环境科学  2021, Vol. 42 Issue (6): 3046-3055   PDF    
连续4个生长季大气CO2升高与土壤铅(Pb)污染耦合下刺槐幼苗根际土壤微生物特征
贾夏1,2, Lkhagvajargal Khadkhurel1, 赵永华2, 张春燕1, 张宁静1, 高云峰2, 王子威2     
1. 长安大学水利与环境学院, 旱区地下水文与生态效应教育部重点实验室, 西安 710054;
2. 长安大学土地工程学院, 陕西省土地工程重点实验室, 西安 710054
摘要: 阐明CO2升高和土壤重金属污染耦合对植物根际微生物群落的影响对明确大气CO2升高背景下土壤重金属污染的植物根际生态效应意义明显.利用开顶箱系统模拟了连续4个生长季大气CO2浓度升高[(700±27)μmol·L-1]与土壤Pb污染(15.6 mg·kg-1和515.6 mg·kg-1)耦合对刺槐幼苗根际土壤微生物群落的影响.结果表明,与Pb污染相比,高浓度CO2提高了(P < 0.05)Pb污染下幼苗根际土壤总N含量,同时也提高了根际土壤pH、总C和水溶性C含量及C/N,降低了(P < 0.05)根际土壤总Pb和可溶性Pb含量.细菌丰富度和多样性在耦合条件下较Pb污染增加(P < 0.05),而真菌丰富度降低(P < 0.05)和多样性增加(P < 0.05);细菌和真菌群落中相对丰度最高的前两位优势属变化不显著,但其它类群如Anaerolineaceae、Solirubrobacterales、Eurotiomycetes、Aspergillus和Trichocomaceae的相对丰度受大气CO2浓度升高与土壤Pb污染耦合影响显著;相对丰度较高的前10位细菌和真菌优势属与根际土壤环境因子的冗余分析表明,根际土壤总C和可溶性Pb是显著(P < 0.05)影响细菌优势属环境因子,总C对真菌优势属影响显著(P < 0.05).结果表明刺槐幼苗根际土壤总C和可溶性Pb是根际土壤细菌群落变化的显著影响因子,而真菌群落仅受总C的显著影响.
关键词: 大气CO2升高      Pb      耦合效应      细菌      真菌      群落特征     
Consecutive 4-year Elevated Atmospheric CO2 on Shaped Microbial Communities in the Rhizosphere Soil of Robinia pseudoacacia L. Seedlings Grown in Pb-contaminated Soils
JIA Xia1,2 , Lkhagvajargal Khadkhurel1 , ZHAO Yong-hua2 , ZHANG Chun-yan1 , ZHANG Ning-jing1 , GAO Yun-feng2 , WANG Zi-wei2     
1. Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, School of Water and Environment, Chang'an University, Xi'an 710054, China;
2. Shaanxi Key Laboratory of Land Consolidation, School of Land Engineering, Chang'an University, Xi'an 710054, China
Abstract: Elevated atmospheric CO2 could affect the speciation of heavy metals in rhizosphere soils by changing root exudates, thereby influencing soil microecosystem in the rhizosphere. Therefore, understanding the function of heavy metals in soils on rhizospheric ecology under elevated atmospheric CO2 scenarios is highly important. Here, we investigated the combined effects of a four-year period of elevated air CO2 concentrations[(700±27) μmol·L-1] and Pb-contamination (15.6 mg·kg-1 and 515.6 mg·kg-1) on the soil rhizopheric microbial community of Robinia pseudoacacia L. seedlings. Significant (P < 0.05) effects of CO2, Pb, and their interaction on bacterial richness and fungal diversity were observed. Relative to Pb exposure alone, elevated CO2 significantly increased pH, total C, total N, and water-soluble organic carbon, and the C/N ratio under Pb exposure (P < 0.05) and significantly decreased total and soluble Pb content (P < 0.05). The richness and diversity of bacteria increased (P < 0.05), fungal richness decreased (P < 0.05), and microbial diversity increased (P < 0.05) under the combined treatments relative to Pb contamination alone. The changes in the relative abundance of the top two dominant bacterial and fungal genera were not significant; however, differences in the relative abundances of other groups, such as Anaerolineaceae, Solirubrobacterales, Eurotiomycetes, Aspergillus, and Trichocomaceae, were significant between the different treatments. According to a redundancy analysis, total C and soluble Pb had a significant influence (P < 0.05) on the dominant bacterial genera, and total C affected (P < 0.05) the dominant genera in the fungal community. These results suggest that the responses of soil environmental factors to the combination of elevated atmospheric CO2 and Pb could shape soil microbial community structure in the rhizosphere of R. pseudoacacia seedlings.
Key words: elevated atmospheric CO2      Pb      combined effects      bacteria      fungi      community characteristics     

根际土壤微生物关系根际土壤养分循环和有害物质沉淀及运移、根系健康和植物生长等, 对维护健康的根际微生态系统具有重要作用[1~4].而根系释放的各类小分子有机化合物可通过改变根际土壤pH值而影响微生物群落[5, 6], 已有研究表明17%~40%的植物光合产物会通过根系释放到土壤中, 从而影响根际土壤微生物生长和代谢等[7, 8].故影响植物生长的环境因子如大气CO2浓度和气温、土壤重金属及有机污染等会影响根际土壤微生物.

