环境科学  2022, Vol. 43 Issue (8): 3934-3943   PDF    
典型工业城市夏季VOCs污染特征及反应活性
秦涛1,2, 李丽明1, 王信梧3, 杨文1, 王晓丽2, 徐勃3, 耿春梅1     
1. 中国环境科学研究院环境基准与风险评估国家重点实验室, 北京 100012;
2. 天津理工大学环境科学与安全工程学院, 天津 300384;
3. 山东省淄博生态环境监测中心, 淄博 255000
摘要: 为研究典型工业城市夏季挥发性有机物(VOCs)污染对环境的影响及成因, 利用2020年7月在淄博市城区的VOCs在线监测数据, 分析了污染日和清洁日VOCs的污染特征、化学反应活性和臭氧(O3)污染成因.结果表明, 污染日总挥发性有机物(TVOC)小时浓度均值较清洁日高32.5%, 分别为(50.6±28.3)μg·m-3和(38.2±24.9)μg·m-3, 污染日和清洁日各组分贡献率均为: 烷烃>芳香烃>烯烃>炔烃, TVOC和O3浓度日变化均呈现相反的变化趋势.污染日臭氧生成潜势(OFP)、·OH消耗速率(L·OH)和二次有机气溶胶生成潜势(SOAp)均高于清洁日, 烯烃对OFP和L·OH贡献最大, 芳香烃对SOAp贡献最大; OFP和SOAp日变化趋势和TVOC基本一致; 化学反应活性优势物种以烯烃和芳香烃类物质居多.VOCs/NOx法判断污染日和清洁日O3敏感区属性均处于VOCs控制区和过渡区, 而烟雾产量模型法(SPM)诊断污染日O3敏感区属性在08:00~16:00期间处于VOCs控制区和过渡区交替状态, 清洁日各时段均处于VOCs控制区.为减轻该市夏季O3污染, 应加强对VOCs(烯烃和芳香烃)和氮氧化物(NOx)的协同控制.
关键词: 挥发性有机物(VOCs)      臭氧生成潜势(OFP)      ·OH消耗速率(L·OH)      二次有机气溶胶生成潜势(SOAp)      臭氧敏感性     
Characteristics and Reactivity of VOCs in a Typical Industrial City in Summer
QIN Tao1,2 , LI Li-ming1 , WANG Xin-wu3 , YANG Wen1 , WANG Xiao-li2 , XU Bo3 , GENG Chun-mei1     
1. State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China;
2. College of Environmental Science & Safety Engineering, Tianjin University of Technology, Tianjin 300384, China;
3. Shandong Zibo Eco-Environmental Monitoring Center, Zibo 255000, China
Abstract: To investigate the ambient pollution caused by volatile organic compounds (VOCs) in a typical industrial city in summer, the characteristics and chemical reactivity from VOCs and the causes of ozone (O3) pollution were analyzed using online VOCs measurements during polluted and non-polluted periods in Zibo city in July 2020. The results showed that the average hourly concentration of total volatile organic compounds (TVOC) during the polluted period [(50.6±28.3)] μg·m-3 was 32.5% higher than that during the non-polluted period [(38.2±24.9) μg·m-3]. The contribution of all VOCs categories were as follows: alkanes>aromatics>alkenes>alkynes, and the diurnal averages of TVOC and O3 concentrations were opposite during the polluted and non-polluted period. Ozone formation potential (OFP), ·OH radical loss rate (L·OH), and secondary organic aerosol formation potential (SOAp) during the polluted period were higher than those during the non-polluted period. Alkenes contributed most to OFP and L·OH, whereas aromatics contributed most to SOAp. The tendency of the diurnal average of OFP and SOAp was overall consistent with that of TVOC. The priority species of OFP, L·OH, and SOAp were alkenes and aromatics. The VOCs/NOx method was applied to identify the O3-VOC-NOx sensitivity during the polluted and non-polluted periods, and the results showed that the photochemical regimes were VOCs-limited and transition regions. In addition, the smog production model (SPM) was employed to identify the O3 formation regime, and the results showed that those during the polluted period were identified as VOCs-limited and transition regions from 08:00 to 16:00, whereas the non-polluted period was mainly considered to be VOCs-limited. To mitigate the O3 pollution in summertime, the synergistic control of VOCs (especially alkenes and aromatics) and NOx emissions should be enforced.
Key words: volatile organic compounds (VOCs)      ozone formation potential (OFP)      ·OH radical loss rate(L·OH)      secondary organic aerosol formation potential (SOAp)      ozone sensitivity     

“十三五”期间, 我国重点区域细颗粒物(PM2.5)浓度明显下降, 而臭氧(O3)浓度升高成为影响空气质量改善的重要因素[1], PM2.5和O3之间具有复杂的关联性, 二者的协同治理也成为我国打赢蓝天保卫战的关键[2].挥发性有机物(volatile organic compounds, VOCs)在大气光化学反应中扮演着极其重要的角色, 是O3和二次有机气溶胶(secondary organic aerosols formation, SOA)生成的重要前体物[3~5], 对光化学烟雾和霾污染治理有着不可忽视的作用.此外, 加拿大、美国和其他国际机构将多种VOCs物种认定为有害空气污染物, 会对人体产生致癌作用[6].城市环境空气中的VOCs主要来自人为源和自然源, 受各种工业活动、交通排放、燃料燃烧和植被挥发释放影响[7].正是因为VOCs来源的复杂性, 使得VOCs治理工作有一定难度, 文献[8]旨在重点区域加强监督管理, 有针对性的进行管控, 有效改善空气质量.

