环境科学  2021, Vol. 42 Issue (3): 1023-1038   PDF    
我国经济快速发展区工业VOCs排放特征及管控对策
孟博文1,2,3, 李永波4, 孟晶2,3, 李倩倩2,3, 史斌2,3, 周喜斌1, 李金灵1, 苏贵金2,3     
1. 西北师范大学地理与环境科学学院, 兰州 730070;
2. 中国科学院生态环境研究中心, 北京 100085;
3. 中国科学院大学, 北京 100049;
4. 唐山市生态环境局滦南县分局, 唐山 063500
摘要: 近年来随着我国经济快速发展,挥发性有机物(VOCs)作为雾、霾和臭氧前驱物日益受到关注,经济快速发展区VOCs污染情况尤为复杂.本文对京津冀、长三角和珠三角的12种典型工业行业及垃圾、废水处理厂与综合工业园区、居民区的VOCs排放特征与分布趋势进行系统分析.解析出制药、橡胶和油漆喷涂为12种典型工业行业中VOCs平均排放浓度最高的3个行业,得到平均浓度分别为541、499和450 mg·m-3,应给予高度关注.对比分析发现长三角与京津冀地区平均排放浓度最高是制药行业,分别为112 mg·m-3和1.00×103 mg·m-3;而珠三角地区油漆喷涂行业排放最高,平均浓度为1.04×103 mg·m-3.进一步对12种典型工业行业VOCs种类分布情况进行分析,发现毒性大的芳香烃与卤代烃分别在油漆喷涂与制药行业中排放占比最高,达到55.99%和26.57%.三大经济区中长三角地区居民区与综合工业园区附近VOCs浓度最低,京津冀地区浓度最高,与各地区工业排放分布情况一致.分析2002~2018年的数据发现居民区VOCs浓度整体呈现波动性下降趋势,尤其2016年后显著降低,反映出我国VOCs防治的相关政策、法律法规和标准及技术对现阶段VOCs控制起到了显著成效.
关键词: 经济快速发展区      挥发性有机物(VOCs)      工业行业      排放特征      分布趋势     
Industrial Emission Characteristics and Control Countermeasures of VOCs in Chinese Rapid Economic Development Areas
MENG Bo-wen1,2,3 , LI Yong-bo4 , MENG Jing2,3 , LI Qian-qian2,3 , SHI Bin2,3 , ZHOU Xi-bin1 , LI Jin-ling1 , SU Gui-jin2,3     
1. College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730070, China;
2. Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, China;
3. University of Chinese Academy of Sciences, Beijing 100049, China;
4. Luannan County Branch of Tangshan Ecology and Environment Bureau, Tangshan 063500, China
Abstract: With the rapid development of China's economy, volatile organic compounds (VOCs) as the precursor of smog and ozone are of increasing concern, especially in rapidly developing areas. This paper is a systematic analysis of VOCs emissions and distribution trends in 12 typical industrial sectors, garbage and wastewater treatment plants, comprehensive industrial parks, and residential districts in Beijing-Tianjin-Hebei, Yangtze River Delta, and Pearl River Delta Regions. The results show that pharmacy, rubber producing, as well as paint spraying are the top three industries among the 12 typical industries with the highest average VOCs emission concentrations at 541, 499, and 450 mg·m-3, respectively. By comparison, the average emission concentration of VOCs from the pharmaceutical industry in Yangtze River Delta and Beijing-Tianjin-Hebei Region was, respectively, about 112 and 1.00×103 mg·m-3. The paint spraying industry in the Pearl River Delta region has the highest emission rate with an average concentration of 1.04×103 mg·m-3. The investigation pertaining to the distribution of different VOCs categories indicates that highly toxic aromatics and halogenated hydrocarbons account for the highest emissions in paint spraying and pharmaceutical industries, reaching ratios of 55.99% and 26.57%, respectively. Additionally, among the three major economic zones, the VOCs concentration is the lowest in residential areas and comprehensive industrial parks in the Yangtze River Delta but the highest in the Beijing-Tianjin-Hebei Region, which is consistent with the distribution of industrial emissions in each region. Moreover, the research reveals that VOCs concentration in residential districts experienced a fluctuating reduction from 2002 to 2018. The significant reduction since 2016 suggests that formulated policies, laws and standards, along with the performed techniques have made significant contributions to the control of VOCs.
Key words: rapid economic development regions      volatile organic compounds(VOCs)      industrial sector      emission characteristics      distribution trend     

