Mo Z W, Huang S, Yuan B, et al. Tower-based measurements of NMHCs and OVOCs in the Pearl River Delta: vertical distribution, source analysis and chemical reactivity[J]. Environmental Pollution, 2022, 292. DOI:10.1016/j.envpol.2021.118454 |
[66] | He X J, Yuan B, Wu C H, et al. Volatile organic compounds in wintertime North China Plain: insights from measurements of Proton Transfer Reaction Time-of-Flight Mass Spectrometer (PTR-ToF-MS)[J]. Journal of Environmental Sciences, 2022, 114: 98-114. DOI:10.1016/j.jes.2021.08.010 |
[67] | Li J, Wu R R, Li Y Q, et al. Effects of rigorous emission controls on reducing ambient volatile organic compounds in Beijing, China[J]. Science of the Total Environment, 2016, 557-558: 531-541. DOI:10.1016/j.scitotenv.2016.03.140 |
[68] | Zou Y, Deng X J, Zhu D, et al. Characteristics of 1 year of observational data of VOCs, NOx and O3 at a suburban site in Guangzhou, China[J]. Atmospheric Chemistry and Physics, 2015, 15(12): 6625-6636. DOI:10.5194/acp-15-6625-2015 |
[69] |
王思行, 彭钰雯, 齐吉朋, 等. 挥发性有机物(VOCs)的不同化学去除途径: 城市与区域站点的对比[J]. 环境科学学报, 2020, 40(7): 2311-2322. Wang S H, Peng Y W, Qi J P, et al. Different chemical removal pathways of volatile organic compounds (VOCs): comparison of urban and regional sites[J]. Acta Scientiae Circumstantiae, 2020, 40(7): 2311-2322. |
[70] | Tang G Q, Zhang J Q, Zhu X W, et al. Mixing layer height and its implications for air pollution over Beijing, China[J]. Atmospheric Chemistry and Physics, 2016, 16(4): 2459-2475. DOI:10.5194/acp-16-2459-2016 |
[71] | Louie P K K, Ho J W K, Tsang R C W, et al. VOCs and OVOCs distribution and control policy implications in Pearl River Delta region, China[J]. Atmospheric Environment, 2013, 76: 125-135. DOI:10.1016/j.atmosenv.2012.08.058 |
[72] | Yu S J, Su F C, Yin S S, et al. Characterization of ambient volatile organic compounds, source apportionment, and the ozone-NOx-VOC sensitivities in a heavily polluted megacity of central China: effect of sporting events and emission reductions[J]. Atmospheric Chemistry and Physics, 2021, 21(19): 15239-15257. DOI:10.5194/acp-21-15239-2021 |
[73] | Tan Z F, Lu K D, Jiang M Q, et al. Daytime atmospheric oxidation capacity in four Chinese megacities during the photochemically polluted season: a case study based on box model simulation[J]. Atmospheric Chemistry and Physics, 2019, 19(6): 3493-3513. DOI:10.5194/acp-19-3493-2019 |
[74] | An J L, Su X Q, Zhang Y X, et al. Characteristics of volatile organic compounds in Nanjing and Suzhou, Two urban sites in the Yangtze River Delta, China[J]. Archives of Environmental Contamination and Toxicology, 2020, 78(3): 416-429. DOI:10.1007/s00244-020-00719-w |