我国针对VOCs开展了大量研究, 研究地点集中在京津冀[9~11]、长三角[12~14]、珠三角[15~17]和成渝地区[18~20], 研究内容主要包括污染特征[13, 19, 20], 来源解析[11~14]和健康风险评价[12, 15, 21].本研究地点位于我国山东省淄博市, 是文献[8]中提到的重点城市之一, 是典型的重工业城市, 石油化工、建材和医药等行业, 均排放大量VOCs物质[22].相关学者也对当地大气污染开展了研究, 王雨燕等[22]研究了当地重点工业行业VOCs的排放特征, 计算出各重点行业的主要排放环节; 吴丽萍等[23]的研究发现, 该市近地面O3月变化呈双峰型, 日变化呈单峰型, 白天和夜间分别受区域和局地污染影响较大; Li等[24]的研究发现, 其雾、霾期间PM2.5浓度比雾、霾前高76.78%, 燃煤和机动车排放是主要来源.但对不同O3污染情况下环境VOCs的相关研究较少.本研究在淄博市城区开展VOCs连续监测, 分析不同O3污染情况下VOCs的污染特征、化学反应活性和污染成因, 探讨VOCs对大气复合污染的影响, 以期为类似重工业城市O3和PM2.5协同治理提供借鉴.

1 材料与方法 1.1 观测场地与观测时间

本研究选取淄博市的城区监测站点(117.90°E, 36.82°N)开展大气VOCs在线监测, 监测时间为2020年7月1~31日.监测站点东边和北边建有学校和医院, 周边还有大量居住区, 毗邻交通主干道和一条河流, 周边无明显局地排放源, 可以很好地反映一定区域范围内的大气污染状况.

1.2 仪器设备

采用美国热电公司生产的Thermo Fisher 5900在线气相色谱分析仪, 系统时间分辨率为1 h, 采样开始前, 采样泵用样品气吹扫采样管线2 min, 此时富集管冷却至30℃, 随后开始采样.采样时, 环境空气进入吸附管, 至富集管内通过500 mL气体后停止, 经除水后进入富集管冲洗并加热, 随后管中吸附的物质被蒸发吹进气相色谱仪(GC)中的毛细色谱柱进行分离, 最后进入火焰离子化检测器(FID)进行检测, 将检测物质的出峰面积与校准气峰面积比较得到测量结果[25].共检测出烷烃类物质29种, 烯烃类10种, 炔烃类为乙炔, 芳香烃类16种, 共计56种VOCs物质(实际检测出57种, 间-二甲苯和对-二甲苯合称为间/对-二甲苯, 故为56种).气象数据及其他污染物数据由站点内部相应仪器测量, 由市环保局环境自动监测监控系统(http://60.210.111.130:8002)获得.

1.3 质量控制与保证

为保证在线监测数据的可靠性, 使用美国林德(Linde)公司的臭氧前体物PAMS-57标气分别配制2×10-9、4×10-9、6×10-9、8×10-9和10×10-9体积分数的标气, 在采样前对仪器进行多点标定, 以目标物种的标气浓度为横坐标, 响应峰面积为纵坐标做出该物种的标准曲线, 并保证各物种标准曲线r2在0.99以上.采样开始后每周通一次体积分数为2×10-9的标气进行单点校准, 偏差阈值设置为20%, 即保证90%的VOCs组分定量结果和理论值之比在1±0.2范围内.空气样品分析完, 手动将所有样品谱图与标准物质谱图进行核对.其余站点质控要求和其他辅助设施都符合相应规定[26].

1.4 化学反应活性分析方法 1.4.1 臭氧生成潜势(OFP)

臭氧生成潜势(ozone formation potential, OFP)常用来衡量VOCs生成O3的最大能力, 常使用最大增量反应活性系数法(MIR系数法)[27]来计算VOCs的OFP, 其计算公式为:

(1)

式中, OFP为VOCs的臭氧生成潜势, μg·m-3; [VOCs]ii个VOCs物种的浓度, μg·m-3; MIRii个VOCs物种的的最大增量反应系数, 数值见文献[28, 29].

1.4.2 ·OH消耗速率(L·OH)

VOCs与·OH的反应是O3生成过程的关键步骤, 而RO2是产生O3的关键中间物, 通常用·OH消耗速率(·OH radical loss rate, L·OH)来评估不同VOCs物种对日间光化学反应的相对贡献.计算公式为:

(2)

式中, L·OH为VOCs的·OH消耗速率, s-1; [VOCs]i为物质i的浓度, mol·m-3; Ki·OH为物质i与·OH的反应速率常数, m3·(mol·s)-1, 由文献[30]获得.

