2. 厦门大学环境与生态学院, 厦门 361102
2. College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
砷(As)是一种自然环境中普遍存在的有毒类金属元素, 其主要存在于地壳, 可通过矿物风化和溶解等自然过程进入到水环境中.同时, As被广泛应用于农药、除草剂及杀虫剂和冶金及半导体工业等领域, 所以含As废水和废渣的排放等人类活动也是水环境中As污染的主要来源[1].
As在环境水体中主要以无机形式存在, 如含氧地表水中的As主要是五价砷[As(Ⅴ)], 而厌氧环境地下水中的As以三价砷[As(Ⅲ)]为主.有机As化合物如一甲基胂酸和二甲基胂酸等主要与生物活动有关, 其含量相对较少[2].不同形态As的毒性不同, 无机As的毒性远大于有机As, As(Ⅲ)的毒性远大于As(Ⅴ).不同形态的As可以相互转化[如As(Ⅲ)易被氧化成As(Ⅴ)], 该反应极易发生在样品采集, 储存和运输的过程中.因此, As的现场分析具有极其重要的意义, As浓度的准确测定是研究砷的生物地球化学过程和准确判断其毒性的重要基础[3].
地下水中As的污染是全球性的健康问题.As被列为一类致癌物, 长期饮用As污染的水会导致慢性As中毒, 从而引发皮肤癌、膀胱癌、肝癌、肾癌、糖尿病和心血管疾病等健康问题[4].最近的研究量化出全球高As暴露人口约为9 400万至2.2亿, 其中94%在亚洲[5].许多发展中国家由于经济原因无法进行全国性的As筛查和购买除砷设备, 靠民用井供水的人们只能饮用未经处理的As超标地下水, 存在严重的健康风险.例如在孟加拉国, 饮用水As暴露人口高达4 500万, 每18个死亡的成人中有1个是因砷暴露而死[6].我国中西部如甘肃、内蒙古、陕西和山西等地也面临着严重的地下水As污染问题, 影响着近2 000万人的生命健康[7~9].地下水中As污染的毒害作用大且分布范围广, 但目前全球仍存在着巨大的水砷筛查缺口, 因此急需建立灵敏、可靠和经济的无机As现场测定方法, 并研制相应的便携式仪器[10].
As一直是各个领域研究的热点主题[11].在中国知网和Web of Science上以“砷”或“Arsenic”为主题进行检索(截止至2022年4月27日), 得到2001~2020年国内外发表的论文数量趋势如图 1所示, 其中国内平均每年发表论文1 026篇, 国外则以每年约225篇的增长率增加.本文总结归纳了近10年(2011~2022年)环境水体中与As分析方法相关的综述; 讨论了近10年来环境水体中无机As现场分析方法的研究进展, 主要包括比色法(试剂盒、钼蓝法)、发光法(荧光法、气相化学发光法)和电化学法等; 总结上述分析方法的优缺点, 并展望未来环境水体中As现场分析方法的发展方向, 以期为新方法的开发提供参考.
![]() |
图 1 2002~2021年以“砷”为主题发表的论文数量趋势 Fig. 1 Trends in the publications of arsenic as the topic from 2002 to 2021 |
As的准确测定是探究其生物地球化学过程和分析其对环境生态影响的基础, 因此As的分析方法研究也一直是环境科学家们关心的重点.经过几十年的发展, As的分析方法日趋成熟.表 1总结了2011~2021年国内外发表的环境水体中与As分析相关的综述[12~50], 并根据研究内容进行划分.从中可知, As形态分析的相关综述主要包括样品前处理技术(固相萃取、液-液萃取)、As的分离方法(氢化物发生、液相色谱、毛细管电泳、微波辅助提取法)和检测方法等内容[14~23], 高效液相色谱法与电感耦合等离子体质谱法、氢化物发生原子光谱法等的联用技术被认为是最常用的As形态分析方法[14~17].已有研究主要综述了As的分析方法, 包括高效液相色谱-电感耦合等离子体质谱法[22, 23]、原子光谱法[23~27]、光谱和光学[28~31]、电化学[32~36]、基于纳米材料[37~41]和生物技术[42~44]的传感器, 其中最常用的分析方法包括电感耦合等离子体质谱法、氢化物发生原子荧光光谱法、氢化物发生原子吸收光谱法和石墨炉原子吸收光谱法等[12, 13].以上方法检出限低、灵敏度高且自动化程度高, 但是所使用的仪器大都体积庞大、价格昂贵且运行成本高, 一般只适用于实验室分析.As的现场分析方法需要满足操作简便、成本低、使用便携、自动和低功耗的仪器等要求, 常用的As现场分析方法包括比色法、发光法和电化学法等.目前已有的综述主要集中在某个具体的方法或领域, 综合性不够; 部分综述虽然涵盖了多种As分析方法的研究进展[44~50], 相对综合地讨论了各种方法的优点和局限性, 但缺乏关于As现场分析方法的探讨[51].
![]() |
表 1 2011~2021年环境水体中砷的分析方法相关综述 Table 1 Summary of the published reviews about analytical methods of arsenic in environmental water from 2011 to 2021 |
2 环境水体中无机砷现场分析方法的研究进展 2.1 比色法
比色法是目前实际应用中最常用的砷现场测定方法, 具有便携、低成本、操作简单等优点, 常用的砷比色法包括基于古蔡氏法的试剂盒、钼蓝法、基于比色染料和纳米材料的比色法等.
2.1.1 试剂盒As的现场检测试剂盒是目前比色法中最常用的现场分析方法.试剂盒大多是基于古蔡氏法[52], 即水样经强酸酸化后加入还原剂(如锌粉和硼氢化钠等), 生成的砷化氢气体先通过浸有醋酸铅的过滤器去除硫化氢, 再通过浸有溴化汞的过滤器, 形成砷斑的颜色根据As浓度的不同从黄色变到棕色(浓度由低到高), 通过与标准色卡目视比对实现水中As的半定量测定.虽然该方法成本低、操作方便, 但是目视比色法容易受日光强度的影响, 且不同的操作人员对颜色的敏感程度不同, 所以方法的灵敏度和准确度较低; 此外, 剧毒的砷化氢容易从试剂盒中逸出而危害操作人员的健康, 同时还产生了有毒的含铅、汞废物.
目前已有许多商用的试剂盒, 如Hach EZ、Econo-Quick和Wagtech Digital Arsenator等, 它们主要是基于与标准色卡目测比对或用基于发光二极管的光度计读取色卡提供数字读数来确定As浓度.Hach EZ试剂盒是市场上在孟加拉国使用最广泛的As检测试剂盒, 不同研究评估其性能但结论不一[53, 54], 通过增加反应时间或温度可以提高其准确性[55, 56]; Econo-Quick试剂盒的价格较低、使用广泛, 被用于检测孟加拉国、巴基斯坦等地村庄水井As浓度[55, 57, 58]; Wagtech Digital Arsenator试剂盒能显示数字读数以得到更为准确的定量结果, 其性能也受到评估, 结果表明其准确性较好[55, 59]; Reddy等[60]通过与氢化物发生原子吸收光谱法比对, 综合评估了8种商用的As现场检测试剂盒的性能, 并建议制造商在试剂盒中提供适合的内部标准.
由于许多国家和地区对含汞产品的管制和禁运, 硝酸银作为溴化汞的替代品被广泛用于As的检测之中[61, 62].为了解决目视比色的灵敏度低、准确度差等问题, 研究人员用扫描仪[63, 64]和手机[65]等获取试纸图像, 再结合定量图像分析法[66]提取图像信息进行定量分析.试剂盒的自动化和更简便的操作也是研究人员研究的热点, 如Bonyár等[67]开发了一种基于微流控系统的半自动便携式As传感器(如图 2), 其内置自动读数、数据记录和评估等功能, 操作员只需进行非常简单的操作.