大气CO2浓度逐年升高已成事实, 预计本世纪末将升高至700 μmol·L-1[9].有研究表明大气CO2升高通过提高植物光合作用途径增加了其代谢产物借助于根系分泌物、细根脱落及枯枝落叶等形式释放到根际土壤中的比率[10~14], 如大气CO2升高下银海枣(Phoenix sylvestris)根系分泌氨基酸提高了250%、低分子有机化合物提高了120%~160%、总可溶性碳提高了180%~220%[15].总体而言, 大气CO2升高可通过增加根系生长和根际沉积影响根际微环境[16~18], 从而会影响根际微生物群落如高浓度CO2提高了刺槐幼苗根际土壤细菌丰富度[19, 20].与此同时, 土壤重金属污染是又一面临的重要环境问题[21], 其中铅(Pb)由于毒性大、移动性强和分布广而受关注[22], 目前土壤“Pb污染”现状严峻, 截止2010年我国重金属污染土壤中Pb浓度为3.79~341.00 mg·kg-1[23].Pb通过影响根系渗透压而改变根系分泌物和影响根际土壤微环境, 进而会影响根际土壤微生物群落[24~27],已有研究表明, Pb降低了刺槐幼苗根际土壤细菌丰富度和多样性[28].

如上所述, 单独大气CO2升高和土壤Pb污染对植物根际土壤微生物影响的研究已获重要进展, 但二者耦合对根际土壤微生物影响的研究还甚少见, 而CO2浓度升高会通过改变根际pH及Pb的生物有效性等而影响根际土壤微生物群落, 从而关系根际微生态系统的稳定及功能, 故探讨大气CO2浓度升高和土壤Pb污染耦合对植物根际微生物群落影响对明确全球变化背景下土壤重金属污染的植物根际生态效应具有重要意义.刺槐(Robinia pseudoacacia L.)是我国常见造林树种, 其有适应性强、生长速度快、根系发达、耐干旱和重金属胁迫等优点[29].已有研究表明大气CO2升高和Cd污染耦合提高了刺槐幼苗可溶性糖和淀粉含量[30], 故本研究以刺槐幼苗为材料探讨根际土壤微生物对耦合条件的响应特征.

1 材料与方法 1.1 供试土壤和植物材料

供试土壤采自西安市南郊农田(34°16′N, 108°54′E), 采用多点混合采样法采集0~20 cm层土壤, 去除石子等较大杂物后过5 mm筛并充分混匀, 然后向土壤中添加Pb(NO3)2水溶液充分混匀后于暗处放置平衡1个月, 期间经常搅拌.土壤基本理化性质见表 1.刺槐种子购于西北农林科技大学林业科学研究院.

表 1 供试土壤理化性质(平均值±标准误差) Table 1 Physical and chemical properties of the soil used in the experiment (mean±SE)

1.2 试验设计

采用双因素裂区试验设计法, 主区因素:CO2, 副区因素:Pb, 考虑交互作用.CO2设置两个水平:大气CO2(385 μmol·L-1)和高浓度CO2 [(700+27)μmol·L-1], 每水平重复3次.根据国家《土壤环境质量标准》(GB 15618-1995)设置添加0和500 mg·kg-1 2种Pb浓度, 最终形成15.6 mg·kg-1和515.6 mg·kg-1两个Pb水平, 分别记为Pb0和Pb1, 每水平重复9次.试验处理分为大气CO2+Pb0(D1)、大气CO2+Pb1(D4)、高浓度CO2+Pb0(E1)和高浓度CO2+Pb1(E4)这4组, 其中对照组为D1, 单一Pb处理为D4, 单一CO2处理为E1, 耦合处理为E4.本试验于2014年5月1日开始至2017年9月30日结束, 共历经4个生长季.

1.3 CO2浓度处理、植物种植及根际土壤样品采集

CO2处理采用带有CO2传感器和浓度控制系统及土壤水分、空气湿度和温度传感器的开顶箱(OTC, 邯郸冀南新区盛炎电子科技有限公司)系统进行.OTC控制系统位于长安大学渭水校区原位试验场(34°15′N, 108°55′E), OTC结构为八边形, 室壁材料为透光性好的无色透明玻璃, OTC两平行边相距4 m, 高1.6 m, 高浓度CO2箱和大气CO2对照箱分别设3个, 共设6个开顶箱, 各OTC相距约2 m, 彼此间的小气候差异可忽略不计, 4个生长季期间对照箱和高浓度CO2箱平均气温分别为27.9℃和28.4℃、平均空气湿度分别为77.3%和75.9%.