随着我国经济的快速发展, 工业的不断进步, 大气污染问题也随之出现, 其中我国经济快速发展区(长三角、珠三角和京津冀)地区接连发生雾、霾污染事件.文献[1]指出我国500个城市中仅不足1%的城市达到世界卫生组织推荐的空气质量标准.作为雾、霾的主要前驱体, 挥发性有机物(volatile organic compounds, VOCs)的排放及危害备受关注.VOCs种类繁多, 结构多样, 文献[2]中将VOCs定义为:参与大气光化学反应的有机化合物, 包括非甲烷烃类(烷烃、烯烃、炔烃、芳香烃等)、含氧有机物(醛、酮、醇、醚等)、含氯有机物、含氮有机物和含硫有机物等, 是形成细颗粒物和臭氧污染的重要前体物.同时VOCs对环境和人类的危害都极为严重, 除雾、霾天气之外, 还会导致臭氧(O3)、光化学烟雾和二次有机气溶胶(secondary organic aerosol, SOA)等污染天气, 与此同时会导致人体呼吸困难和呼吸道感染等疾病的发生[3].VOCs的来源可以分为自然源及人为源[4].在全球范围内, 人为源排放的VOCs远少于自然源[5, 6].然而在中国人为源和自然源的VOCs排放却处于同一水平[7, 8].在区域尺度上, 人为活动的VOCs排放量远远高于自然源的VOCs排放量[9, 10].尤其是在高度城市化和工业化的经济快速发展区, 人为源VOCs排放量是自然源的3倍[11].

当前我国对污染防治工作越来越重视, 文献[12]中明确指出全面落实打赢蓝天保卫战三年行动计划, 加快重点行业VOCs排放治理, 制定重点行业VOCs整治方案, 并对经济快速发展区推进大气污染联防联控.VOCs的污染防治与检测已成为大气治理的重点之一.目前我国对不同城市VOCs的排放研究较多[13~15], 但缺少对区域工业VOCs排放的整体分析, 尤其是针对我国经济快速发展区VOCs的源排放结构和污染特征的系统研究.三大经济区是我国经济增长最快的3个区域, 其中2018年, 长三角、珠三角和京津冀地区生产总值为2.11×105、9.73×104和8.51×104亿元, 分别占国内生产总值的23.49%、10.80%和9.46%;工业总产值分别占全国的25.22%、12.32%和9.00%[16].本文对我国近年来经济快速发展区不同工业排放VOCs的浓度与组成特征进行整理与分析, 同时分析工业排放对综合工业园区和城市居民区周边大气的影响, 结合我国VOCs防治的相关政策、法律法规和标准对现阶段VOCs控制现状进行了探讨.

1 材料与方法 1.1 研究区域

从20世纪80年代起, 我国成为世界上经济增长最快的国家之一.以长江三角洲、珠江三角洲和京津冀地区为代表的经济快速发展区是我国经济最具活力的区域, 也是我国城市网络化发展最为迅速的区域.其中长三角地区的电子、油漆喷涂、农药和制药等行业占三大经济区的主导地位.珠三角地区较多的行业为皮革和印刷行业.而京津冀地区的炼油和钢铁焦化行业数量比其他地区明显较多[17].本文选择长三角(包括上海、江苏、浙江和安徽)、珠三角(包括广东)和京津冀(包括北京、天津和河北)这三大经济区作为研究区.

1.2 研究对象

本文针对我国经济快速发展区人为源VOCs排放和污染特征进行系统分析, 在工业源、生活源、农业源和移动源这4类人为源中, 工业源排放占比最高.根据文献[18]中可得2017年我国大气中污染物的分布及VOCs的来源(图 1). 大气中VOCs的排放总量为481.66万t, 占所有废气的17%.在VOCs的排放中, 工业源VOCs排放量最高, 占总排放量的47%.工业源中, 化学原料和化学制品制造业(如制药、农药、油漆和油墨行业等)VOCs排放量最高, 占22%, 石油、煤炭及其他燃料加工业(如炼油行业和钢铁焦化行业等)占14%, 橡胶和塑料制品业占9%, 其他行业(如食品加工行业、家具制造行业和电子产品等)占整体工业源排放的55%.

图 1 2017年我国大气中污染物的分布及VOCs的来源分析 Fig. 1 Distribution of pollutants in the atmosphere and source analysis of VOCs in China in 2017

我国经济快速发展区工业行业发展迅速, VOCs排放高, 对大气造成污染.图 2反映了不同工业企业产生VOCs对居民区与工业园区的影响, 工业VOCs污染源主要分为VOCs的生产、储存运输、VOCs为原料的工艺过程、VOCs产品使用和排放这4个过程[19].在这些过程中产生的废气会对周边的城市居民区与工业园区附近的大气造成影响.

图 2 不同工业企业VOCs污染源对居民区和工业园区的影响示意 Fig. 2 Impact of VOCs pollution sources from different industrial enterprises on residential areas and industrial parks