![]() |
(a)实物图, (b)3D CAD图像; 改自文献[67] 图 2 基于微流控的砷检测比色装置 Fig. 2 Colorimetric device for As detection based on microfluidic system |
钼蓝法也是目前常用的测As的比色法, 其原理是在酸性条件下, As(Ⅴ)与钼酸盐反应生成黄色的杂多酸, 而后被还原剂还原为蓝色的砷钼杂多酸, 测定其吸光值得到As(Ⅴ)浓度[68].钼蓝法具有简单、快速、成本低和对环境友好等优点, 但是该方法也适用于磷酸盐的测定, 因此容易受到磷酸盐的干扰.最常用的消除磷酸盐干扰的方法是差值法, 即先直接测定样品得到磷酸盐和As(Ⅴ)的浓度之和, 再将样品中的As(Ⅴ)全部还原为不与钼酸盐反应的As(Ⅲ), 测定得到磷酸盐的浓度, 前者与后者的差值即为As(Ⅴ)的浓度[69].如果将样品中的As(Ⅲ)全部氧化为As(Ⅴ), 再测定得到磷酸盐和总无机As的浓度之和, 即可实现无机As的形态分析.
有研究基于差值法, 使用不同的氧化和还原剂对钼蓝法进行改进[70]. Hu等[71]用高锰酸钾作为氧化剂, 硫脲作为还原剂, 建立了一种适用于现场测定的新型比色法, 其测定As的线性范围宽(0.01~10 mg ·L-1)、检出限较低(8 μg ·L-1), 还探究了多种氧化、还原剂的性能.另外一些研究在测定前就去除磷酸盐以消除其干扰.如Okazaki等[72]用碳酸钙柱保留磷酸盐和As(Ⅴ), As(Ⅲ)被高锰酸钾氧化为As(Ⅴ)进行钼蓝反应, 再用可溶性膜收集钼蓝法生成的蓝色物质并溶解到乙二醇单甲醚中测定吸光值得到As(Ⅲ)浓度, 样品经预还原后分析得到总无机As浓度, 该方法测定As的线性范围为5~100 μg ·L-1, 检出限为0.3 μg ·L-1, 并且可在0.2 mg ·L-1磷的干扰下测定10 μg ·L-1的As.Fontàs等[73]基于之前的研究[74], 使用以聚氯乙烯为聚合物、季烷基氯化铵混合物为载体的聚合物包膜运输、预富集砷酸盐, 再结合钼蓝法测定吸光值得到As(Ⅲ)含量, 使用过氧化氢作为氧化剂实现总无机As测定, 检出限为4.5 μg ·L-1, 测定结果相对标准偏差在8% ~10%.
为了提高现场测定的便携性和操作的简便性, 有研究开发了基于钼蓝法的现场目视比色法.Okazaki等[75]开发一种基于碳酸钙柱和微型膜支架的As的现场目视比色便携式装置, 用该装置获得不同As浓度的图像如图 3所示, 该装置的检测范围为0~40 μg ·L-1, 目视检出限为5 μg ·L-1, 测定10 μg ·L-1 As(Ⅴ)时不受磷酸盐(0.1 mg ·L-1)和铁(1 mg ·L-1)的干扰.Kiso等[76]用填充包有季铵盐的聚氯乙烯颗粒的小柱作为检测管, 使反应生成的钼蓝溶液通过检测管形成色带, 通过目测色带的长度得到As浓度, 再使用二氯异氰尿酸钠盐作为氧化剂实现总无机As测定, 该方法测定As的线性范围为10~100 μg ·L-1, 测定结果的相对标准偏差在1%左右.Das等[77]将钼蓝法所用试剂封装在由聚乙烯醇、丙烯酰胺和戊二醛制成的聚合物水凝胶中, 在塑料条上涂上该水凝胶, 开发了一种As(Ⅴ)的检测比色条, 可使用目视比色法或通过建立比色条的红绿蓝颜色空间信息值与As(Ⅴ)浓度的关系来进行定量.该方法具有所需样品体积少(10 mL)、成本低(每次测试0.03美元)、保存时间长(储存4个月后仍保留95%的初始检测能力)等优点, 但是仍受到磷酸盐(浓度大于100 μg ·L-1)的影响.
![]() |
改自文献[75] 图 3 不同砷浓度下的膜过滤器的颜色变化 Fig. 3 Color variation in the membrane filter obtained from different As concentrations |
钼蓝法的手工操作相对复杂, 并且往往需要多个氧化还原过程来实现砷的形态分析, 因此基于钼蓝法的自动分析方法也是研究的热点.最近, Hashihama等[78]基于连续流动分析仪和液芯波导长光程流通池, 结合钼蓝法建立了纳摩尔级无机As的自动测定方法, 并测定了亚热带太平洋不同区域的As(Ⅴ)[79], 该方法同样受到磷酸盐的影响, 但是该课题组具备测定痕量磷酸盐的能力, 其数据可以互相校正.
2.1.3 其他比色法其他的比色法主要包括基于比色染料[30]和纳米材料[41]的As的比色法.基于比色染料的As比色法原理为As和一些合成的有机分子反应, 诱导分子结构发生变化同时产生颜色变化[80~82], 如Lace等[82]建立的一种基于亮孔雀绿染料的As的比色法, 检出限为0.19 μg ·L-1.还有一些比色染料法是基于催化反应引起的结构和颜色变化, 如Wu等[83]开发了基于氯化血红素-过氧化氢体系氧化四甲基联苯胺的检测As(Ⅲ)的新型比色法, 检出限为6 μg ·L-1.
基于纳米材料的As比色法主要是基于金纳米粒子, 通过表面化学或竞争结合使(或阻止)金纳米粒子聚集而使溶液颜色从红变蓝(或从蓝变红)[40].表面化学法主要是用一些生物分子如谷胱甘肽和二硫苏糖醇等[84~86]、离子液体[87]和葡萄糖[88]等使金纳米粒子表面功能化, 从而与As离子相互作用而产生聚集. 竞争结合法主要是用肽[89, 90]、盐[91]和适体[92~94]等诱导金纳米粒子聚集, As离子与它们相互作用竞争结合而阻止金纳米粒子聚集.许多研究将纳米材料与微流控系统[95, 96]和手机[96, 97]等结合, 开发了As的检测装置和传感器, 便于As的现场分析.
2.2 发光法 2.2.1 荧光法目前常用于As测定的荧光法大多是基于表面衍生的量子点[98~102].用含巯基的分子[98~100]和L-半胱氨酸[101, 102]等封端镉化合物量子点, 这些分子与As相互作用而产生荧光猝灭, 从而测定As浓度.Wang等[98]研究了巯基乙酸封端的锑化镉、巯基乙酸封端的锑化镉/硫化锌和谷胱甘肽封端的锑化镉3种量子点与As(Ⅲ)的相互作用, 并建立了测定As(Ⅲ)的荧光法, 其检出限为1.5 μg ·L-1, 可在紫外光照射下进行目视检测.此外, Butwong等[99, 100]也使用类似的方法, 结合顺序注射技术建立了无机As的自动分析方法.Hosseini等[101]用阴离子交换树脂柱预富集As(Ⅴ), 并结合L-半胱氨酸封端的硫化镉量子点建立了测定As(Ⅴ)的荧光法, 其检出限为0.75 μg ·L-1, 相对标准偏差为2.8%, 并成功应用于不同水样的分析.Vaishanav等[102]也基于类似的原理建立了测定As(Ⅲ)的荧光法, 其检出限为0.15 μg ·L-1, 线性范围为0.15~37.5 μg ·L-1, 且不受常见的金属离子的干扰.