将平衡好的土壤装入盆栽试验盆(长70 cm×宽40 cm×高50 cm), 每盆装土壤约40 kg(干容重), 同一Pb水平设置9个重复, 每个开顶箱放置同一Pb处理土壤3盆, 于2014年5月1日播种刺槐种子, 待出苗后10 d根据生长状况选留40棵大小均匀且健壮的幼苗.每个盆中都装有土壤湿度传感器以进行土壤水分测定, 设置为每小时读数一次, 在整个试验期间根据土壤平均含水量采用自来水进行浇灌, 确保土壤水分含量约为田间最大持水量的60%.此外, 在试验期间及时清理盆中的杂草和幼苗凋落物, 雨天时遮盖开顶箱.

在2017年9月30日, 采用多点混合法挖取整棵幼苗后, 采用抖落法获取根际土壤, 去除砂石、枝叶、细根等杂质后过1 mm土壤筛后分成两份, 其中一份风干用于Pb、总碳(TC)、总氮(TN)和pH值分析, 另一份置于-80℃的冰箱用于根际土壤微生物群落和土壤水溶性碳(WSOC)分析.

1.4 测定项目与方法 1.4.1 根际土壤pH值、WSOC、TC、TN、C/N及Pb含量分析

根际土壤pH值采用电位法[32].WSOC分析采用有机碳(TOC)分析仪测定[33]:秤取去根土样10 g于三角瓶中, 加入50 mL无CO2蒸馏水和10粒大小均匀的玻璃珠, 在恒温振荡箱中于25℃, 250 r·min-1振荡15 h.水土混合液用冷冻高速离心机14 000 r·min-1离心6 min, 取离心后上清液过ϕ 0.22 μm的滤膜, 收集滤液进行二次离心, 采用TOC分析仪(日本岛津TOC-500)分析上清液中的C含量即为根际土壤WSOC含量.根际土壤TC、TN采用元素分析仪(德国Elemental, Vario Macro cube)测定.根际土壤Pb含量分析[34]:0.5 g根际土样采用H2O2∶HNO3(1∶8, V/V)消解液于微波消解炉(上海屹尧)消解后, 消解液采用ICP-MS(美国Thermo Fisher-X series)分析Pb含量.

1.4.2 根际土壤微生物基因信息学分析

用ZR Soil Microbe DNA KitTM土壤DNA提取试剂盒(美国)提取根际土壤微生物组总DNA, DNA的提取质量用0.8%琼脂糖凝胶电泳检测, 同时采用紫外分光光度计对DNA进行定量测定.采用引物338F(5′-ACTCCTACGGGAGGCAGCA-3′)和806R(5′-GCACTACHVGGGTWTCTAAT-3′)扩增细菌V3~V4区16S rDNA, 采用引物ITS5(5′-GGAAGTAAA GTCGTAACAAGG-3′)和ITS1(5′-GCTGCGTTCATCG ATGC-3′)扩增真菌ITS1区.用2%琼脂糖凝胶电泳对上述PCR扩增产物进行检测, 对于目标片段的切胶回收使用AXYGEN公司的凝胶回收试剂盒.采用Quant-iT PicoGreen dsDNA Assay Kit试剂盒进行PCR扩增回收产物荧光定量分析(美国BioTek, Flx800荧光分析仪), 最后采用Illumina MiSeq平台进行高通量分析(上海派森诺生物科技股份有限公司).对测序结果采用QIIME软件(Quantitative Insights Into Microbial Ecology, v1.8.0, http://qiime.org/)识别疑问序列[35], 剔除 < 150 bp的基因序列、5′端引物错配碱基数>1的序列和含有连续相同碱基数>8的序列, 并通过QIIME软件调用USEARCH(v5.2.236, http://www.drive5.com/usearch/)检查并剔除嵌合体序列.对初步筛选的高通量序列测序数据在97%的序列相似度基础上进行OTU(operational taxonomic unit, 可操作性分类单元)划分[36], 然后针对细菌采用Silva数据库(Release115, http://www.arb-silva.de)进行分类地位鉴定[37], 针对真菌的ITS序列采用UNITE数据库(Release5.0, https://unite.ut.ee/)进行分类地位鉴定[36].在此基础上, 进行OTU精简和分类结果统计后利用R软件进行不同样本共有OTU分析(结果通过Venn图呈现), 使用QIIME软件计算每个样本的Shannon多样性指数和Chao1丰富度估计指数[38~40], 使用R软件进行分类组成研究, 并对相对丰度前50位的优势属结合样本进行聚类分析并绘制热图.提交属水平的相对丰度矩阵于Galaxy在线分析平台(http://huttenhower.sph.harvard.edu/galaxy/)进行基于线性判别分析效应量(linear discriminant analysis effect size, LEFSe)的分析, 采用线性判别分析(linear discriminant analysis, LDA)对数据进行降维和评估差异显著的物种的影响力(即LDA得分值).

1.5 数据分析

数据统计分析采用SPSS 26.0软件进行, 采用双因素方差分析(Two-way analysis of variance)分析CO2、Pb及其交互作用对刺槐幼苗根际土壤特征的影响, 影响显著时采用LSD(最小显著差异法, Fisher's least significant difference)分析处理间的差异性;采用Canoco5.0软件对相对丰度较高的前10位根际土壤细菌和真菌优势属与土壤环境因子进行冗余分析(redundancy analysis, RDA).