因此本文研究聚焦于12种典型工业行业(电子行业、家具制造、皮革行业、印刷行业、油漆喷涂行业、制药行业、橡胶行业、炼油行业、钢铁焦化行业、农药行业、食品加工行业及印染行业)及垃圾、废水处理厂与综合工业园区、居民区的VOCs相关数据.其中电子行业主要研制与生产电子设备与电子元件、仪器和仪表的工业, 在电子元件刻蚀和电池的制备过程会产生VOCs的污染; 家具制造业主要是使用木材、金属和塑料等材料, 但是为了防止木材和金属等在长时间使用过程中发生腐蚀与氧化的情况, 会在家具表面涂刷防腐剂、胶粘剂与其他涂料, 此过程与风干过程都会散发出大量的VOCs; 皮革行业主要是以各类动物皮为原料进行加工处理, 最终制得衣物和鞋包等产品, 在加工过程中产生大量污染, 给环境带来巨大压力与负担; 印刷行业已初步形成以三大经济区为主的产业带, 主要分为传统印刷与数码快印, 油墨中含有大量有毒有害物质, 在印刷时会挥发到大气中; 油漆喷涂行业在对产品涂装与喷涂过程中会挥发出大量有机溶剂, 不利于环境与人类健康; 制药行业由原料药生产和药物生产两部分构成, 由于包含化学合成、生物工程、发酵和提取这4大类合成方式, 使得VOCs排放量较大; 橡胶行业以天然及合成橡胶为原料生产各种橡胶制品, 会使用大量苯系物, 导致污染排放较高; 炼油与钢铁焦化行业在炼制的过程中会让高分子化合物裂解为小分子化合物, 从而挥发至大气中; 农药行业与制药行业相类似, 包含大量的苯、酚、醛和卤代烃类VOCs; 食品加工行业酿造过程(如酿醋和酿酒等)中微生物会合成有机物, 由此导致食品加工行业会产生VOCs; 印染行业的染料多数为有机合成染料, 在上染过程中部分染料由于其挥发性, 导致印染行业的VOCs排放量升高.

1.3 样点位置概况及数据分析

12种典型工业行业的采样点主要位于各生产线、车间厂房与废气排放烟囱, 数据量共165个; 垃圾处理厂与污水处理厂分别采样于堆肥、焚烧车间和曝气、发酵车间, 数据量共28个; 居民区采样点主要包括城市中以集中住宅区域、商业区域、交通繁忙区域和学校等无主要工业园区的区域, 数据量共143个; 综合工业园区附近主要选取典型工业园区附近的家属区或空地为研究场所, 数据量共42个.基于Meta分析方法对所收集的数据进行质量评价与统计分析, 探讨三大经济区中12种典型工业行业及垃圾、废水处理厂VOCs排放情况及对综合工业园区、居民区的影响.Meta分析实质上是汇总相同研究目的的多个研究结果, 通过异质性检验, 分析评价其合并效应量的一系列过程, 相较于传统统计方法, 其结果更为系统和全面, 可以最大限度减少偏倚, 确保科学、客观和真实性[20~22].

2 结果与讨论 2.1 不同行业企业大气中VOCs污染特征

本文调查了"十三五"期间规划纲要中所提及的VOCs重点排放行业中的12种典型工业行业[23~61], 同时对垃圾处理厂[34, 62~65]和废水处理厂[66, 67]也进行了简要分析.表 1图 3的数据可看出, 制药行业、橡胶行业和油漆喷涂行业VOCs的平均排放浓度较高, 分别为541、499和450 mg·m-3, 而钢铁焦化、农药行业、食品加工和印染行业VOCs排放较低.由于中位数能够反映出一个行业的整体情况, 消除掉了离散值对整体的影响, 所以对各行业中位数进行比较发现橡胶行业、制药行业和印刷行业VOCs中位数较高, 分别为197、97.2和22.6 mg·m-3.与文献[14]相比, 橡胶行业及塑料制品业虽然只占工业中VOCs排放总量的9%, 但是橡胶行业排放浓度高, 所以需要对其进行一定的监管与调控.油漆喷涂、制药和炼油厂的离散点较高, 主要原因是部分采样点处于特殊工段, 如油漆喷涂的喷漆车间、制药厂的发酵车间和炼油厂的蒸馏车间, VOCs浓度相对较高.

表 1 12种典型工业行业及垃圾、废水处理厂VOCs排放情况/mg·m-3 Table 1 VOCs emissions from 12 typical industries and garbage and wastewater treatment plants/mg·m-3

图 3 研究区域12种典型行业VOCs排放情况 Fig. 3 VOCs emissions of 12 typical industries in the research area

各地区排放最高的行业分别是长三角地区的制药行业、珠三角地区的油漆喷涂行业和京津冀的制药行业, 平均浓度分别为112、1.04×103和1.00×103 mg·m-3.最大值为309、3.03×103和5.42×103 mg·m-3.从中位数来看京津冀地区的橡胶行业则高于制药行业, 长三角制药行业、珠三角油漆喷涂行业和京津冀橡胶行业VOCs中位数分别为97.2、784和197 mg ·m-3.制药行业中主要分为发酵类、提取类、化学合成类与生物工程类4种, 其中发酵类VOCs贡献量最高, 而生物工程类VOCs贡献最低[45, 48].长三角地区中制药行业种类较为全面, 同时长三角地区的废气处理设备多采用较为先进的蓄热式催化燃烧工艺与等离子体催化氧化处理技术等, 使得VOCs排放降低.而报道中京津冀地区的制药行业则多以发酵类为主.由此导致长三角地区VOCs排放量远低于京津冀地区.珠三角地区油漆喷涂行业远高于其他两个地区, 其中珠三角油漆喷涂行业VOCs排放范围为2.99~3.03×103 mg·m-3, 而长三角与京津冀VOCs排放浓度范围分别为0.74~73.4 mg·m-3和4.04~115 mg·m-3.珠三角企业规模较大, 包括大型金属表面喷涂、船舶喷涂、塑料表面喷涂等众多行业, 而长三角与京津冀主要以汽车零件、整车喷涂和其他较为小型工件为主, 因此导致珠三角地区油漆喷涂行业VOCs排放较高.