还有一些其他的荧光法用于As检测, 如建立荧光共振能量转移系统等[103, 104].Tang等[103]以锑化镉量子点和罗丹明6G作为能量供体和受体, 建立了测定As(Ⅲ)荧光共振能量转移系统, 其检出限为0.45 μg ·L-1, 线性范围为1.5~150 μg ·L-1, 并成功应用于湖水的测定.Saha等[104]以吖啶黄和罗丹明B作为能量供体和受体, 建立了测定As(Ⅴ)的荧光共振能量转移系统, 其检出限为10 μg ·L-1, 但线性范围仅为40~90 μg ·L-1.
2.2.2 气相化学发光法As的气相化学发光法(gas phase chemiluminescence, GPCL)测定主要是基于砷氢化物(AsH3)与臭氧(O3)反应产生的化学发光信号[105, 106], 通过与流动注射技术相结合开发了砷的自动分析仪器[107, 108].为了实现砷的形态分析, 研究人员通过控制氢化物发生的pH值[107]、加入L-半胱氨酸[109]、KI和抗坏血酸[110]等还原剂或用电化学方法还原[108]等方式测定无机As, 有机As经过光氧化后测定[111~113].
近年来, 研究人员致力于开发更简单、低成本的GPCL分析仪[114].如Hashem等[115]开发了一种基于手动氢化物生成的便携式GPCL分析仪, 使用固体酸和固体硼氢化物生成AsH3再与O3反应发光.该仪器的检出限为0.4 μg ·L-1, 线性范围为0.4~1 000 μg ·L-1, 样品通量为60 h-1. Assegid等[116]开发了一种简单的GPCL仪, 无需使用泵和阀, 仅靠反应池内的氢气压力将AsH3运输至化学发光室, 大大降低了成本.该仪器测定As的检出限为0.4 μg ·L-1, 线性范围为0~300 μg ·L-1, 样品通量为20 h-1.
有研究将电化学法与GPCL结合, 建立更绿色环保的As的分析方法.如Sengupta等[117]开发了一种基于电化学法和GPCL的绿色环保、用于测定总无机As的电化学反应器, 其示意如图 4所示.用开洞的全氟磺酸基聚合管包裹圆柱形阳极室, 再放入小体积阴极室的空腔内, As离子在阴极还原为AsH3, 臭氧发生器以阳极生成的O2作为原料生成O3, 从而产生GPCL.该方法用1 mL样品分别在0.1 A和0.85 A的电流下测定As(Ⅲ)和总As, 检出限分别为0.09 μg ·L-1和0.76 μg ·L-1, 其被应用于大浓度范围的地下水的测定, 结果与ICP-MS比对良好.此外, Shen等[118]用铂(Pt)作为阳极, 铝(Al)和有序高取向热解石墨(highly oriented pyrolytic graphite, HOPG)作为阴极, 开发了两种绿色环保的电化学砷化氢发生器(electrochemical arsine generators, EAG), 并结合流动注射-气相化学发光法建立了无机As的自动分析方法.Pt-Al EAG的检出限为1.4 μg ·L-1[As(Ⅴ)或As(Ⅲ)], 相对标准偏差2.1%; Pt-HOPG EAG的检出限为1.9 μg ·L-1和1.0 μg ·L-1[As(Ⅴ)和As(Ⅲ)], 相对标准偏差2.4%; 样品通量均为12 h-1, 该方法成功应用于美国西得克萨斯州和印度西孟加拉邦地下水样品的测定, 分析结果与ICP-MS比对良好.
![]() |
(a)电化学反应器示意, (b)系统示意; 改自文献[117] 图 4 基于气相化学发光的砷检测电化学反应器 Fig. 4 Electrochemical reactor for As detection based on gas-phase chemiluminescence |
电化学法主要可分为伏安法、电流法、电位法、阻抗法和电导法等, 其中伏安法具有便携、快速、操作简单和灵敏度高等优点, 适用于As的现场分析[33].伏安法主要包括循环伏安法、线性扫描伏安法和溶出伏安法等, 溶出伏安法可使分析物在电极上电解富集, 因此灵敏度更高, 是最常用的无机As分析的电化学方法[36].溶出伏安法根据分析物溶出时工作电极发生的反应不同(还原/氧化)可分为阴极溶出伏安法和阳极溶出伏安法, 阳极溶出伏安法是最常用的电化学测定水中无机As的方法, 因其不生成有毒的AsH3且不受氧气干扰而成为阴极溶出伏安法的替代方法[36].
开发对分析目标物更灵敏的工作电极是研究人员关注的热点[39].汞电极是第一个用于检测重金属的工作电极, 而砷的检测主要是使用悬汞电极.悬汞电极的阴极电位范围宽, 灵敏度高, 且每次使用都会产生新的电极表面, 重复性好, 研究人员基于悬汞电极开发了许多水中无机As的分析方法[119~121].但是由于汞和产生的砷化氢的毒性, 悬汞电极逐渐被金和碳电极等电极所取代[33, 122].表 2列出了一些基于金微丝和碳基电极的As的电化学法的性能[123~140].其中, 金微丝电极在酸性条件下有很宽的负电位范围, 可通过结合振动辅助扩散, 具有高灵敏度和稳定性、可从电极表面除氢、无需抛光和脱氧[124], 因而广泛地应用于As的分析.碳基电极主要包括碳糊电极、玻碳电极和丝网印刷电极, 其具有低背景电流、使用操作简便、无记忆效应等优点[39].但是碳基电极的灵敏度和稳定性较低, 研究人员使用金纳米、四氧化三铁等修饰碳基电极, 以提高其电化学性能.丝网印刷电极是一种新兴的电极, 其在小于2 cm2的表面积上集成了三电极, 具有成本低、体积小且易于操作等优点, 非常适用于测定现场[13].
![]() |
表 2 基于金微丝和碳基电极的电化学法测定砷的性能 Table 2 Performance of electrochemical methods based Au microwire and carbon electrode for arsenic determination |
3 展望
As分布在不同基底的环境水体中(如海水和地下水等), 其浓度范围很大(从μg ·L-1到mg ·L-1), 针对不同的场景需求, 需要选择适合的测定方法.海水基底复杂, 其中的As浓度较低, 很多常用的现场测定方法受盐度干扰或灵敏度不够, 因此海水中As的现场分析极具挑战.原子荧光光谱法是海水中As分析的经典方法, 其灵敏度高且基本不受基底的干扰, 但多用于实验室分析.开发便携或船载式原子荧光光谱仪, 在海水中As的现场分析方面有很大的应用前景和实际意义.对于As污染水体, 如地下水中As的现场分析, 需要灵敏度适中、测定范围宽、抗干扰能力强的方法, 以用于民用水井和饮用水的As筛查.气相化学发光法不需要大型仪器, 相对来说非常便携, 并且基本不受基底的影响, 在地下水和饮用水中As的现场分析方面具有巨大的潜力.
4 结论(1) 本文首先总结归纳了近10年来(2011~2022)环境水体中与As的分析方法相关的综述; 然后总结讨论了近10年来环境水体中无机As现场测定方法的研究进展, 主要包括比色法(试剂盒、钼蓝法)、发光法(荧光法、气相化学发光法)和电化学法(金和碳电极)等; 并从这些方法的灵敏度、准确性、抗干扰能力以及实际应用情况, 仪器的简便性、便携性、自动化程度等方面进行讨论.
(2) 目前现有的无机As的现场分析方法中, 比色法最为常用, 其具有成本较低、便携、结果可靠等优点, 但仍需进一步提高其灵敏度和自动化程度, 以适用于不同场景的需求; 而荧光法和电化学法的灵敏度较高, 但是其现场分析时的准确性和抗干扰能力需要提高.此外, 部分方法仅理论上适用于现场分析, 并未真正应用于现场测定, 或者其现场分析性能与在实验室相比较差, 未能测定实际样品.因此建立As的现场分析新方法时需综合考察实验室和现场两种环境下的分析性能, 并通过大量真实样品的现场分析和方法比对, 验证方法真正的适用性和准确性.