2 结果与分析 2.1 刺槐幼苗根际土壤特征及根系Pb积累

表 2可知, 大气CO2升高、Pb处理及二者耦合下, 根际土壤pH值、C/N及WSOC均较对照增加(P < 0.05), TC和TN在Pb及耦合处理下较对照有所升高;大气CO2升高提高(P < 0.05)了Pb处理下根际土壤总N含量, pH、TC、WSOC及C/N也有所升高但不显著.高浓度CO2下根际土壤可溶性Pb及总Pb较对照(D1)降低(P < 0.05), 而根系Pb积累增加(P < 0.05).此外, Pb对pH、TN及WSOC影响显著, CO2对pH和TN影响显著, 但二者对各指标未表现出显著交互作用.

表 2 不同处理下刺槐幼苗根际土壤特征及幼苗根系Pb积累量(平均值±标准误差)及方差分析结果(F值和显著性水平) 1) Table 2 Soil characteristics in the rhizosphere of Robinia pseudoacacia L. seedlings under different treatments and Pb accumulation in roots (mean±SE) and summary results (F-values and significance levels) from an analysis of variance (ANOVA)

2.2 根际土壤微生物群落特征

表 3可知, 细菌和真菌序列总数分别为159 499和192 934条.在属水平上与对照相比, 不同处理下细菌OTUs数增加(P < 0.05), 而真菌OTUs数降低(P < 0.05), 且细菌远高于真菌;细菌Chao1丰富度指数增加, 真菌Chao1和Shannon多样性指数均较对照降低.此外, CO2升高和Pb耦合下细菌OTUs、Chao1和Shannon及真菌Shannon指数较单一Pb处理下增加(P < 0.05), 而真菌OTUs和Chao1却降低.且由表 3可知, CO2和Pb对细菌和真菌OTUs和Chao1影响显著, 且对真菌OTUs、细菌和真菌Chao1及真菌Shannon指数具有显著交互作用.由图 1可知, 4种处理下, 细菌共有OTUs为998个, 而真菌仅为119个.

表 3 不同处理下刺槐幼苗根际土壤微生物群落特征(平均值±标准误差)及方差分析结果(F值和显著性水平) 1) Table 3 Soil microbial characteristics in the rhizosphere of Robinia pseudoacacia L. seedlings under different treatments (mean±SE) and summary results (F-values and significance levels) from an analysis of variance (ANOVA)

图 1 不同处理下刺槐幼苗根际土壤细菌和真菌共有OTUs的Venn图 Fig. 1 Venn diagrams representation of OTUs of bacteria and fungi used to compare samples in the rhizosphere soil of Robinia pseudoacacia L. seedlings

图 2(a)可知, 属水平相对丰度较高的前20位细菌中, 丰度最高的苍白杆菌属(Ochrobactrum)在不同处理下变化不显著;耦合处理下地杆菌(Geobacter)和苔藓杆菌(Bryobacter)相对丰度较对照和Pb处理下显著增加, 而玫瑰弯菌属(Roseiflexus)显著降低.前20位真菌属中, 不同处理下古根菌属(Archaeorhizomyces)和曲霉属(Aspergillus)的相对丰度均较对照增加, 且CO2升高促进了Pb处理下ArchaeorhizomycesAspergillus和光黑壳属内生真菌(Preussia)相对丰度增加(P < 0.05)[(图 2(b)].

图 2 不同处理下刺槐幼苗根际土壤属水平细菌和真菌相对丰度分布 Fig. 2 Relative abundance of soil bacteria and fungi at the genus level in the rhizosphere of Robinia pseudoacacia L. seedlings under different treatments

相对丰度较高的前50属细菌共分为3大类[图 3(a)], 各类群中细菌种类在不同处理下相对丰度差异显著, 且按照CO2处理水平聚为两类, 表明大气CO2升高对Pb污染下根际细菌群落影响明显;由图 3(b)可知, 前50属真菌也聚为3大类, 各类群真菌种类在不同处理下相对丰度差异明显, 但处理聚类未表现出明显的CO2效应.

图 3 刺槐幼苗根际土壤结合聚类分析的属水平细菌和真菌群落组成热图 Fig. 3 Heat-maps of the relative abundance of bacterial and fungal genera in the rhizosphere soil of Robinia pseudoacacia L. seedlings

图 4(a)可知, 不同处理下相对丰度有显著差异的细菌有1门、3纲、6目、4科和4属, 差异最显著的有厌氧绳菌科(Anaerolineaceae)、土壤红杆菌目(Solirubrobacterales)、嗜热油菌纲(Thermoleophilia);而真菌有1门、2纲、3目、9科和9属, 曲霉属(Aspergillus)、发菌科(Trichocomaceae)、散囊菌纲(Eurotiomycetes)等在不同处理间差异显著[图 4(b)].