根据报道珠三角地区未发现制药与印染行业的相关研究, 可能是这两类行业分布少、规模小等原因.长三角印染行业VOCs平均浓度为6.23 mg·m-3, 排放比京津冀地区高, 其主要贡献省份为纺织品产量名列前茅的浙江省[61].而珠三角地区与其他地区相比特有的行业为家具制造、皮革与印刷行业, 其平均排放浓度分别为44.6、6.27和31.1 mg·m-3, 浓度范围为2.36~182、0.11~15.3和8.39~96.9 mg·m-3, 整体排放较低.从3个区域不同行业浓度分布来看, 京津冀地区VOCs排放较大, 整体污染程度也较为严重; 相比较而言长三角地区VOCs排放较低, 污染程度也随之降低.

VOCs中芳香烃和卤代烃较其他烃类的毒性更高, 同时芳香烃与卤代烃的降解过程较为困难, 对生态环境和人类健康造成了极大影响, 由此本文对各行业的芳香烃与卤代烃排放进行了统计, 图 4为不同行业芳香烃与卤代烃排放占比, 可以看出12种典型工业行业中芳香烃排放占比较高的分别是油漆喷涂、皮革和橡胶行业, 占比分别为55.99%、50.88%和50.32%.油漆喷涂行业大量使用以有机型溶剂为分散介质的溶剂型涂料, 包括苯、甲苯和二甲苯等多种芳香烃类物质; 有机溶剂作为稀释剂与添加剂在皮革行业中也被广泛使用, 同时包含芳香烃的防霉剂、染料和加脂剂等因疏水性易被皮革纤维吸附, 导致芳香烃在皮革行业中占比较大.橡胶行业中为防止橡胶老化多会喷涂清漆等有机涂料加以保护, 使得炼胶车间和喷涂车间芳香烃浓度很高.而农药行业和食品加工行业排放占比都小于10%.卤代烃排放占比前三的行业分别是制药行业、电子行业和钢铁焦化行业, 占比分别为26.57%、16.05%和14.05%, 药类制品中包含的卤族元素可以延长药物作用时间, 增强药效作用, 因此在生产制造的过程中会排放过多的卤代烃.电子产品中一些半导体的刻蚀技术车间会释放卤代烃.钢铁焦化行业中多环芳烃在高温条件下与含氮、氧和硫等杂环芳烃燃烧反应中, 其降解产物与氯自由基发生了强烈反应[57], 导致卤代烃的生成.排放占比较低的行业有橡胶行业、印染行业和皮革行业, 其排放占比都小于5%.除制药和农药行业卤代烃含量超过芳香烃之外, 其它10个行业芳香烃的排放均高于卤代烃.

图 4 不同行业芳香烃与卤代烃排放占比 Fig. 4 Emission ratios of aromatic hydrocarbons and halogenated hydrocarbons in different industries

目前垃圾处理厂与污水处理厂排放的VOCs浓度也相对较高, 相关部门开始逐渐关注垃圾和废水处理厂的废气排放情况, 但由于当前对其研究与数据的量较少, 所以本文对三大经济区垃圾和废水处理厂的VOCs排放情况只进行了简要探讨.垃圾处理厂除了处理生活垃圾外, 还会对工厂所产生的有害垃圾进行更进一步的处理.本文调查的垃圾处理厂对生活垃圾和食品加工行业和固体塑料垃圾进行相应的处理.由于大量的堆肥与焚烧, 导致处理车间VOCs排放量巨大, 垃圾处理厂的VOCs平均浓度为83.0 mg·m-3, 高于皮革、钢铁、食品与印染行业VOCs平均浓度.其中芳香烃占比16.4%, 卤代烃占比为6.42%[34, 62~65].由于大部分企业废水必须达到排放标准才可以进行排放, 所以污水处理厂处理的主要为城市生活废水, 在化粪池和对污泥进行曝气、堆肥和发酵时会产生VOCs, 平均浓度为1.35 mg·m-3, 相对于其他行业较低, 其中芳香烃占比为52.66%, 卤代烃占比为8.33%[66, 67].整体上, 农药、食品加工和垃圾处理的其他种类VOCs排放相对来说较高, 其主要的种类为烷烃和烯烃, 部分含有少量炔烃、醛和醚等VOCs.