1.4.3 二次有机气溶胶生成潜势(SOAp)

二次有机气溶胶(SOA)是人为源和自然源排放的VOCs在大气中经过氧化等反应生成的微粒, 常采用气溶胶生成系数法(FAC)[31, 32]估算其二次有机气溶胶生成潜势(secondary organic aerosols formation potential, SOAp), 计算公式为:

(3)

式中, SOAp为VOCs的二次有机气溶胶生成潜势, μg·m-3; VOCst为环境空气中VOCs的浓度, μg·m-3; FVOCr为VOCs物种参与反应的分数, %; FAC为SOA的生成系数, %, 其中FVOCr与FAC由烟雾箱实验获得, 数值见文献[31~34].

1.5 烟雾产量模型(SPM)

烟雾产量模型(smog production model, SPM)广泛应用于O3敏感性的判断[35, 36], 此概念最早由Johnson[37]提出, Blanchard等[38]之后对其进行了改进, 提高了O3敏感性预测的准确性, 其是一种基于观测的模型(observation-based model, OBM), 使用一系列半经验公式来计算光化学反应的程度, 反应程度E(t)计算公式为:

(4)

式中, SP为光化学烟雾产量; O3(t)和NO(t)分别为t时刻O3和NO的体积分数; DO3(t)为t时刻O3的累积沉降损失, 具体估算方式见文献[38]; O3(0)为环境O3的背景体积分数, 取40×10-9[35]; NO(i)和NOx(i)分别为NO和NOx输入量, 具体的计算方法见文献[38]; αβ为经验参数, 分别取2/3和19[38]; 所有物种均采用体积分数表示, ×10-9.

2 结果与讨论 2.1 VOCs污染特征 2.1.1 VOCs组成特征

环境空气质量标准[39]中规定, O3日最大8 h均值(O3-8h-Max)二级浓度限值为160μg·m-3, 超过此值即为O3轻度污染.依此判断监测期间污染日共有16 d, 清洁日共有15 d, ρ(O3)小时均值分别为(119.4±81.9)μg·m-3和(84.2±37.3)μg·m-3.

图 1所示, 污染日ρ(TVOC)小时均值为(50.6±28.3)μg·m-3, 其中烷烃占比最大(67.1%), 其次是芳香烃(17.8%)和烯烃(11.4%), 炔烃占比最小(3.7%).清洁日ρ(TVOC)小时均值为(38.2±24.9)μg·m-3, 其中烷烃占比最大(67.8%), 其次是芳香烃(14.2%)和烯烃(13.6%), 炔烃占比最小(4.4%).污染日相较清洁日的ρ(TVOC)均值增长了32.5%, 各组分贡献率均为: 烷烃>芳香烃>烯烃>炔烃, 两者之间的烷烃和炔烃占比相差小于1%, 较为接近, 芳香烃和烯烃有一定差别, 污染日的芳香烃贡献率高于清洁日.

图 1 污染日和清洁日VOCs的浓度、OFP、L·OH和SOAp Fig. 1 VOCs concentration, OFP, L·OH, and SOAp during the polluted and non-polluted period

图 2所示, 污染日排名前10的VOCs物种浓度之和高于清洁日, 优势物种贡献率之和分别为69.2%和63.7%.两者优势物种大体一致, 主要为烷烃类物质, 仅有苯和乙烯两个物种不同.甘浩等[40]此前对淄博市化工园区的研究也表明烷烃在VOCs各组分中占比最高, 说明烷烃对当地VOCs浓度有很大的贡献.任义君等[41]在郑州的研究也表明, 污染日和非污染日的主要物种均包含乙烷、丙烷、乙炔、乙烯、甲苯、异丁烷和正丁烷等物种, 与本研究的结果基本一致.

图 2 污染日和清洁日VOCs排名前10物种浓度及贡献率 Fig. 2 Concentration and contribution of the top ten VOCs species during the polluted and non-polluted period

2.1.2 VOCs日变化特征

图 3(a)~3(i)为气象参数及主要污染物日变化情况, 可以看出, TVOC的日变化趋势与烷烃和芳香烃较为一致, 两种组分对TVOC的贡献率之和超过了80%, 对TVOC日变化趋势有较高影响.污染日的TVOC和NOx在各小时的浓度均值大多高于清洁日, TVOC和NOx的浓度在污染日和清洁日大致都呈现夜间高、白天低的日变化趋势, 这是夜间光化学作用减弱、边界层较低、稀释或者扩散过程减缓导致污染物积累的影响[42], 白天风速较大, 温度较高, 污染物被稀释及光化学反应所消耗[13].污染日和清洁日O3浓度变化则呈现出白天高, 夜间低的变化趋势, 均表现为单峰型结构, 峰值出现在13:00~15:00左右, 污染日白天的O3浓度较清洁日明显偏高, 日变化幅度较大.日出后, O3浓度升高, 同一时刻TVOC和NOx浓度下降, 这主要是白天太阳的高辐射和温度上升导致光化学反应加剧造成的, 之后随着太阳辐射减弱及温度下降又逐渐降低[43].