图 4 刺槐幼苗根际土壤细菌和真菌在不同处理间具有显著差异的分类单元 Fig. 4 Taxon of bacteria and fungi with significant differences in the rhizosphere soil of Robinia pseudoacacia L. seedlings

2.3 根际土壤微生物群落优势属和土壤环境因子的关系

对前10位相对丰度较高的细菌和真菌优势属和根际土壤环境因子进行RDA分析(图 5表 4).结果表明, RDA1和RDA2对细菌群落优势属的总解释率为63.8%, 其中根际土壤TC和可溶性Pb是引起细菌群落优势属发生变化的显著(P < 0.01)环境因子, TC与厌氧粘细菌属(Anaeromyxobacter)和鞘脂单胞菌属(Sphingomonas)相对丰度呈负相关(P < 0.01), 与RB41和Geobacter等丰度呈正相关(P < 0.01);而根际土壤可溶性Pb与AnaeromyxobacterSphingomonas相对丰度呈正相关(P < 0.05), 但与RB41和链霉菌属(Streptomyces)呈负相关(P < 0.05).RDA1和RDA2对真菌优势属的总解释率为58.0%[图 5(b)], TC是真菌优势属相对丰度变化的显著因子, 与红曲霉属(Monascus)、Aspergillus等的相对丰度呈正相关(P < 0.05), 而与热子囊菌属(Thermoascus)和青霉属(Penicillum)等的相对丰度呈负相关(P < 0.05), 此外, WSOC对主要优势属的解释率为19.4%.

图 5 刺槐幼苗根际土壤细菌和真菌优势属相对丰度与土壤环境因子的冗余分析 Fig. 5 RDA data for the relative abundance of bacterial and fungal genera and soil characteristics in the rhizosphere of Robinia pseudoacacia L. seedlings

表 4 根际土壤微生物优势属和土壤特征间的冗余分析(RDA)的土壤因子解释率1) Table 4 Redundancy analysis (RDA) for soil characteristics on the dominant genera in the soil microbial community

3 讨论

已有研究表明CO2的施肥作用促进了植物光合作用, 使分配到根系的光合产物比例明显上升, 提高了植物向根际土壤释放根系分泌物及根脱落物的比例[10~18], 如本研究中尽管刺槐幼苗根际土壤TC在CO2升高下变化不明显, 但WSOC含量的显著增加和C/N的显著降低表明了大气CO2浓度升高提高了幼苗根系分泌物释放比例;然而, 刺槐幼苗根际土壤pH值的显著增加却与其它植物根际pH对高浓度CO2的响应结果相反[40], 这可能与刺槐根系丛枝菌根真菌(AMF)的定植有关.已有研究表明AMF会分泌释放球囊霉素至根际土壤中, 从而会提高根际土壤pH值和N含量[41, 42].而大气CO2浓度升高下WSOC、pH及C/N等土壤因子的变化共同引起了刺槐幼苗根际土壤细菌和真菌群落物种丰富度和多样性的显著变化;此外, 大气CO2升高下细菌和真菌优势属相对丰度的变化也与上述幼苗根际土壤因子对高浓度CO2响应有关, 如RDA结果表明幼苗根际土壤TC和WSOC是影响细菌和真菌优势属相对丰度的主要环境因子.

大量研究表明, Pb影响土壤微生物生长及群落特征[24~28], 本研究也证实了这点.土壤Pb污染下, 刺槐幼苗根际土壤细菌群落优势属相对丰度变化除与TC显著相关外, 还与可溶性Pb有关, 而真菌优势属与Pb的关系不显著, 表明了细菌和真菌对Pb响应的差异性.此外, Pb显著降低了细菌和真菌群物种落多样性及真菌的物种丰富度, 表明Pb对部分物种的生存或生长繁殖具有抑制性.

大气CO2升高提高了土壤Pb污染下幼苗根际土壤pH、TC、TN及C/N, 降低了根际土壤可溶性Pb含量.根际土壤TN的显著增加表明大气CO2升高会促进Pb污染下刺槐幼苗根系对含N化合物如游离氨基酸、短肽的释放量增加[43], 此外, 根据已有研究[44], 根系AMF对球囊霉素的释放量也会增加, 从而表现出根际土壤TN显著增加现象.CO2升高下可溶性Pb含量的降低与pH增加有关, 然而土壤总Pb含量的显著降低可能与CO2会提高幼苗生物量有关[45], 幼苗生物量的增加会提高其对Pb的积累量, 从而出现了可溶性Pb降低背景下土壤总Pb也降低的现象.总体而言, 在试验过程中随时清理盆中枯落物和杂草条件下, 大气CO2升高主要通过根系分泌物途径实现对土壤Pb污染下刺槐幼苗根际土壤各因子的影响, 而这也是细菌和真菌生物多样性及群落特征变化的来源.细菌丰富度和多样性的显著增加表明大气CO2浓度升高会改善Pb污染下刺槐幼苗根际细菌的生境, 利于细菌繁殖和多样性的保持及增长, 但真菌群落多样性变化不显著, 仅表现出了丰富度降低, 表明了高浓度CO2提高了Pb对真菌的抑制性.土壤Pb污染下细菌相对丰度最高的前两位优势属OchrobactrumSphingomonas受CO2影响不显著, 而真菌ArchaeorhizomycesAspergillus相对丰度在高浓度CO2下显著增加, 且高浓度CO2也显著提高了前20位优势属总的相对丰度, RDA结果显示优势属相对丰度的这些变化是根际土壤环境因子对高浓度CO2响应的综合作用结果, 尤以TC和可溶性Pb的变化对根际微生物影响最大.