2.2 居民区和综合工业园区附近大气中VOCs污染特征

三大经济快速发展区居民区[13~15, 23, 68~142]与综合工业园区附近[13, 15, 65, 69, 73, 107, 113, 114, 118, 121, 124, 143~169]VOCs的浓度数据统计如图 5.可以看出三大经济区中长三角、珠三角和京津冀的居民区VOCs平均浓度分别为8.96×10-2、0.13和0.15 mg·m-3, 中值为7.83×10-2、0.12和0.10 mg·m-3, 浓度范围为1.56×10-2~0.24、3.20×10-2~0.29和1.20×10-2~0.50 mg·m-3.京津冀地区最高点浓度为0.50 mg·m-3, 此数据采自2013~2014年石家庄地区, 由于冬季供暖等诸多原因导致雾、霾天气, 进而使得采样点浓度较高.长三角、珠三角和京津冀地区综合工业园区附近的VOCs平均浓度分别为0.18、0.27和0.62 mg·m-3, 中值为7.42×10-2、7.76×10-2和0.37 mg·m-3, 浓度范围为2.16×10-2~1.74、0.36×10-2~0.93和3.23×10-2~2.04 mg·m-3.长三角与珠三角平均浓度远高于中值浓度, 反映出这两个地区大部分企业对尾气处理较为完善, 但部分企业排放仍然存在不达标的情况, 需企业与相关部门进行排查与改善.长三角地区最高点浓度为1.74 mg·m-3, 此点在2016年常州市某旧农药企业搬迁后场地主导风向下游地区进行采样, 由于企业设备老旧且尾气处理设施不完善, 导致采样点的数值偏高.整体分析发现综合工业园区附近的VOCs浓度越高, 居民区的VOCs浓度也会相应地变高.结合图 3图 5来看, 长三角地区的各行业总体排放情况较低, 综合工业园区附近的VOCs浓度范围最小, 中值最小; 而京津冀地区VOCs排放较高的企业比较多, 综合工业园区附近VOCs浓度范围最大, 中值最高.说明了综合工业园区附近的VOCs平均浓度受到各行业VOCs排放的影响, 反映出了长三角地区排放的废气处理较好, 大部分原因是因为长三角地区相对发展较为迅速, 处理设施与工艺较为先进.而京津冀地区近几年雾、霾天气频发, 部分原因是工业园区设施比较陈旧, 管理制度与长三角地区相比不够规范, 相关规定不够完善[88, 97, 113, 146].

图 5 三大经济区居民区与综合工业园区附近VOCs浓度 Fig. 5 VOCs concentration near residential areas and comprehensive industrial parks of three economic zones

由于居民区可以反映出VOCs整体管控情况, 所以对各年份的居民区VOCs的排放浓度进行分析(图 6).2016年"十三五"规划出台后VOCs浓度呈现明显下降趋势, 说明近些年来相关部门对我国VOCs治理管控取得了显著成效.

图 6 居民区VOCs年度变化 Fig. 6 Annual VOCs variation in residential areas

2.3 VOCs管控现状与问题分析

我国对VOCs重视始于"十一五"末端, "十二五"期间逐渐出台各项相关法律法规、技术政策和排放标准, 但是体系依旧不够完善, 政策法规相对较为滞后, 多数污染防治技术基于末端治理技术, 典型行业最佳可行控制技术尚未形成(图 7).文献[170]中提出要强化源头防控, 深化质量管理, 实行全程管控, 加大保护力度并加快制度创新.其中强化源头防控起主导地位, 包括加强重点开发区管理治理, 减少工业化和城镇化对生态的影响.文献[18]中指出本次普查对部分行业和领域VOCs进行了尝试性调查, 排放量1 017.45万t.

图 7 我国VOCs污染治理制定的政策和标准 Fig. 7 Policies and standards on VOCs pollution control in China

2010年我国首次从国家层面提出将VOCs列为大气污染联防联控的重点污染物之一, 开启了我国VOCs管控与治理之路.在"十二五"规划中加强挥发性有机物的控制过程, 首次明确了要大力降低VOCs的排放, 同时针对重点区域与行业展开治理, 构建并完善VOCs污染防治体系[171].2013年针对我国大气污染形势严峻及雾、霾等各项问题, 文献[172]中提出全面推行清洁生产, 钢铁、化工和冶炼等行业采用先进技术、工艺和设备, 推进非有机溶剂型涂料与农药等产品, 并对重点行业VOCs的排放纳入污染费征收范围, 再次强调对VOCs排放量进行控制.同时针对我国经济快速发展区提出至2015年底完成燃煤电厂、锅炉等行业治理设施建设和改造与石化企业VOCs综合治理.文献[173]中首次明确将VOCs作为区域大气污染联合防治的大气污染物之一.此次修改对于保障公众健康、推进生态文明建设、解决重点污染问题和促进经济社会可持续发展具有重要意义."十三五"期间规划纲要强调大力推进污染物达标排放和总量减排, 明确提出在重点区域、重点行业推进挥发性有机物排放总量控制, 全国排放总量下降超过10%, 提出加快石油炼制与石油化工、涂料、油墨、农药、汽车、印刷、橡胶制品、合成革、家具和制鞋等重点行业VOCs削减, 明确实施原料替代工程、工艺技术改造工程、回收及综合治理工程等任务[174].文献[175]中将VOCs归入减排目标, 并提出到2020年VOCs排放总量比2015年下降10%以上.文献[176]指出, 到2025年, 建立健全环境治理的各项相关体系, 落实各类主体责任, 提高市场主体和公众参与的积极性, 形成多元化治理体系结构.总体上看我国VOCs整体排放呈现先增长后下降的趋势, 2011年人为源排放量为2 297.65万t, 2017年增长至2 543.41万t, 2018年首次出现下降, 2019年排放量为2 342.41万t[177].