图 3 污染日和清洁日气象参数及主要污染物日变化 Fig. 3 Diurnal variation in meteorological parameters and major pollutants during the polluted and non-polluted period

2.2 VOCs的化学反应活性分析

VOCs各组分浓度和化学反应活性差异较大, 对O3生成有着不同的影响[44].L·OH和OFP都可以计算出某一地区VOCs的臭氧生成能力, 但前者仅考虑到单个VOC物种与·OH的反应速率, 后者综合考虑了后续反应, 二者综合比较, 可以更好地判断对臭氧生成贡献较大的VOCs物种.SOA是城市PM2.5的重要组成部分[45, 46], 结合文献[31~34], 该研究共有27种VOCs可计算SOAp, 其中烷烃类VOCs 11种, 烯烃类1种(异戊二烯), 芳香烃类15种.

2.2.1 化学反应活性水平

图 1图 4所示, 污染日和清洁日的OFP值分别为(85.5±42.4)μg·m-3和(71.5±41.8)μg·m-3, 低于同样重工业发达的天津市[10](123.9μg·m-3), 二者VOCs各组分贡献率均为: 烯烃>芳香烃>烷烃>炔烃; L·OH值分别为(4.2±2.3)s-1和(3.6±2.2)s-1, 二者VOCs各组分贡献率均为: 烯烃>烷烃>芳香烃>炔烃.从各类VOCs组分数值来看, 污染日各类VOCs组分的OFP和L·OH也均高于清洁日, 从各组分对OFP和L·OH的贡献率来看, 污染日烷烃和芳香烃高于清洁日, 炔烃相差不大, 而烯烃低于清洁日.

图 4 VOCs各组分OFP、L·OH和SOAp及贡献率 Fig. 4 OFP, L·OH, and SOAp of each VOCs category and their contribution

污染日VOCs的SOAp约为(0.56±0.33)μg·m-3, 其中芳香烃占比最大(79.3%), 其次是烯烃(10.7%)和烷烃(10.0%), 和天津市[10](0.57μg·m-3)水平相当; 清洁日为(0.37±0.26)μg·m-3, 贡献率依次为芳香烃(75.1%)、烷烃(12.7%)和烯烃(12.2%), 和重庆市夏秋季郊区(0.36μg·m-3)接近[18].污染日VOCs的SOAp比清洁日高出了51.4%, 其中芳香烃升高幅度最大, 高出了59.2%, 其次是烯烃和烷烃, 可见芳香烃类是对SOA形成贡献最大的VOCs物种.

2.2.2 化学反应活性日变化

图 3(g)所示, 污染日和清洁日VOCs的OFP呈现出夜间高白天低的变化特征, 和TVOC的浓度日变化基本一致[图 3(i)].图 3(g)3(k)显示, 污染日的OFP和L·OH在早高峰时期(06:00~09:00)都有一个明显的上升趋势, 此时ρ(TVOC)受交通排放影响导致浓度升高.污染日L·OH在晚高峰时期(16:00~18:00)也有一个明显的上升, 这是由于此时较高的温度、O3混合比和强太阳辐射促进了VOCs与·OH的反应速率[13].图 3(l)3(i)显示, 污染日VOCs的SOAp日变化特征也和TVOC浓度日变化基本一致, 大致呈现夜间高白天低的变化特征.

2.2.3 优势贡献物种

表 1为污染日和清洁日VOCs对OFP和L·OH贡献排名前10物种及其贡献率, 从物质种类上看, 污染日和清洁日的优势物种基本一致, 且多为烯烃和芳香烃类物质.从贡献率来看, 优势物种在污染日和清洁日对OFP贡献率之和分别是68.4%和68.5%, 对L·OH贡献率之和分别是75.2%和74.7%, 相差不大.总体来看, 污染日和清洁日烯烃对浓度的贡献率分别为11.4%和13.6%, 却分别贡献了OFP的45.7%和51.4%, L·OH的66.9%和70.5%(如图 4), 这是因为较活泼的烯烃和芳香烃更易参与光化学反应[47].当地夏季VOCs的OFP和L·OH主要由烯烃所贡献, 这和其他地区[48, 49]的研究结果是一致的.因此, 防治其臭氧污染, 应重点关注此类物质的管控.从单个VOCs物种看, 污染日和清洁日对SOAp贡献最高的物质均为甲苯, 分别占比31.1%和26.1%, 该物质主要来源于交通排放和化工厂的溶剂挥发[11], 贡献高的还有苯、异戊二烯和间/对-二甲苯等物质, Zhang等[49]的研究提出这些化合物是中国城市中形成SOA较高的物种.因此控制城市SOA的生成, 应重点关注芳香烃类物质的排放.

表 1 污染日和清洁日对OFP和L·OH贡献排名前10物种1) Table 1 ten species that contribute to OFP and L·OH during the polluted and non- polluted period

2.3 污染成因分析 2.3.1 气象因素的影响

污染日和清洁日主要污染物浓度及气象参数情况如表 2所示, 结果显示, 污染日温度要高于清洁日, 太阳辐射较强, 这有利于光化学反应的进行, 导致O3浓度较高, 有研究也表明当温度在一定范围内时与O3浓度大致呈正相关关系[43, 50].图 5中显示了污染日和清洁日的风向风速, 二者风向大体一致, 污染日的风速要低于清洁日, 不利于污染物的扩散[9], 使得污染日的各项污染物小时平均浓度均高于清洁日.