总体看, 全球大气CO2浓度升高背景下, 土壤重金属污染会影响植物根际土壤环境因子, 尤其影响重金属在根际的运移特征.研究结果显示重金属在根际的运移特征可能与植物种类有关, 对于AMF共生植物如刺槐会降低重金属的可溶性, 但无AMF共生的植物依目前的研究结果主要表现为其根系可溶性重金属浓度增加[46], 而根际土壤微环境因子的这些变化明显影响根际微生物群落特征, 预示着大气CO2浓度升高和土壤重金属污染耦合会影响植物根际微生态系统的结构和功能, 且存在植物种类差异性.

4 结论

通过连续4个生长季大气CO2浓度升高与土壤Pb污染耦合对刺槐幼苗根际土壤微生物影响试验表明:大气CO2浓度升高提高(P < 0.05)了Pb污染下根际土壤TN含量, 并降低(P < 0.05)了可溶性Pb和总Pb含量;大气CO2浓度升高和土壤Pb污染耦合下根际土壤微环境特征的改变提高(P < 0.05)了根际土壤细菌丰富度及细菌和真菌多样性, 但真菌丰富度却降低(P < 0.05);前50属聚类及LEFSe分析表明根际土壤细菌和真菌部分类群如Anaerolineaceae、Solirubrobacterales、Eurotiomycetes、Aspergillus和Trichocomaceae的相对丰度受大气CO2浓度升高与土壤Pb污染耦合影响显著;RDA分析表明, 幼苗根际土壤TC和可溶性Pb对CO2浓度升高的响应特征显著(P < 0.05)影响根际细菌和真菌优势种群相对丰度, 表明大气CO2浓度升高主要通过植物根系分泌物途径影响重金属污染下根际土壤微生物群落结构特征, 进而可能影响根际微生态系统的稳定及功能.