文献[2]明确指出强化长三角、珠三角和京津冀地区VOCs减排, 同时各地区也逐渐形成较为完整的政策与治理方案.长三角三省一市政府2019年颁布文献[178]; 广东省2018年发布文献[179]; 京津冀地区一省两市也首次制定统一VOCs排放标准, 颁布文献[180], 以降低部分行业的VOCs排放.各省市也相应出台应对本省污染情况的对策与防治规划.

文献[12]中第八条指出我国对油漆喷涂、石化炼油和包装印刷等重点行业相关标准已经明确, 结合本文可知此类行业排放较高, 需要加强管控, 合理排放.但部分行业如橡胶、家具制造与皮革行业等VOCs排放较高却暂未出台相关标准, 上述文件中第六条明确指出要加快制定此类重点行业排放标准, 加强管控力度, 合理生产, 稳步发展.文献[181]修订发布后, VOCs控制思路逐步走向了全过程控制技术体系的构建.该体系分为源头控制、过程控制与末端治理技术3大类.

源头控制中首要大力推行环保型材料的使用, 尤其是在涂料、油墨和胶粘剂的使用方面, 寻找合适且无毒无害的替代物是首要任务."十二五"规划到"十三五"规划期间, 源头替代在不断改进, 主要集中在水性涂料替代油性涂料, 覆盖于汽车和船舶等交通设备的制造、木制家具制造企业、钢材等众多工业装涂与包装印刷行业等.文献[2]提出了除水性涂料或者油墨之外, 高固体组分、粉末涂料等环保型涂料也进行大力推广.如近十年我国油漆喷涂行业中乘用车的水性涂料使用率从14%发展到83%[177].

过程控制主要原则在于密闭化, 从生产的过程中解决排放问题.但由于部分工业无法实现密闭, 所以也可以采用局部收集的方式.文献[182]明确梳理了5类无法实现密闭典型源(物料储存、物料转移和输送、工艺过程、设备与管线组件泄漏、敞开液面控制), 并且提出实施分类管理、强调控制过程、采取先进工业设备与技术和规定去除率最低限制等要求, 有效地降低了VOCs的排放.

末端治理技术主要包括两大类, 即氧化分解技术与回收技术.氧化分解技术包括催化氧化、热氧化、光氧化与生物降解技术等.热氧化分解处理效率最高, 77.3% ~98.0%不等, 在油漆喷涂和印刷行业等都取得了不错的成效[183].回收技术则主要以物理方面的冷凝、膜分离与吸收吸附技术为主.从使用TSR系列回收技术处理工艺的上海某造漆厂检测来看, 处理效率达87.5%[183].VOCs末端治理技术的选择比较复杂, 除了需要考虑风量、浓度、物种的特征外, 还需要考虑废气排放的波动性和连续性[184~188].从全国角度出发, 相对落后的城市对VOCs的治理较晚, 且在治理方面实际效果也参差不齐.因此基于行业和VOCs物种开展有效性评价[184, 189], 同时考虑处理效果、技术经济评估和综合效益评价等因素[190, 191], 需建立比较综合且全面地评价方法来指导企业和政府选择适用的VOCs末端治理技术.

目前治理VOCs存在的问题依旧较多.油漆喷涂、印染和印刷等行业源头控制力度较差, 同时由于成本、政策等原因, 导致有机溶剂等低VOCs含量原辅材料使用率很低.制药行业卤族元素大量使用, 橡胶和家具等行业中芳香烃使用较多, 导致无组织排放问题突出.VOCs产排污环节较多, 无组织排放特征明显, 众多企业暂未采取有效治理手段.农药和食品行业由于废气排放少, 治污设施不被重视, 通常简易低效.且VOCs成分复杂, 治理技术多样, 部分行业监管能力不足, 导致无法达到预期的治理效果.