[1] | Cullen W R, Reimer K J. Arsenic speciation in the environment[J]. Chemical Reviews, 1989, 89(4): 713-764. DOI:10.1021/cr00094a002 |
[2] | Mandal B K, Suzuki K T. Arsenic round the world: a review[J]. Talanta, 2002, 58(1): 201-235. DOI:10.1016/S0039-9140(02)00268-0 |
[3] | Keller N S, Stefánsson A, Sigfússon B. Arsenic speciation in natural sulfidic geothermal waters[J]. Geochimica et Cosmochimica Acta, 2014, 142: 15-26. DOI:10.1016/j.gca.2014.08.007 |
[4] | Rehman M U, Khan R, Khan A, et al. Fate of arsenic in living systems: Implications for sustainable and safe food chains[J]. Journal of Hazardous Materials, 2021, 417. DOI:10.1016/j.jhazmat.2021.126050 |
[5] | Podgorski J, Berg M. Global threat of arsenic in groundwater[J]. Science, 2020, 368(6493): 845-850. DOI:10.1126/science.aba1510 |
[6] | Flanagan S V, Johnston R B, Zheng Y. Arsenic in tube well water in Bangladesh: health and economic impacts and implications for arsenic mitigation[J]. Bulletin of the World Health Organization, 2012, 90(11): 839-846. DOI:10.2471/BLT.11.101253 |
[7] | Rodríguez-Lado L, Sun G F, Berg M, et al. Groundwater arsenic contamination throughout China[J]. Science, 2013, 341(6148): 866-868. DOI:10.1126/science.1237484 |
[8] | He X D, Li P Y, Ji Y J, et al. Groundwater arsenic and fluoride and associated arsenicosis and fluorosis in China: occurrence, distribution and management[J]. Exposure and Health, 2020, 12(3): 355-368. DOI:10.1007/s12403-020-00347-8 |
[9] | Guo H M, Wen D G, Liu Z Y, et al. A review of high arsenic groundwater in Mainland and Taiwan, China: distribution, characteristics and geochemical processes[J]. Applied Geochemistry, 2014, 41: 196-217. DOI:10.1016/j.apgeochem.2013.12.016 |
[10] | Zheng Y. Global solutions to a silent poison[J]. Science, 2020, 368(6493): 818-819. DOI:10.1126/science.abb9746 |
[11] | Li C J, Wang J H, Yan B, et al. Progresses and emerging trends of arsenic research in the past 120 years[J]. Critical Reviews in Environmental Science and Technology, 2021, 51(13): 1306-1353. DOI:10.1080/10643389.2020.1752611 |
[12] | Ma J, Sengupta M K, Yuan D X, et al. Speciation and detection of arsenic in aqueous samples: a review of recent progress in non-atomic spectrometric methods[J]. Analytica Chimica Acta, 2014, 831: 1-23. DOI:10.1016/j.aca.2014.04.029 |
[13] | He Y, Liu J Y, Duan Y H, et al. A critical review of on-site inorganic arsenic screening methods[J]. Journal of Environmental Sciences, 2023, 125: 453-469. DOI:10.1016/j.jes.2022.01.034 |
[14] |
田靖, 陈昌云. 砷形态分析技术研究进展[J]. 化学分析计量, 2011, 20(5): 92-95. Tian J, Chen C Y. Advances on the analytical technique of arsenic speciation[J]. Chemical Analysis and Meterage, 2011, 20(5): 92-95. |
[15] | Chen M L, Ma L Y, Chen X W. New procedures for arsenic speciation: a review[J]. Talanta, 2014, 125: 78-86. DOI:10.1016/j.talanta.2014.02.037 |
[16] |
郑光亚, 宋佳, 邓跃全, 等. 砷形态分析的研究进展[J]. 理化检验(化学分册), 2015, 51(4): 560-566. Zheng G Y, Song J, Deng Y Q, et al. Research progress of arsenic speciation analysis[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2015, 51(4): 560-566. |
[17] | 陈俊祥, 周黎明, 周建梅, 等. 环境水中砷的形态分析方法研究进展[A]. 见: 2016中国环境科学学会学术年会论文集(第二卷)[C]. 海口: 中国环境科学学会, 2016. 1203-1212. |
[18] |
杨芬, 韦朝阳, 刘金鑫. 砷形态分析的样品前处理技术研究进展[J]. 环境科学与技术, 2016, 39(10): 79-86. Yang F, Wei C Y, Liu J X. A review on sample pre-treatment techniques of arsenic speciation analysis[J]. Environmental Science & Technology, 2016, 39(10): 79-86. |
[19] | Werner J, Grze Ds' kowiak T, Zgoła-Grze Ds' kowiak A, et al. Recent trends in microextraction techniques used in determination of arsenic species[J]. TrAC Trends in Analytical Chemistry, 2018, 105: 121-136. DOI:10.1016/j.trac.2018.05.006 |
[20] |
位晨希, 马继平, 吴阁格, 等. 水中砷形态分析研究进展[J]. 青岛理工大学学报, 2019, 40(3): 80-87. Wei C X, Ma J P, Wu G G, et al. Advances in speciation analysis of arsenic in water[J]. Journal of Qingdao University of Technology, 2019, 40(3): 80-87. |
[21] | Ammann A A. Arsenic speciation analysis by ion chromatography-a critical review of principles and applications[J]. American Journal of Analytical Chemistry, 2011, 2(1): 27-45. DOI:10.4236/ajac.2011.21004 |
[22] | Komorowicz I, Barałkiewicz D. Arsenic and its speciation in water samples by high performance liquid chromatography inductively coupled plasma mass spectrometry-Last decade review[J]. Talanta, 2011, 84(2): 247-261. DOI:10.1016/j.talanta.2010.10.065 |
[23] | Maher W A, Ellwood M J, Krikowa F, et al. Measurement of arsenic species in environmental, biological fluids and food samples by HPLC-ICPMS and HPLC-HG-AFS[J]. Journal of Analytical Atomic Spectrometry, 2015, 30(10): 2129-2183. DOI:10.1039/C5JA00155B |
[24] | Leal L O, Ferrer L, Forteza R, et al. Multicommutation flow techniques in the hydride generation-atomic fluorescence determination of arsenic[J]. TrAC Trends in Analytical Chemistry, 2011, 30(5): 761-770. DOI:10.1016/j.trac.2011.01.012 |
[25] | Anawar H M. Arsenic speciation in environmental samples by hydride generation and electrothermal atomic absorption spectrometry[J]. Talanta, 2012, 88: 30-42. DOI:10.1016/j.talanta.2011.11.068 |
[26] | Fischer L, Hann S, Worsfold P J, et al. On-line sample treatment coupled with atomic spectrometric detection for the determination of trace elements in natural waters[J]. Journal of Analytical Atomic Spectrometry, 2020, 35(4): 643-670. DOI:10.1039/C9JA00403C |
[27] | Yu H M, Li C H, Tian Y F, et al. Recent developments in determination and speciation of arsenic in environmental and biological samples by atomic spectrometry[J]. Microchemical Journal, 2020, 152. DOI:10.1016/j.microc.2019.104312 |
[28] | Hao J M, Han M J, Han S M, et al. SERS detection of arsenic in water: a review[J]. Journal of Environmental Sciences, 2015, 36: 152-162. DOI:10.1016/j.jes.2015.05.013 |
[29] | Zhang L, Chen X R, Wen S H, et al. Optical sensors for inorganic arsenic detection[J]. TrAC Trends in Analytical Chemistry, 2019, 118: 869-879. DOI:10.1016/j.trac.2019.07.013 |
[30] | Devi P, Thakur A, Lai R Y, et al. Progress in the materials for optical detection of arsenic in water[J]. TrAC Trends in Analytical Chemistry, 2019, 110: 97-115. DOI:10.1016/j.trac.2018.10.008 |
[31] | Ferreira S L C, Juniora J B P, Almeid L C, et al. Strategies for inorganic speciation analysis employing spectrometric techniques-Review[J]. Microchemical Journal, 2020, 153. DOI:10.1016/j.microc.2019.104402 |