参考文献
[1] Buchenauer H. Biological control of soil-borne diseases by rhizobacteria[J]. Journal of Plant Diseases and Protection, 1998, 105(4): 329-348.
[2] Atkinson D, Watson C A. The beneficial rhizosphere: a dynamic entity[J]. Applied Soil Ecology, 2000, 15(2): 99-104. DOI:10.1016/S0929-1393(00)00084-6
[3] Sylvia D M, Chellemi D O. Interactions among root-inhabiting fungi and their implications for biological control of root pathogens[J]. Advances in Agronomy, 2001, 73: 1-33.
[4] Jia X, Li X D, Zhao Y H, et al. Soil microbial community structure in the rhizosphere of Robinia pseudoacacia L. seedlings exposed to elevated air temperature and cadmium-contaminated soils for 4 years[J]. Science of the Total Environment, 2019, 650: 2355-2363. DOI:10.1016/j.scitotenv.2018.09.335
[5] Kent A D, Triplett E W. Microbial communities and their interactions in soil and rhizosphere ecosystems[J]. Annual Review of Microbiology, 2002, 56: 211-236. DOI:10.1146/annurev.micro.56.012302.161120
[6] Patra A K, Abbadie L, Clays-Josserand A, et al. Effects of management regime and plant species on the enzyme activity and genetic structure of N-fixing, denitrifying and nitrifying bacterial communities in grassland soils[J]. Environmental Microbiology, 2006, 8(6): 1005-1016. DOI:10.1111/j.1462-2920.2006.00992.x
[7] Lynch J M, Whipps J M. Substrate flow in the rhizosphere[A]. In: Keister D L, Cregan P B (Eds. ). The Rhizosphere and Plant Growth[M]. Dordrecht: Springer, 1991. 15-24.
[8] Nguyen C. Rhizodeposition of organic C by plants: mechanisms and controls[J]. Agronomie, 2003, 23(5-6): 375-396. DOI:10.1051/agro:2003011
[9] 刘树霞, 徐军田, 邹定辉. 大气CO2升高和紫外辐射相互作用对羊栖菜生理特性的影响[J]. 生态学报, 2015, 35(21): 7089-7096.
Liu S X, Xu J T, Zou D H. Combined effects of increasing CO2 concentrations and solar UV radiation on the physiological performance of Hizikia fusiformis Okamura (Sargassaceae, phaeophyta)[J]. Acta Ecologica Sinca, 2015, 35(21): 7089-7096.
[10] Högy P, Keck M, Niehaus K, et al. Effects of atmospheric CO2 enrichment on biomass, yield and low molecular weight metabolites in wheat grain[J]. Journal of Cereal Science, 2010, 52(2): 215-220. DOI:10.1016/j.jcs.2010.05.009
[11] Perry L G, Andersen D C, Reynolds L V, et al. Vulnerability of riparian ecosystems to elevated CO2 and climate change in arid and semiarid western North America[J]. Global Change Biology, 2012, 18(3): 821-842. DOI:10.1111/j.1365-2486.2011.02588.x
[12] AbdElgawad H, Farfan-Vignolo E R, de Vos D, et al. Elevated CO2 mitigates drought and temperature-induced oxidative stress differently in grasses and legumes[J]. Plant Science, 2015, 231: 1-10. DOI:10.1016/j.plantsci.2014.11.001
[13] Grandlic C J, Geib I, Pilon R, et al. Lead pollution in a large, prairie-pothole lake (Rush Lake, WI, USA): effects on abundance and community structure of indigenous sediment bacteria[J]. Environmental Pollution, 2006, 144(1): 119-126. DOI:10.1016/j.envpol.2005.12.029
[14] Hungate B A, van Groenigen K J, Six J, et al. Assessing the effect of elevated carbon dioxide on soil carbon: a comparison of four meta-analyses[J]. Global Change Biology, 2009, 15(8): 2020-2034. DOI:10.1111/j.1365-2486.2009.01866.x
[15] Johansson E M, Fransson P M A, Finlay R D, et al. Quantitative analysis of soluble exudates produced by ectomycorrhizal roots as a response to ambient and elevated CO2[J]. Soil Biology and Biochemistry, 2009, 41(6): 1111-1116. DOI:10.1016/j.soilbio.2009.02.016
[16] Paterson E, Hall J M, Rattray E A S, et al. Effect of elevated CO2 on rhizosphere carbon flow and soil microbial processes[J]. Global Change Biology, 1997, 3(4): 363-377. DOI:10.1046/j.1365-2486.1997.t01-1-00088.x
[17] Guo J, Zhang W J, Zhang M Q, et al. Will elevated CO2 enhance mineral bioavailability in wetland ecosystems? Evidence from a rice ecosystem[J]. Plant and Soil, 2012, 355(1-2): 251-263. DOI:10.1007/s11104-011-1096-0
[18] Xu M Y, He Z L, Deng Y, et al. Elevated CO2 influences microbial carbon and nitrogen cycling[J]. BMC Microbiology, 2013, 13. DOI:10.1186/1471-2180-13-124
[19] 方雅莉, 朱宗强, 赵宁宁, 等. 桉树遗态磷灰石材料对铅污染土壤的钝化修复效应[J]. 环境科学, 2020, 41(3): 1498-1504.
Fang Y L, Zhu Z Q, Zhao N N, et al. Passivation and remediation effects and mechanisms of plant residual modified materials on lead-contaminated soils[J]. Environmental Science, 2020, 41(3): 1498-1504.
[20] 王博强, 李晨阳, 卢伟, 等. CO2-咸水-砂岩相互作用过程中微生物群落结构动态变化特征[J]. 环境科学, 2017, 38(7): 2978-2987.
Wang B Q, Li C Y, Lu W, et al. Shift of Microbial communities during the CO2-brine-sandstone interaction process[J]. Environmental Science, 2017, 38(7): 2978-2987.
[21] 刘师豆, 韩耀光, 朱新萍, 等. 棉秆炭调控对碱性镉污染水稻根际土壤真菌群落结构和功能的影响[J]. 环境科学, 2020, 41(8): 3846-3854.
Liu S D, Han Y G, Zhu X P, et al. Effects of cotton stalk biochar on the structure and function of fungi community in alkaline rhizosphere soil of rice under cadmium pollution[J]. Environmental Science, 2020, 41(8): 3846-3854.
[22] Jia X, Wang L, Zhao Y H, et al. Soil microbial communities in the rhizosphere of Robinia pseudoacacia L. after being exposed to elevated atmospheric CO2 and cadmium for 4 years[J]. Applied Soil Ecology,, 2020, 154. DOI:10.1016/j.apsoil.2020.103661
[23] 宋伟, 陈百明, 刘琳. 中国耕地土壤重金属污染概况[J]. 水土保持研究, 2013, 20(2): 293-298.