表 2 污染日和清洁日的主要污染物和气象参数1) Table 2 Main pollutants and meteorological parameters during the polluted and non-polluted period

图 5 污染日和清洁日风玫瑰图 Fig. 5 Wind rose diagram during the polluted and non- polluted period

图 6给出了温度和相对湿度与TVOC、NOx和O3浓度之间的相互关系.可以看出, 当温度为19~27℃, 相对湿度为71% ~95%时, TVOC和NOx浓度较高; 当温度为26~34℃, 相对湿度为40% ~75%时, O3浓度较高.由图 3(c)3(d)3(i)可知, TVOC、NOx和O3浓度呈现明显的日变化特征, 污染日白天温度高于27℃, 清洁日则在27℃左右, 使得污染日白天O3浓度比清洁日高, TVOC和NOx浓度在白天下降.

黑框表示浓度较高区域 图 6 温度、相对湿度和各污染物的相互关系 Fig. 6 Relationship between temperature, relative humidity, and pollutants

2.3.2 O3生成敏感性分析

VOCs/NOx通常用于对臭氧生成敏感性的简单判断方法[51], 一般认为臭氧敏感区属性诊断的临界值为8[52], 当VOCs/NOx(VOCs使用含碳体积分数, NOx使用体积分数)比值小于4时, O3形成受VOCs的控制, 大于15时, 受NOx的控制, 比值在4~15之间属于过渡区, 减少VOCs和NOx对O3控制都有效[35].为了尽可能真实反映O3光化学反应的敏感性, 选取光化学反应较强时刻(08:00~16:00)的VOCs/NOx比值[53].如图 7所示, 污染日和清洁日的比值大多都小于8, 说明O3形成主要受VOCs控制, 这和其他城市地区的研究结果一致[17, 54].对比污染日和清洁日VOCs/NOx比值, 小于4的比例较为接近, 分别为57.7%和62.4%, 清洁日要略大一些, 其余比值均处于4~15之间的过渡区, 说明污染日和清洁日O3敏感性均处于VOCs控制区和过渡区.

图 7 污染日和清洁日VOCs/NOx比值 Fig. 7 VOCs/NOx ratios during the polluted and non- polluted period

上述VOCs/NOx比值法存在一定局限性, 其经验临界值可能不适合本地区, 且没有考虑污染物的区域迁移, 因此一般与SPM进行互补分析[35].根据SPM计算出的反应程度E(t)值, 可将臭氧敏感性分为3种类型: E(t)<0.6时表示VOCs控制, E(t)>0.9表示NOx控制, 0.6<E(t)<0.9表示过渡控制区域[55].图 8为污染日和清洁日08:00~16:00的E(t)值, 结果与VOCs/NOx比值法略有不同, 污染日08:00~11:00的反应程度E(t)<0.6, 12:00~16:00为0.6<E(t)<0.9, 说明污染日的臭氧敏感性呈现出VOCs控制区和过渡区交替的态势, 清洁日08:00~16:00反应程度E(t)<0.6, 臭氧敏感性均处于VOCs控制区.因此, 对O3污染的管控, 除了要重视VOCs, 也要关注NOx的排放情况, 进行二者的协同治理.

图 8 污染日和清洁日E(t)值 Fig. 8 The E(t) during the polluted and non- polluted period

3 结论

(1) 污染日较清洁日ρ(TVOC)小时均值高出了32.5%, 分别为(50.6±28.3)μg·m-3和(38.2±24.9)μg·m-3, 各组分贡献率均为: 烷烃>芳香烃>烯烃>炔烃, 污染日的芳香烃贡献率高于清洁日, 优势物种基本一致, 多为烷烃类.污染日和清洁日TVOC浓度日变化均呈夜间高白天低的变化趋势, 烷烃和芳香烃影响较大; O3浓度则呈现相反的夜间低白天高的趋势.

(2) 污染日VOCs的OFP和L·OH均高于清洁日, 各组分对OFP和L·OH贡献率均为烯烃最高.污染日和清洁日VOCs的SOAp均为芳香烃类的贡献最大, 前者的SOAp比后者高51.4%, 其中升幅最大的为芳香烃.污染日OFP呈夜间高白天低的日变化趋势, OFP在早高峰、L·OH在早晚高峰均出现明显上升趋势, 污染日SOAp日变化特征与VOCs保持一致.VOCs的OFP和L·OH优势物种多为活性较强的烯烃和芳香烃类物质, 对SOAp贡献较高的物种多为芳香烃, 烯烃和芳香烃类是对O3和SOA形成影响最大的VOCs物种, 应重点关注.

(3) 温度、相对湿度和风速对TVOC、NOx和O3的浓度有一定影响.通过VOCs/NOx值判断污染日和清洁日O3敏感性均处于VOCs控制区和过渡区, 而SPM分析污染日08:00~16:00期间处于VOCs控制区和过渡区交替的态势, 清洁日则都处于VOCs控制区, O3的管控可以关注VOCs和NOx的协同治理.