[32] | Luong J H T, Lam E, Male K B. Recent advances in electrochemical detection of arsenic in drinking and ground waters[J]. Analytical Methods, 2014, 6(16): 6157-6169. DOI:10.1039/C4AY00817K |
[33] | Liu Z G, Huang X J. Voltammetric determination of inorganic arsenic[J]. TrAC Trends in Analytical Chemistry, 2014, 60: 25-35. DOI:10.1016/j.trac.2014.04.014 |
[34] | Zaib M, Athar M M, Saeed A, et al. Electrochemical determination of inorganic mercury and arsenic-A review[J]. Biosensors and Bioelectronics, 2015, 74: 895-908. DOI:10.1016/j.bios.2015.07.058 |
[35] |
部丽娟, 陈超, 谭月明, 等. 水中无机砷的电分析化学研究进展[J]. 化学传感器, 2015, 35(1): 10-19. Bu L J, Chen C, Tan Y M, et al. Research progress of electroanalytical chemistry of inorganic arsenic in water[J]. Chemical Sensors, 2015, 35(1): 10-19. |
[36] | Antonova S, Zakharova E. Inorganic arsenic speciation by electroanalysis. From laboratory to field conditions: a mini-review[J]. Electrochemistry Communications, 2016, 70: 33-38. DOI:10.1016/j.elecom.2016.06.011 |
[37] | Kempahanumakkagari S, Deep A, Kim K H, et al. Nanomaterial-based electrochemical sensors for arsenic-A review[J]. Biosensors and Bioelectronics, 2017, 95: 106-116. DOI:10.1016/j.bios.2017.04.013 |
[38] | Xu X C, Niu X H, Li X, et al. Nanomaterial-based sensors and biosensors for enhanced inorganic arsenic detection: a functional perspective[J]. Sensors and Actuators B: Chemical, 2020, 315. DOI:10.1016/j.snb.2020.128100 |
[39] | Lalmalsawmi J, Tiwari D, Kim D J. Role of nanocomposite materials in the development of electrochemical sensors for arsenic: past, present and future[J]. Journal of Electroanalytical Chemistry, 2020, 877. DOI:10.1016/j.jelechem.2020.114630 |
[40] | Thakkar S, Dumée L F, Gupta M, et al. Nano-Enabled sensors for detection of arsenic in water[J]. Water Research, 2021, 188. DOI:10.1016/j.watres.2020.116538 |
[41] | Kolya H, Hashitsume K, Kang C W. Recent advances in colorimetric detection of arsenic using metal-based nanoparticles[J]. Toxics, 2021, 9(6). DOI:10.3390/toxics9060143 |
[42] | Merulla D, Buffi N, Beggah S, et al. Bioreporters and biosensors for arsenic detection.. Biotechnological solutions for a world-wide pollution problem[J]. Current Opinion in Biotechnology, 2013, 24(3): 534-541. DOI:10.1016/j.copbio.2012.09.002 |
[43] | Kaur H, Kumar R, Babu J N, et al. Advances in arsenic biosensor development-A comprehensive review[J]. Biosensors and Bioelectronics, 2015, 63: 533-545. DOI:10.1016/j.bios.2014.08.003 |
[44] | Flora S J S. Handbook of arsenic toxicology[M]. San Diego: Elsevier Academic Press, 2015. |
[45] |
陈保卫, Chris L X. 中国关于砷的研究进展[J]. 环境化学, 2011, 30(11): 1936-1943. Chen B W, Chris L X. Recent progress in arsenic research in China[J]. Environmental Chemistry, 2011, 30(11): 1936-1943. |
[46] | Radke B, Jewell L, Namie Ds' nik J. Analysis of arsenic species in environmental samples[J]. Critical Reviews in Analytical Chemistry, 2012, 42(2): 162-183. DOI:10.1080/10408347.2011.634637 |
[47] |
商博东, 吴颖虹, 张明月, 等. 水中砷及其化学形态分析方法的研究进展[J]. 环境与健康杂志, 2012, 29(6): 570-572. Shang B D, Wu Y H, Zhang M Y, et al. Progress on analysis of arsenic and its chemical speciation in water[J]. Journal of Environment and Health, 2012, 29(6): 570-572. DOI:10.16241/j.cnki.1001-5914.2012.06.010 |
[48] | Yogarajah N, Tsai S S H. Detection of trace arsenic in drinking water: challenges and opportunities for microfluidics[J]. Environmental Science: Water Research & Technology, 2015, 1(4): 426-447. |
[49] |
李琴, 殷妍, 车飞, 等. 环境中砷的测定方法研究进展[J]. 河北师范大学学报(自然科学版), 2017, 41(6): 521-527. Li Q, Yin Y, Che F, et al. Research progress on determination method of arsenic in environment[J]. Journal of Hebei Normal University (Natural Science Edition), 2017, 41(6): 521-527. DOI:10.13763/j.cnki.jhebnu.nse.2017.06.011 |
[50] | 许璐, 周焕英, 高志贤, 等. 环境和食品中砷检测方法研究进展[J]. 解放军预防医学杂志, 2019, 37(10): 1-3. DOI:10.13704/j.cnki.jyyx.2019.10.091 |
[51] | Melamed D. Monitoring arsenic in the environment: a review of science and technologies with the potential for field measurements[J]. Analytica Chimica Acta, 2005, 532(1): 1-13. DOI:10.1016/j.aca.2004.10.047 |
[52] | Gutzeit H. Beiträge zur pflanzenchemie[J]. Pharm. Zeitung, 1879, 24: 263. |
[53] | van Geen A, Cheng Z, Seddique A A, et al. Reliability of a commercial kit to test groundwater for arsenic in Bangladesh[J]. Environmental Science & Technology, 2005, 39(1): 299-303. |
[54] | Spear J M, Zhou Y M, Cole C A, et al. Evaluation of arsenic field test kits for drinking water analysis[J]. Journal American Water Works Association, 2006, 98(12): 97-105. DOI:10.1002/j.1551-8833.2006.tb07827.x |
[55] | George C M, Zheng Y, Graziano J H, et al. Evaluation of an arsenic test kit for rapid well screening in Bangladesh[J]. Environmental Science & Technology, 2012, 46(20): 11213-11219. |
[56] | Kearns J, Tyson J. Improving the accuracy and precision of an arsenic field test kit: increased reaction time and digital image analysis[J]. Analytical Methods, 2012, 4(6): 1693-1698. DOI:10.1039/c2ay05655k |
[57] | van Geen A, Ahmed E B, Pitcher L, et al. Comparison of two blanket surveys of arsenic in tubewells conducted 12 years apart in a 25 km2 area of Bangladesh[J]. Science of the Total Environment, 2014, 488-489: 484-492. DOI:10.1016/j.scitotenv.2013.12.049 |
[58] | van Geen A, Farooqi A, Kumar A, et al. Field testing of over 30, 000 wells for arsenic across 400 villages of the Punjab plains of Pakistan and India: implications for prioritizing mitigation[J]. Science of the Total Environment, 2019, 654: 1358-1363. DOI:10.1016/j.scitotenv.2018.11.201 |
[59] | Safarzadeh-Amiri A, Fowlie P, Kazi A I, et al. Validation of analysis of arsenic in water samples using Wagtech Digital Arsenator[J]. Science of the Total Environment, 2011, 409(13): 2662-2667. DOI:10.1016/j.scitotenv.2011.03.016 |
[60] | Reddy R R, Rodriguez G D, Webster T M, et al. Evaluation of arsenic field test kits for drinking water: recommendations for improvement and implications for arsenic affected regions such as Bangladesh[J]. Water Research, 2020, 170. DOI:10.1016/j.watres.2019.115325 |
[61] | Das J, Sarkar P, Panda J, et al. Low-cost field test kits for arsenic detection in water[J]. Journal of Environmental Science and Health, Part A, 2014, 49(1): 108-115. DOI:10.1080/10934529.2013.824764 |