3 结论

本文对3个经济快速发展区12种典型工业行业VOCs整体排放情况进行探究, 可以看出排放最高的3个行业是制药、橡胶和油漆喷涂, 其平均排放浓度分别为541、499和450 mg·m-3.进一步识别出长三角、珠三角和京津冀各地区平均排放浓度最高的行业分别为制药行业、油漆喷涂行业和制药行业, 平均浓度分别为112、1.04×103和1.00×103 mg·m-3.芳香烃与卤代烃在VOCs中毒性与危害较高, 由此本文探究12种典型工业行业中芳香烃与卤代烃排放占比.油漆喷涂行业的芳香烃排放占比最高, 占总VOCs排放的55.99%, 卤代烃占比最高的行业为制药行业, 占其VOCs排放量的26.57%.与12种典型工业行业相比, 三大经济区中垃圾处理厂和污水处理厂的VOCs平均浓度为83.0 mg·m-3和1.35 mg·m-3, 垃圾处理厂排放高主要由于大量的堆肥与焚烧, 排放量高于皮革、钢铁、食品与印染行业VOCs平均浓度, 需要得到相关部门的重视.居民区与综合工业园区附近的VOCs排放浓度最高的区域为京津冀地区, 浓度分别为0.15 mg·m-3和0.62 mg·m-3, 京津冀地区雾、霾天气需要持续关注.由居民区逐年变化可发现VOCs呈现整体下降的趋势, 表明我国相关政策的出台与法律法规的颁布使VOCs的排放情况显著下降, 相关标准也在逐一健全, VOCs控制思路开始稳步构建, 制药、橡胶和油漆喷涂等排放严重行业中各项治理技术虽存在部分问题, 但目前正在逐步完善.