参考文献
[1] 姜华, 常宏咪. 我国臭氧污染形势分析及成因初探[J]. 环境科学研究, 2021, 34(7): 1576-1582.
Jiang H, Chang H M. Analysis of China's ozone pollution situation, preliminary investigation of causes and prevention and control recommendations[J]. Research of Environmental Sciences, 2021, 34(7): 1576-1582.
[2] 李红, 彭良, 毕方, 等. 我国PM2.5与臭氧污染协同控制策略研究[J]. 环境科学研究, 2019, 32(10): 1763-1778.
Li H, Peng L, Bi F, et al. Strategy of coordinated control of PM2.5 and ozone in China[J]. Research of Environmental Sciences, 2019, 32(10): 1763-1778.
[3] Atkinson R. Atmospheric chemistry of VOCs and NOx[J]. Atmospheric Environment, 2000, 34(12-14): 2063-2101. DOI:10.1016/S1352-2310(99)00460-4
[4] Wang Y Y, Du H Y, Xu Y Q, et al. Temporal and spatial variation relationship and influence factors on surface urban heat island and ozone pollution in the Yangtze River Delta, China[J]. Science of the Total Environment, 2018, 631-632: 921-933. DOI:10.1016/j.scitotenv.2018.03.050
[5] An J L, Shi Y Z, Wang J X, et al. Temporal variations of O3 and NOx in the urban background atmosphere of Nanjing, East China[J]. Archives of Environmental Contamination and Toxicology, 2016, 71(2): 224-234. DOI:10.1007/s00244-016-0290-8
[6] Bari M A, Kindzierski W B. Ambient volatile organic compounds (VOCs) in Calgary, Alberta: sources and screening health risk assessment[J]. Science of the Total Environment, 2018, 631-632: 627-640. DOI:10.1016/j.scitotenv.2018.03.023
[7] Liu Y, Shao M, Fu L L, et al. Source profiles of volatile organic compounds (VOCs) measured in China: Part Ⅰ[J]. Atmospheric Environment, 2008, 42(25): 6247-6260. DOI:10.1016/j.atmosenv.2008.01.070
[8] 生态环境部. 2020年挥发性有机物治理攻坚方案[R]. 北京: 生态环境部, 2020.
[9] Wu S, Tang G Q, Wang Y H, et al. Vertically decreased VOC concentration and reactivity in the planetary boundary layer in winter over the North China Plain[J]. Atmospheric Research, 2020, 240. DOI:10.1016/j.atmosres.2020.104930
[10] 高璟赟, 肖致美, 徐虹, 等. 2019年天津市挥发性有机物污染特征及来源[J]. 环境科学, 2021, 42(1): 55-64.
Gao J Y, Xiao Z M, Xu H, et al. Characterization and source apportionment of atmospheric VOCs in Tianjin in 2019[J]. Environmental Science, 2021, 42(1): 55-64.
[11] Yuan B, Shao M, Lu S H, et al. Source profiles of volatile organic compounds associated with solvent use in Beijing, China[J]. Atmospheric Environment, 2010, 44(15): 1919-1926. DOI:10.1016/j.atmosenv.2010.02.014
[12] 张玉欣, 安俊琳, 林旭, 等. 南京北郊冬季挥发性有机物来源解析及苯系物健康评估[J]. 环境科学, 2017, 38(1): 1-12.
Zhang Y X, An J L, Lin X, et al. Source apportionment of volatile organic compounds and health assessment of benzene series in northern suburb of Nanjing in winter[J]. Environmental Science, 2017, 38(1): 1-12.
[13] Huang W W, Zhao Q Y, Liu Q, et al. Assessment of atmospheric photochemical reactivity in the Yangtze River Delta using a photochemical box model[J]. Atmospheric Research, 2020, 245. DOI:10.1016/j.atmosres.2020.105088
[14] Cai C J, Geng F H, Tie X X, et al. Characteristics and source apportionment of VOCs measured in Shanghai, China[J]. Atmospheric Environment, 2010, 44(38): 5005-5014. DOI:10.1016/j.atmosenv.2010.07.059
[15] Zhang Z J, Yan X Y, Gao F L, et al. Emission and health risk assessment of volatile organic compounds in various processes of a petroleum refinery in the Pearl River Delta, China[J]. Environmental Pollution, 2018, 238: 452-461. DOI:10.1016/j.envpol.2018.03.054
[16] Wu F K, Yu Y, Sun J, et al. Characteristics, source apportionment and reactivity of ambient volatile organic compounds at Dinghu Mountain in Guangdong province, China[J]. Science of the Total Environment, 2016, 548-549: 347-359. DOI:10.1016/j.scitotenv.2015.11.069
[17] Zou Y, Deng X J, Wang B G, et al. An analysis of the impacts of VOCs and NOx on the ozone formation in Guangzhou[J]. Atmospheric Chemistry and Physics Discussions, 2014, 14: 18849-18877.
[18] 刘芮伶, 李礼, 余家燕, 等. 重庆市夏秋季VOCs对臭氧和二次有机气溶胶生成潜势的估算[J]. 环境科学研究, 2017, 30(8): 1193-1200.
Liu R L, Li L, Yu J Y, et al. Estimation of the formation potential of ozone and secondary organic aerosols in summer and autumn in Chongqing[J]. Research of Environmental Sciences, 2017, 30(8): 1193-1200.