[62] | Kearns J K, Edson C B. Expanding quantification of arsenic in water to 0 μg ·L-1 with a field test kit: substituting 0.4% M/V silver nitrate as the colorimetric reagent; employing digital image analysis[J]. Water, Air, & Soil Pollution, 2018, 229(3). DOI:10.1007/s11270-018-3717-1 |
[63] | Salman M, Athar M, Waheed-uz-Zaman, et al. Micro-determination of arsenic in aqueous samples by image scanning and computational quantification[J]. Analytical Methods, 2012, 4(1): 242-246. DOI:10.1039/c1ay05569k |
[64] | Pena-Pereira F, Villar-Blanco L, Lavilla I, et al. Test for arsenic speciation in waters based on a paper-based analytical device with scanometric detection[J]. Analytica Chimica Acta, 2018, 1011: 1-10. DOI:10.1016/j.aca.2018.01.007 |
[65] | Haque E, Mailloux B J, de Wolff D, et al. Quantitative drinking water arsenic concentrations in field environments using mobile phone photometry of field kits[J]. Science of the Total Environment, 2018, 618: 579-585. DOI:10.1016/j.scitotenv.2016.12.123 |
[66] | Sekine M, Tokumura M, Raknuzzaman M, et al. Development of method for quantitative determination of water arsenic by field test kit[J]. Fundamental and Applied Agriculture, 2018, 3(1): 340-346. DOI:10.5455/faa.282549 |
[67] | Bonyár A, Nagy P, Mayer V, et al. A colorimetry based, semi-automated portable sensor device for the detection of arsenic in drinking water[J]. Sensors and Actuators B: Chemical, 2017, 251: 1042-1049. DOI:10.1016/j.snb.2017.06.119 |
[68] | Johnson D L. Simultaneous determination of arsenate and phosphate in natural waters[J]. Environmental Science & Technology, 1971, 5(5): 411-414. |
[69] | Johnson D L, Pilson M E Q. Spectrophotometric determination of arsenite, arsenate, and phosphate in natural waters[J]. Analytica Chimica Acta, 1972, 58(2): 289-299. DOI:10.1016/S0003-2670(72)80005-9 |
[70] | Dhar R K, Zheng Y, Rubenstone J, et al. A rapid colorimetric method for measuring arsenic concentrations in groundwater[J]. Analytica Chimica Acta, 2004, 526(2): 203-209. DOI:10.1016/j.aca.2004.09.045 |
[71] | Hu S, Lu J S, Jing C Y. A novel colorimetric method for field arsenic speciation analysis[J]. Journal of Environmental Sciences, 2012, 24(7): 1341-1346. DOI:10.1016/S1001-0742(11)60922-4 |
[72] | Okazaki T, Wang W J, Kuramitz H, et al. Molybdenum blue spectrophotometry for trace arsenic in ground water using a soluble membrane filter and calcium carbonate column[J]. Analytical Sciences, 2013, 29(1): 67-72. DOI:10.2116/analsci.29.67 |
[73] | Fontàs C, Vera R, Batalla A, et al. A novel low-cost detection method for screening of arsenic in groundwater[J]. Environmental Science and Pollution Research, 2014, 21(20): 11682-11688. DOI:10.1007/s11356-014-2917-5 |
[74] | Güell R, Anticó E, Kolev S D, et al. Development and characterization of polymer inclusion membranes for the separation and speciation of inorganic As species[J]. Journal of Membrane Science, 2011, 383(1-2): 88-95. DOI:10.1016/j.memsci.2011.08.037 |
[75] | Okazaki T, Kuramitz H, Hata N, et al. Visual colorimetry for determination of trace arsenic in groundwater based on improved molybdenum blue spectrophotometry[J]. Analytical Methods, 2015, 7(6): 2794-2799. DOI:10.1039/C4AY03021D |
[76] | Kiso Y, Asaoka S, Kamimoto Y, et al. Detection tube method for trace level arsenic[J]. Journal of Environmental Chemical Engineering, 2015, 3(1): 40-45. DOI:10.1016/j.jece.2014.11.017 |
[77] | Das J, Sarkar P. A new dipstick colorimetric sensor for detection of arsenate in drinking water[J]. Environmental Science: Water Research & Technology, 2016, 2(4): 693-704. |
[78] | Hashihama F, Suwa S, Kanda J. Liquid waveguide spectrophotometric measurements of arsenate and particulate arsenic, as well as phosphate and particulate phosphorus, in seawater[J]. Journal of Oceanography, 2017, 73(4): 439-447. DOI:10.1007/s10872-017-0412-6 |
[79] | Hashihama F, Suwa S, Kanda J, et al. Arsenate and microbial dynamics in different phosphorus regimes of the subtropical Pacific Ocean[J]. Progress in Oceanography, 2019, 176. DOI:10.1016/j.pocean.2019.05.007 |
[80] | Bhattacharya S, Sarkar S, Shunmugam R. Unique norbornenepolymer based "in-field" sensor for As(Ⅲ)[J]. Journal of Materials Chemistry A, 2013, 1(29): 8398-8405. DOI:10.1039/c3ta11587a |
[81] | Sirawatcharin S, Saithongdee A, Chaicham A, et al. Naked-eye and colorimetric detection of arsenic(Ⅲ) using difluoroboron-curcumin in aqueous and resin bead support systems[J]. Analytical Sciences, 2014, 30(12): 1129-1134. DOI:10.2116/analsci.30.1129 |
[82] | Lace A, Ryan D, Bowkett M, et al. Arsenic monitoring in water by colorimetry using an optimized leucomalachite green method[J]. Molecules, 2019, 24(2). DOI:10.3390/molecules24020339 |
[83] | Wu Y G, Wang F Z, Zhan S S, et al. Regulation of hemin peroxidase catalytic activity by arsenic-binding aptamers for the colorimetric detection of arsenic(Ⅲ)[J]. RSC Advances, 2013, 3(48): 25614-25619. DOI:10.1039/c3ra44346a |
[84] | Domínguez-González R, Varela L G, Bermejo-Barrera P. Functionalized gold nanoparticles for the detection of arsenic in water[J]. Talanta, 2014, 118: 262-269. DOI:10.1016/j.talanta.2013.10.029 |
[85] | Zheng B, Li J, Zheng Z K, et al. Rapid colorimetric detection of arsenic (Ⅲ) by glutathione functionalized gold nanoparticles based on RGB extracting system[J]. Optics & Laser Technology, 2021, 133. DOI:10.1016/j.optlastec.2020.106522 |
[86] | Ge K, Liu J M, Fang G Z, et al. A colorimetric probe based on functionalized gold nanorods for sensitive and selective detection of As(Ⅲ) ions[J]. Sensors, 2018, 18(7). DOI:10.3390/s18072372 |
[87] | Tan Z Q, Liu J F, Yin Y G, et al. Colorimetric Au nanoparticle probe for speciation test of arsenite and arsenate inspired by selective interaction between phosphonium ionic liquid and arsenite[J]. ACS Applied Materials & Interfaces, 2014, 6(22): 19833-19839. |
[88] | Boruah B S, Daimari N K, Biswas R. Functionalized silver nanoparticles as an effective medium towards trace determination of arsenic (Ⅲ) in aqueous solution[J]. Results in Physics, 2019, 12: 2061-2065. DOI:10.1016/j.rinp.2019.02.044 |
[89] | Xia N, Shi Y F, Zhang R C, et al. Simple, rapid and label-free colorimetric assay for arsenic based on unmodified gold nanoparticles and a phytochelatin-like peptide[J]. Analytical Methods, 2012, 4(12): 3937-3941. DOI:10.1039/c2ay25803j |