Song W, Chen B M, Liu L. Soil heavy metal pollution of cultivated land in China[J]. Research of Soil and Water Conservation, 2013, 20(2): 293-298.
[24] Huang S P, Jia X, Zhao Y H, et al. Response of Robinia pseudoacacia L. rhizosphere microenvironment to Cd and Pb contamination and elevated temperature[J]. Applied Soil Ecology, 2016, 108: 269-277. DOI:10.1016/j.apsoil.2016.09.002
[25] Huang S P, Jia X, Zhao Y H, et al. Elevated CO2 benefits the soil microenvironment in the rhizosphere of Robinia pseudoacacia L. seedlings in Cd- and Pb-contaminated soils[J]. Chemosphere, 2017, 168: 606-616. DOI:10.1016/j.chemosphere.2016.11.017
[26] Wang C Y, Wu B D, Jiang K, et al. Effects of different concentrations and types of Cu and Pb on soil N-fixing bacterial communities in the wheat rhizosphere[J]. Applied Soil Ecology, 2019, 144: 51-59. DOI:10.1016/j.apsoil.2019.07.008
[27] Stefanowicz A M, Kapusta P, Zubek S, et al. Soil organic matter prevails over heavy metal pollution and vegetation as a factor shaping soil microbial communities at historical Zn-Pb mining sites[J]. Chemosphere, 2020, 240. DOI:10.1016/j.chemosphere.2019.124922
[28] Jia X, Zhang N J, Zhao Y H, et al. A consecutive 4-year elevated air temperature shaped soil bacterial community structure and metabolic functional groups in the rhizosphere of black locust seedlings exposed to lead pollution[J]. Science of the Total Environment, 2020, 732. DOI:10.1016/j.scitotenv.2020.139273
[29] Zhao Y H, Jia X, Wang W K, et al. Growth under elevated air temperature alters secondary metabolites in Robinia pseudoacacia L. seedlings in Cd- and Pb-contaminated soils[J]. Science of the Total Environment, 2016, 565: 586-594. DOI:10.1016/j.scitotenv.2016.05.058
[30] Jia X, Zhao Y H, Liu T, et al. Elevated CO2 affects secondary metabolites in Robinia pseudoacacia L. seedlings in Cd- and Pb-contaminated soils[J]. Chemosphere, 2016, 160: 199-207. DOI:10.1016/j.chemosphere.2016.06.089
[31] ISSS, FAO, ISRIC. World reference base for soil resources[R]. Rome: ISSS-ISRIC-FAO, 1998. 1-68.
[32] Li T Q, Tao Q, Han X, et al. Effects of elevated CO2 on rhizosphere characteristics of Cd/Zn hyperaccumulator Sedum alfredii[J]. Science of the Total Environment, 2013, 454-455: 510-516. DOI:10.1016/j.scitotenv.2013.03.054
[33] Wang M, Tian Q X, Liao C, et al. The fate of litter-derived dissolved organic carbon in forest soils: results from an incubation experiment[J]. Biogeochemistry, 2019, 144(2): 133-147. DOI:10.1007/s10533-019-00576-3
[34] Kim S, Kang H. Effects of elevated CO2 and Pb on phytoextraction and enzyme activity[J]. Water Air Soil Pollution, 2011, 219: 365-375. DOI:10.1007/s11270-010-0713-5
[35] Caporaso J G, Kuczynski J, Stombaugh J, et al. QⅡME allows analysis of high-throughput community sequencing data[J]. Nature Methods, 2010, 7(5): 335-336. DOI:10.1038/nmeth.f.303
[36] Blaxter M, Mann J, Chapman T, et al. Defining operational taxonomic units using DNA barcode data[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2005, 360(1462): 1935-1943. DOI:10.1098/rstb.2005.1725
[37] Quast C, Pruesse E, Yilmaz P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools[J]. Nucleic Acids Research, 2013, 41(D1): D590-D596.
[38] Kõljalg U, Nilsson R H, Abarenkov K, et al. Towards a unified paradigm for sequence-based identification of fungi[J]. Molecular Ecology, 2013, 22(21): 5271-5277. DOI:10.1111/mec.12481
[39] Shannon C E. A mathematical theory of communication[J]. The Bell System Technical Journal, 1948, 27(3): 379-423. DOI:10.1002/j.1538-7305.1948.tb01338.x
[40] Shannon C E. A mathematical theory of communication[J]. The Bell System Technical Journal, 1948, 27(4): 623-656. DOI:10.1002/j.1538-7305.1948.tb00917.x
[41] Chao A. Nonparametric estimation of the number of classes in a population[J]. Scandinavian Journal of Statistics, 1984, 11(4): 265-270.
[42] Jia X, Wang W K, Chen Z H, et al. Concentrations of secondary metabolites in tissues and root exudates of wheat seedlings changed under elevated atmospheric CO2 and cadmium-contaminated soils[J]. Environmental and Experimental Botany, 2014, 107: 134-143. DOI:10.1016/j.envexpbot.2014.06.005
[43] Chen B D, Liu Y, Shen H, et al. Uptake of cadmium from an experimentally contaminated calcareous soil by arbuscular mycorrhizal maize (Zea mays L.)[J]. Mycorrhiza, 2004, 14(6): 347-354. DOI:10.1007/s00572-003-0281-2
[44] Yang Y R, Song Y Y, Scheller H V, et al. Community structure of arbuscular mycorrhizal fungi associated with Robinia pseudoacacia in uncontaminated and heavy metal contaminated soils[J]. Soil Biology and Biochemistry, 2015, 86: 146-158. DOI:10.1016/j.soilbio.2015.03.018
[45] Jia X, Zhang C Y, Zhao Y H, et al. Three years of exposure to lead and elevated CO2 affects lead accumulation and leaf defenses in Robinia pseudoacacia L. seedlings[J]. Journal of Hazardous Materials, 2018, 349: 215-223. DOI:10.1016/j.jhazmat.2018.02.002
[46] Jia X, Zhao Y H, Liu T, et al. Elevated CO2 increases glomalin-related soil protein (GRSP) in the rhizosphere of Robinia pseudoacacia L. seedlings in Pb- and Cd-contaminated soils[J]. Environmental Pollution, 2016, 218: 349-357. DOI:10.1016/j.envpol.2016.07.010