[19] 徐晨曦, 陈军辉, 韩丽, 等. 成都市2017年夏季大气VOCs污染特征、臭氧生成潜势及来源分析[J]. 环境科学研究, 2019, 32(4): 619-626.
Xu C X, Chen J H, Han L, et al. Analyses of pollution characteristics, ozone formation potential and sources of VOCs atmosphere in Chengdu City in summer 2017[J]. Research of Environmental Sciences, 2019, 32(4): 619-626.
[20] 徐晨曦, 陈军辉, 韩丽, 等. 宜宾市冬季挥发性有机物污染特征及来源[J]. 环境科学研究, 2019, 32(6): 1020-1025.
Xu C X, Chen J H, Han L, et al. Pollution characteristics and source apportionments of volatile organic compounds in Yibin city in winter[J]. Research of Environmental Sciences, 2019, 32(6): 1020-1025.
[21] 王楚涵, 张鑫, 吴鸣, 等. 沈阳市郊区环境空气中醛酮类化合物的污染特征与来源分析[J]. 环境科学研究, 2020, 33(12): 2771-2784.
Wang C H, Zhang X, Wu M, et al. Pollution characterization and source analyses of carbonyls in the ambient air in a suburban area of Shenyang[J]. Research of Environmental Sciences, 2020, 33(12): 2771-2784.
[22] 王雨燕, 王秀艳, 杜淼, 等. 淄博市重点工业行业VOCs排放特征[J]. 环境科学, 2020, 41(3): 1078-1084.
Wang Y Y, Wang X Y, Du M, et al. Emission characteristics of volatile organic compounds from typical industries in Zibo[J]. Environmental Science, 2020, 41(3): 1078-1084.
[23] 吴丽萍, 李梦辉, 张向炎, 等. 淄博市2016-2019年近地面大气臭氧时空分布特征[J]. 环境科学研究, 2021, 34(5): 1044-1052.
Wu L P, Li M H, Zhang X Y, et al. Spatial-temporal characteristics of ground ozone in Zibo city from 2016 to 2019[J]. Research of Environmental Sciences, 2021, 34(5): 1044-1052.
[24] Li M H, Wu L P, Zhang X Y, et al. Comparison of PM2.5 chemical compositions during haze and non-haze days in a heavy industrial city in North China[J]. Aerosol and Air Quality Research, 2020, 20(9): 1950-1960. DOI:10.4209/aaqr.2019.11.0591
[25] 李思遠. 大气及废气中挥发性有机物在线快速监测与应用研究[D]. 济南: 山东建筑大学, 2019.
[26] HJ 1010-2018, 环境空气挥发性有机物气相色谱连续监测系统技术要求及检测方法[S].
[27] Carter W P L. Reactivity estimates for selected consumer product compounds[R]. California: California Air Resources Board, 2008.
[28] Zhang Y N, Xue L K, Carter W P L, et al. Development of ozone reactivity scales for volatile organic compounds in a Chinese megacity[J]. Atmospheric Chemistry and Physics Discussions, 2021. DOI:10.5194/acp-2021-44
[29] Carter W P L. Updated maximum incremental reactivity scale and hydrocarbon bin reactivities for regulatory applications[R]. California: California Air Resources Board, 2010.
[30] Carter W P L. Development of the SAPRC-07 chemical mechanism[J]. Atmospheric Environment, 2010, 44(40): 5324-5335. DOI:10.1016/j.atmosenv.2010.01.026
[31] Grosjean D. In situ organic aerosol formation during a smog episode: estimated production and chemical functionality[J]. Atmospheric Environment. Part A. General Topics, 1992, 26(6): 953-963. DOI:10.1016/0960-1686(92)90027-I
[32] Grosjean D, Seinfeld J H. Parameterization of the formation potential of secondary organic aerosols[J]. Atmospheric Environment (1967), 1989, 23(8): 1733-1747. DOI:10.1016/0004-6981(89)90058-9
[33] Martín-Reviejo M, Wirtz K. Is benzene a precursor for secondary organic aerosol?[J]. Environmental Science & Technology, 2005, 39(4): 1045-1054.
[34] Kroll J H, Ng N L, Murphy S M, et al. Secondary organic aerosol formation from isoprene photooxidation under high-NOx conditions[J]. Geophysical Research Letters, 2005, 32(18). DOI:10.1029/2005GL023637
[35] Li K W, Chen L H, Ying F, et al. Meteorological and chemical impacts on ozone formation: a case study in Hangzhou, China[J]. Atmospheric Research, 2017, 196: 40-52. DOI:10.1016/j.atmosres.2017.06.003
[36] Han L X, Chen L H, Li K W, et al. Source apportionment of volatile organic compounds (VOCs) during ozone polluted days in Hangzhou, China[J]. Atmosphere, 2019, 10(12). DOI:10.3390/atmos10120780
[37] Johnson G M. A simple model for predicting the ozone concentration of ambient air[A]. In: Proceedings of the Eighth International Clean Air Conference[C]. Holroyd Centre: Clean Air Society of Australia and New Zealand, 1984. 715-731.
[38] Blanchard C L, Lurmann F W, Roth P M, et al. The use of ambient data to corroborate analyses of ozone control strategies[J]. Atmospheric Environment, 1999, 33(3): 369-381. DOI:10.1016/S1352-2310(98)00223-4
[39] GB 3095-2012, 环境空气质量标准[S].