[90] | Yang T, Zhang X X, Yang J Y, et al. Screening arsenic(Ⅲ)-binding peptide for colorimetric detection of arsenic(Ⅲ) based on the peptide induced aggregation of gold nanoparticles[J]. Talanta, 2018, 177: 212-216. DOI:10.1016/j.talanta.2017.07.005 |
[91] | Liang R P, Wang Z X, Zhang L, et al. Label-Free colorimetric detection of arsenite utilizing G-/T-rich oligonucleotides and unmodified Au nanoparticles[J]. Chemistry-A European Journal, 2013, 19(16): 5029-5033. DOI:10.1002/chem.201203402 |
[92] | Zhan S S, Yu M L, Lv J, et al. Colorimetric detection of trace arsenic(Ⅲ) in aqueous solution using arsenic aptamer and gold nanoparticles[J]. Australian Journal of Chemistry, 2014, 67(5): 813-818. DOI:10.1071/CH13512 |
[93] | Wu Y G, Zhan S S, Wang F Z, et al. Cationic polymers and aptamers mediated aggregation of gold nanoparticles for the colorimetric detection of arsenic(Ⅲ) in aqueous solution[J]. Chemical Communications, 2012, 48(37): 4459-4461. DOI:10.1039/c2cc30384a |
[94] | Nguyen N L T, Park C Y, Park J P, et al. Synergistic molecular assembly of an aptamer and surfactant on gold nanoparticles for the colorimetric detection of trace levels of As3+ ions in real samples[J]. New Journal of Chemistry, 2018, 42(14): 11530-11538. DOI:10.1039/C8NJ01097H |
[95] | Nath P, Arun R K, Chanda N. A paper based microfluidic device for the detection of arsenic using a gold nanosensor[J]. RSC Advances, 2014, 4(103): 59558-59561. DOI:10.1039/C4RA12946F |
[96] | Motalebizadeh A, Bagheri H, Asiaei S, et al. New portable smartphone-based PDMS microfluidic kit for the simultaneous colorimetric detection of arsenic and mercury[J]. RSC Advances, 2018, 8(48): 27091-27100. DOI:10.1039/C8RA04006K |
[97] | Shrivas K, Patel S, Sinha D, et al. Colorimetric and smartphone-integrated paper device for on-site determination of arsenic (Ⅲ) using sucrose modified gold nanoparticles as a nanoprobe[J]. Microchimica Acta, 2020, 187(3). DOI:10.1007/s00604-020-4129-7 |
[98] | Wang X X, Lv Y, Hou X D. A potential visual fluorescence probe for ultratrace arsenic (Ⅲ) detection by using glutathione-capped CdTe quantum dots[J]. Talanta, 2011, 84(2): 382-386. DOI:10.1016/j.talanta.2011.01.012 |
[99] | Butwong N, Noipa T, Burakham R, et al. Determination of arsenic based on quenching of CdS quantum dots fluorescence using the gas-diffusion flow injection method[J]. Talanta, 2011, 85(2): 1063-1069. DOI:10.1016/j.talanta.2011.05.023 |
[100] | Butwong N, Srijaranai S, Ngeontae W, et al. Speciation of arsenic (Ⅲ) and arsenic (Ⅴ) based on quenching of CdS quantum dots fluorescence using hybrid sequential injection-stopped flow injection gas-diffusion system[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2012, 97: 17-23. DOI:10.1016/j.saa.2012.05.054 |
[101] | Hosseini M S, Nazemi S. Preconcentration determination of arsenic species by sorption of As(Ⅴ) on Amberlite IRA-410 coupled with fluorescence quenching of L-cysteine capped CdS nanoparticles[J]. Analyst, 2013, 138(19): 5769-5776. DOI:10.1039/c3an00869j |
[102] | Vaishanav S K, Korram J, Pradhan P, et al. Green luminescent CdTe quantum dot based fluorescence nano-sensor for sensitive detection of arsenic (Ⅲ)[J]. Journal of Fluorescence, 2017, 27(3): 781-789. DOI:10.1007/s10895-016-2011-0 |
[103] | Tang G C, Wang J L, Li Y, et al. Determination of arsenic(Ⅲ) based on the fluorescence resonance energy transfer between CdTe QDs and Rhodamine 6G[J]. RSC Advances, 2015, 5(23): 17519-17525. DOI:10.1039/C4RA16789A |
[104] | Saha J, Roy A D, Dey D, et al. Development of arsenic(v) sensor based on Fluorescence Resonance Energy Transfer[J]. Sensors and Actuators B: Chemical, 2017, 241: 1014-1023. DOI:10.1016/j.snb.2016.10.098 |
[105] | Fujiwara K, Watanabe Y, Fuwa K, et al. Gas phase chemiluminescence with ozone oxidation for the determination of arsenic, antimony, tin, and selenium[J]. Analytical Chemistry, 1982, 54(1): 125-128. DOI:10.1021/ac00238a035 |
[106] | Fraser M E, Stedman D H, Henderson M J. Gas phase chemiluminescence of arsine mixed with ozone[J]. Analytical Chemistry, 1982, 54(7): 1200-1201. DOI:10.1021/ac00244a044 |
[107] | Idowu A D, Dasgupta P K, Genfa Z, et al. A gas-phase chemiluminescence-based analyzer for waterborne arsenic[J]. Analytical Chemistry, 2006, 78(20): 7088-7097. DOI:10.1021/ac061439y |
[108] | Sengupta M K, Sawalha M F, Ohira S I, et al. Green analyzer for the measurement of total arsenic in drinking water: electrochemical reduction of arsenate to arsine and gas phase chemiluminescence with ozone[J]. Analytical Chemistry, 2010, 82(9): 3467-3473. DOI:10.1021/ac100604y |
[109] | Chen H W, Brindle I D, Le X C. Prereduction of arsenic(V) to arsenic(Ⅲ), enhancement of the signal, and reduction of interferences by L-cysteine in the determination of arsenic by hydride generation[J]. Analytical Chemistry, 1992, 64(6): 667-672. DOI:10.1021/ac00030a018 |
[110] | González J C, Lavilla I, Bendicho C. Evaluation of non-chromatographic approaches for speciation of extractable As(Ⅲ) and As(Ⅴ) in environmental solid samples by FI-HGAAS[J]. Talanta, 2003, 59(3): 525-534. DOI:10.1016/S0039-9140(02)00541-6 |
[111] | Idowu A D, Dasgupta P K. Liquid chromatographic arsenic speciation with gas-phase chemiluminescence detection[J]. Analytical Chemistry, 2007, 79(23): 9197-9204. DOI:10.1021/ac701683h |
[112] | Sawalha M F, Sengupta M K, Ohira S I, et al. Measurement of soil/dust arsenic by gas phase chemiluminescence[J]. Talanta, 2008, 77(1): 372-379. DOI:10.1016/j.talanta.2008.06.037 |
[113] | Xue J H, Zhu Z L, Zhang S C, et al. A simple and fast detection technique for arsenic speciation based on high-efficiency photooxidation and gas-phase chemiluminescence detection[J]. Luminescence, 2009, 24(5): 290-294. DOI:10.1002/bio.1099 |
[114] | Sengupta M K, Hossain Z A, Ohira S I, et al. A simple inexpensive gas phase chemiluminescence analyzer for measuring trace levels of arsenic in drinking water[J]. Environmental Pollution, 2010, 158(1): 252-257. DOI:10.1016/j.envpol.2009.07.014 |
[115] | Hashem A, Jodai T, Ohira S I, et al. High sensitivity arsenic analyzer based on liquid-reagent-free hydride generation and chemiluminescence detection for on-site water analysis[J]. Analytical Sciences, 2011, 27(7): 733-738. DOI:10.2116/analsci.27.733 |
[116] | Assegid K, Ahmed F, Ahamed S, et al. Development of a gas phase chemiluminescence system for the measurement of arsenic in drinking water[J]. Analytical Methods, 2011, 3(12): 2921-2928. DOI:10.1039/c1ay05476g |
[117] | Sengupta M K, Dasgupta P K. Oxidation state-differentiated measurement of aqueous inorganic arsenic by continuous flow electrochemical arsine generation coupled to gas-phase chemiluminescence detection[J]. Analytical Chemistry, 2011, 83(24): 9378-9383. DOI:10.1021/ac201972m |
[118] | Shen H, Dasgupta P K. Electrochemical arsine generators for arsenic determination[J]. Analytical Chemistry, 2014, 86(15): 7705-7711. DOI:10.1021/ac501636u |
[119] | Ferreira M A, Barros A A. Determination of As(Ⅲ) and arsenic(Ⅴ) in natural waters by cathodic stripping voltammetry at a hanging mercury drop electrode[J]. Analytica Chimica Acta, 2002, 459(1): 151-159. DOI:10.1016/S0003-2670(02)00086-7 |
[120] | Tongesayi T, Smart R B. Arsenic speciation: reduction of arsenic(Ⅴ) to arsenic(Ⅲ) by fulvic acid[J]. Environmental Chemistry, 2006, 3(2): 137-141. DOI:10.1071/EN05095 |
[121] | He Y, Zheng Y, Locke D C. Cathodic stripping voltammetric analysis of arsenic species in environmental water samples[J]. Microchemical Journal, 2007, 85(2): 265-269. DOI:10.1016/j.microc.2006.06.012 |
[122] | Gibbon-Walsh K, Salaün P, van den Berg C M D. Arsenic speciation in natural waters by cathodic stripping voltammetry[J]. Analytica Chimica Acta, 2010, 662(1): 1-8. DOI:10.1016/j.aca.2009.12.038 |
[123] | Alves G M S, Magalhães J M C S, Salaün P, et al. Simultaneous electrochemical determination of arsenic, copper, lead and mercury in unpolluted fresh waters using a vibrating gold microwire electrode[J]. Analytica Chimica Acta, 2011, 703(1): 1-7. DOI:10.1016/j.aca.2011.07.022 |
[124] | Gibbon-Walsh K, Salaün P, Uroic M K, et al. Voltammetric determination of arsenic in high iron and manganese groundwaters[J]. Talanta, 2011, 85(3): 1404-1411. DOI:10.1016/j.talanta.2011.06.038 |
[125] | Salaün P, Gibbon-Walsh K B, Alves G M S, et al. Determination of arsenic and antimony in seawater by voltammetric and chronopotentiometric stripping using a vibrated gold microwire electrode[J]. Analytica Chimica Acta, 2012, 746: 53-62. DOI:10.1016/j.aca.2012.08.013 |
[126] | Bullen J C, Dworsky L N, Eikelboom M, et al. Low-cost electrochemical detection of arsenic in the groundwater of Guanajuato state, central Mexico using an open-source potentiostat[J]. PLoS One, 2022, 17(1). DOI:10.1371/journal.pone.0262124 |
[127] | Sakira A K, Somé I T, Ziemons E, et al. Determination of arsenic(Ⅲ) at a nanogold modified solid carbon paste electrode[J]. Electroanalysis, 2015, 27(2): 309-316. DOI:10.1002/elan.201400485 |
[128] | Pereira F J, Vázquez M D, Debán L, et al. Inorganic arsenic speciation by differential pulse anodic stripping voltammetry using thoria nanoparticles-carbon paste electrodes[J]. Talanta, 2016, 152: 211-218. DOI:10.1016/j.talanta.2016.02.011 |
[129] | Gu T A, Bu L J, Huang Z, et al. Dual-signal anodic stripping voltammetric determination of trace arsenic(Ⅲ) at a glassy carbon electrode modified with internal-electrolysis deposited gold nanoparticles[J]. Electrochemistry Communications, 2013, 33: 43-46. DOI:10.1016/j.elecom.2013.04.019 |
[130] | Chao L, Xiong X J, Liu J, et al. Preparation of a porous Au electrode with a sacrificed Prussian blue analogue template for anodic stripping voltammetric analysis of trace arsenic(Ⅲ)[J]. Sensors and Actuators B: Chemical, 2017, 253: 603-611. DOI:10.1016/j.snb.2017.06.150 |
[131] | Bu L J, Liu J, Xie Q J, et al. Anodic stripping voltammetric analysis of trace arsenic(Ⅲ) enhanced by mild hydrogen-evolution at a bimetallic Au-Pt nanoparticle modified glassy carbon electrode[J]. Electrochemistry Communications, 2015, 59: 28-31. DOI:10.1016/j.elecom.2015.06.015 |
[132] | Sedki M, Zhao G, Ma S C, et al. Linker-free magnetite-decorated gold nanoparticles (Fe3 O4-Au): synthesis, characterization, and application for electrochemical detection of arsenic (Ⅲ)[J]. Sensors, 2021, 21(3). DOI:10.3390/s21030883 |
[133] | Saha S, Sarkar P. Differential pulse anodic stripping voltammetry for detection of As (Ⅲ) by Chitosan-Fe(OH)3 modified glassy carbon electrode: a new approach towards speciation of arsenic[J]. Talanta, 2016, 158: 235-245. DOI:10.1016/j.talanta.2016.05.053 |
[134] | Gupta R, Gamare J S, Pandey A K, et al. Highly sensitive detection of arsenite based on its affinity toward ruthenium nanoparticles decorated on glassy carbon electrode[J]. Analytical Chemistry, 2016, 88(4): 2459-2465. DOI:10.1021/acs.analchem.5b04625 |
[135] | Du Y, Sun C L, Shen Y R, et al. Anodic stripping voltammetric analysis of trace arsenic(Ⅲ) on a Au-stained Au nanoparticles/pyridine/carboxylated multiwalled carbon nanotubes/glassy carbon electrode[J]. Nanomaterials, 2022, 12(9). DOI:10.3390/nano12091450 |
[136] | Udayan A P M, Kachwala B, Karthikeyan K G, et al. Ultrathin quasi-hexagonal gold nanostructures for sensing arsenic in tap water[J]. RSC Advances, 2020, 10(34): 20211-20221. DOI:10.1039/D0RA02750B |
[137] | Hassan S S, Sirajuddin, Solangi A R, et al. Nafion stabilized ibuprofen-gold nanostructures modified screen printed electrode as arsenic(Ⅲ) sensor[J]. Journal of Electroanalytical Chemistry, 2012, 682: 77-82. DOI:10.1016/j.jelechem.2012.07.006 |
[138] | Punrat E, Chuanuwatanakul S, Kaneta T, et al. Method development for the determination of arsenic by sequential injection/anodic stripping voltammetry using long-lasting gold-modified screen-printed carbon electrode[J]. Talanta, 2013, 116: 1018-1025. DOI:10.1016/j.talanta.2013.08.030 |
[139] | Trachioti M G, Karantzalis A E, Hrbac J, et al. Low-cost screen-printed sensors on-demand: instantly prepared sparked gold nanoparticles from eutectic Au/Si alloy for the determination of arsenic at the sub-ppb level[J]. Sensors and Actuators B: Chemical, 2019, 281: 273-280. DOI:10.1016/j.snb.2018.10.112 |
[140] | Li S S, Zhou W Y, Jiang M, et al. Surface Fe(Ⅱ)/Fe(Ⅲ) cycle promoted ultra-highly sensitive electrochemical sensing of arsenic(Ⅲ) with dumbbell-like Au/Fe3 O4 nanoparticles[J]. Analytical Chemistry, 2018, 90(7): 4569-4577. DOI:10.1021/acs.analchem.7b04981 |