[40] 甘浩, 徐勃, 张向炎, 等. 淄博市化工园区夏季环境VOCs污染特征及健康风险评价[J]. 环境科学研究, 2022, 35(1): 20-29.
Gan H, Xu B, Zhang X Y, et al. Characteristics and health risk assessment of atmospheric VOCs in a chemical industrial park of Zibo in summer[J]. Research of Environmental Sciences, 2022, 35(1): 20-29.
[41] 任义君, 马双良, 王思维, 等. 郑州市春季大气污染过程VOCs特征、臭氧生成潜势及源解析[J]. 环境科学, 2020, 41(6): 2577-2585.
Ren Y J, Ma S L, Wang S W, et al. Ambient VOCs characteristics, ozone formation potential, and source apportionment of air pollution in spring in Zhengzhou[J]. Environmental Science, 2020, 41(6): 2577-2585. DOI:10.3969/j.issn.1000-6923.2020.06.028
[42] Baudic A, Gros V, Sauvage S, et al. Seasonal variability and source apportionment of volatile organic compounds (VOCs) in the Paris megacity (France)[J]. Atmospheric Chemistry and Physics, 2016, 16(18): 11961-11989. DOI:10.5194/acp-16-11961-2016
[43] Zhang L, Zhao T L, Gong S L, et al. Updated emission inventories of power plants in simulating air quality during haze periods over East China[J]. Atmospheric Chemistry and Physics, 2018, 18(3): 2065-2079. DOI:10.5194/acp-18-2065-2018
[44] 李琦, 桂丽, 刘明, 等. 西安人为源VOCs排放特征及其对O3和SOA生成潜势的影响[J]. 环境科学研究, 2019, 32(2): 253-262.
Li Q, Gui L, Liu M, et al. Emission characteristics of anthropogenic VOCs in Xi'an city and its contribution to ozone formation potential and secondary organic aerosols formation potential[J]. Research of Environmental Sciences, 2019, 32(2): 253-262.
[45] Turpin B J, Huntzicker J J. Identification of secondary organic aerosol episodes and quantitation of primary and secondary organic aerosol concentrations during SCAQS[J]. Atmospheric Environment, 1995, 29(23): 3527-3544. DOI:10.1016/1352-2310(94)00276-Q
[46] Huang R J, Zhang Y L, Bozzetti C, et al. High secondary aerosol contribution to particulate pollution during haze events in China[J]. Nature, 2014, 514(7521): 218-222. DOI:10.1038/nature13774
[47] 曹梦瑶, 林煜棋, 章炎麟. 南京工业区秋季大气挥发性有机物污染特征及来源解析[J]. 环境科学, 2020, 41(6): 2565-2576.
Cao M Y, Lin Y Q, Zhang Y L. Characteristics and source apportionment of atmospheric VOCs in the Nanjing industrial area in autumn[J]. Environmental Science, 2020, 41(6): 2565-2576. DOI:10.3969/j.issn.1000-6923.2020.06.027
[48] 刘营营, 王丽涛, 齐孟姚, 等. 邯郸大气VOCs污染特征及其在O3生成中的作用[J]. 环境化学, 2020, 39(11): 3101-3110.
Liu Y Y, Wang L T, Qi M Y, et al. Characteristics of atmospheric VOCs and their role in O3 generation in Handan[J]. Environmental Chemistry, 2020, 39(11): 3101-3110. DOI:10.7524/j.issn.0254-6108.2019112301
[49] Zhang G Q, Wang N, Jiang X J, et al. Characterization of ambient volatile organic compounds (VOCs) in the area adjacent to a petroleum refinery in Jinan, China[J]. Aerosol and Air Quality Research, 2017, 17(4): 944-950. DOI:10.4209/aaqr.2016.07.0303
[50] Xiong Y, Du K. Source-resolved attribution of ground-level ozone formation potential from VOC emissions in Metropolitan Vancouver, BC[J]. Science of the Total Environment, 2020, 721. DOI:10.1016/j.scitotenv.2020.137698
[51] Seinfeld J H. Urban air pollution: state of the science[J]. Science, 1989, 243(4892): 745-752. DOI:10.1126/science.243.4892.745
[52] National Research Council, Division on Earth and Life Studies, Environment and Resources Commission on Geosciences, et al. Rethinking the ozone problem in urban and regional air pollution[M]. Washington: National Academies Press, 1991.
[53] 李凯, 刘敏, 梅如波. 泰安市大气臭氧污染特征及敏感性分析[J]. 环境科学, 2020, 41(8): 3539-3546.
Li K, Liu M, Mei R B. Pollution characteristics and sensitivity analysis of atmospheric ozone in Taian city[J]. Environmental Science, 2020, 41(8): 3539-3546. DOI:10.3969/j.issn.1000-6923.2020.08.034
[54] Jia C H, Mao X X, Huang T, et al. Non-methane hydrocarbons (NMHCs) and their contribution to ozone formation potential in a petrochemical industrialized city, Northwest China[J]. Atmospheric Research, 2016, 169: 225-236. DOI:10.1016/j.atmosres.2015.10.006
[55] Blanchard C L, Stoeckenius T. Ozone response to precursor controls: comparison of data analysis methods with the predictions of photochemical air quality simulation models[J]. Atmospheric Environment, 2001, 35(7): 1203-1215.