参考文献
[1] 张庆丰, 罗伯特·克鲁克斯. 迈向环境可持续的未来: 中华人民共和国国家环境分析[M]. 北京: 中国财政经济出版社, 2012.
[2] 环境保护部, 国家发展和改革委员会, 财政部, 等. 关于印发《"十三五"挥发性有机物污染防治工作方案》的通知[EB/OL]. http://www.mee.gov.cn/gkml/hbb/bwj/201709/t20170919_421835.htm, 2019-03-16.
[3] Masui T, Imadzu H, Matsuyama N, et al. Total oxidation of toluene on Pt/CeO2-ZrO2-Bi2O3/γ-Al2O3 catalysts prepared in the presence of polyvinyl pyrrolidone[J]. Journal of Hazardous Materials, 2010, 176(1-3): 1106-1109.
[4] Hewitt C N. Reactive hydrocarbons in the atmosphere[M]. San Diego: Acadamic Press, 1999.
[5] Guenther A, Hewitt C N, Erickson D, et al. A global model of natural volatile organic compound emissions[J]. Journal of Geophysical Research, 1995, 100(D5): 8873-8892.
[6] Piccot S D, Watson J J, Jones J W. A global inventory of volatile organic compound emissions from anthropogenic sources[J]. Journal of Geophysical Research, 1992, 97(D9): 9897-9912.
[7] Tie X X, Li G H, Ying Z M, et al. Biogenic emissions of isoprenoids and NO in China and comparison to anthropogenic emissions[J]. Science of the Total Environment, 2006, 371(1-3): 238-251.
[8] Klimont Z, Streets D G, Gupta S, et al. Anthropogenic emissions of non-methane volatile organic compounds in China[J]. Atmospheric Environment, 2002, 36(8): 1309-1322.
[9] Klinger L F, Li Q J, Guenther A B, et al. Assessment of volatile organic compound emissions from ecosystems of China[J]. Journal of Geophysical Research, 2002, 107(D21). DOI:10.1029/2001JD001076
[10] Wang Z H, Bai Y H, Zhang S Y. A biogenic volatile organic compounds emission inventory for Beijing[J]. Atmospheric Environment, 2003, 37(27): 3771-3782.
[11] Zheng J Y, Zheng Z Y, Yu Y F, et al. Temporal, spatial characteristics and uncertainty of biogenic voc emissions in the Pearl River Delta region, China[J]. Atmospheric Environment, 2010, 44(16): 1960-1969.
[12] 生态环境部办公厅. 关于印发《2019年全国大气污染防治工作要点》的通知[EB/OL]. http://www.mee.gov.cn/xxgk2018/xxgk/xxgk05/201903/t20190306_694550.html, 2019-02-28.
[13] An J L, Su X Q, Zhang Y X, et al. Characteristics of volatile organic compounds in Nanjing and Suzhou, two urban sites in the Yangtze River Delta, China[J]. Archives of Environmental Contamination and Toxicology, 2020, 78(3): 416-429. DOI:10.1007/s00244-020-00719-w
[14] Norris C, Fang L, Barkjohn K K, et al. Sources of volatile organic compounds in suburban homes in Shanghai, China, and the impact of air filtration on compound concentrations[J]. Chemosphere, 2019, 231: 256-268.
[15] Hu R Y, Liu G J, Zhang H, et al. Levels, characteristics and health risk assessment of VOCs in different functional zones of Hefei[J]. Ecotoxicology and Environmental Safety, 2018, 160: 301-307.
[16] 国家统计局. 国民经济核算[EB/OL]. http://www.stats.gov.cn/tjsj/zbjs/201912/t20191202_1713058.html, 2019-12-02.
[17] 中华人民共和国生态环境部. 全国排污许可证管理信息平台[EB/OL]. http://permit.mee.gov.cn/permitExt/syssb/xxgk/xxgk!sqqlist.action, 2020-09-01.
[18] 中华人民共和国生态环境部, 国家统计局, 中华人民共和国农业农村部. 第二次全国污染源普查公报[EB/OL]. http://www.mee.gov.cn/home/ztbd/rdzl/wrypc/zlxz/202006/t20200616_784745.html, 2020-06-16.
[19] 梁小明, 张嘉妮, 陈小方, 等. 我国人为源挥发性有机物反应性排放清单[J]. 环境科学, 2017, 38(3): 845-854.
Liang X M, Zhang J N, Chen X F, et al. Reactivity-based anthropogenic VOCs emission inventory in China[J]. Environmental Science, 2017, 38(3): 845-854.
[20] Huang Y, Wang L Y, Wang W J, et al. Current status of agricultural soil pollution by heavy metals in China: a meta-analysis[J]. Science of the Total Environment, 2019, 651: 3034-3042.
[21] 彭少麟, 郑凤英. Meta分析及MetaWin软件[J]. 土壤与环境, 1999, 8(4): 295-299.
Peng S L, Zheng F Y. Introduction of MetaWin software[J]. Soil and Environmental Sciences, 1999, 8(4): 295-299.
[22] Ma S J, Zhou C B, Chi C, et al. Estimating physical composition of municipal solid waste in China by applying artificial neural network method[J]. Environmental Science & Technology, 2020, 54(15): 9609-9617.
[23] An T C, Huang Y, Li G Y, et al. Pollution profiles and health risk assessment of VOCs emitted during e-waste dismantling processes associated with different dismantling methods[J]. Environment International, 2014, 73: 186-194.
[24] Hu R Y, Liu G J, Zhang H, et al. Odor pollution due to industrial emission of volatile organic compounds: a case study in Hefei, China[J]. Journal of Cleaner Production, 2020, 246. DOI:10.1016/j.jclepro.2019.119075
[25] 崔如, 马永亮. 电子产品加工制造企业挥发性有机物(VOCs)排放特征[J]. 环境科学, 2013, 34(12): 4585-4591.
Cui R, Ma Y L. Characteristics of volatile organic compounds (VOCs) emission from electronic products processing and manufacturing factory[J]. Environmental Science, 2013, 34(12): 4585-4591.
[26] 徐捷, 魏海萍, 修光利, 等. 半导体行业挥发性有机物(VOCs)排放特征研究[J]. 环境科学与管理, 2007, 32(10): 37-41, 44.
Xu J, Wei H P, Xiu G L, et al. Study on the emission of volatile organic compounds (VOCs) from semiconductor manufacture industry[J]. Environmental Science and Management, 2007, 32(10): 37-41, 44.
[27] Tong R P, Zhang L, Yang X Y, et al. Emission characteristics and probabilistic health risk of volatile organic compounds from solvents in wooden furniture manufacturing[J]. Journal of Cleaner Production, 2019, 208: 1096-1108.
[28] Zhong Z M, Sha Q E, Zheng J Y, et al. Sector-based VOCs emission factors and source profiles for the surface coating industry in the Pearl River Delta region of China[J]. Science of the Total Environment, 2017, 583: 19-28.
[29] 张嘉妮, 曾春玲, 刘锐源, 等. 家具企业挥发性有机物排放特征及其环境影响[J]. 环境科学, 2019, 40(12): 5240-5249.
Zhang J N, Zeng C L, Liu R Y, et al. Volatile organic compound emission characteristics of furniture manufacturing enterprises and the influence on the atmospheric environment[J]. Environmental Science, 2019, 40(12): 5240-5249.
[30] Zheng J Y, Yu Y F, Mo Z W, et al. Industrial sector-based volatile organic compound (VOC) source profiles measured in manufacturing facilities in the Pearl River Delta, China[J]. Science of the Total Environment, 2013, 456-457: 127-136.
[31] 王伯光, 冯志诚, 周炎, 等. 聚氨酯合成革厂空气中挥发性有机物的成分谱[J]. 中国环境科学, 2009, 29(9): 914-918.
Wang B G, Feng Z C, Zhou Y, et al. VOC components in the air caused by the local polyurethane synthetic leather industries in the Pearl River Delta region[J]. China Environmental Science, 2009, 29(9): 914-918.
[32] 植深晓, 陈弘丽, 潘锦. 制鞋工业区环境空气中VOCs污染状况及健康风险评价[J]. 福建分析测试, 2018, 27(4): 39-42.
Zhi S X, Chen H L, Pan J. Pollution situation and health risk assessment of volatile organic compounds in the air in shoemaking industrial zone[J]. Fujian Analysis & Testing, 2018, 27(4): 39-42.
[33] 蔡宗平, 蔡慧华. 印刷行业VOCs排放特征研究[J]. 环境科学与管理, 2013, 38(8): 166-172.
Cai Z P, Cai H H. Study on characteristics of vocs emission from printing industry[J]. Environmental Science and Management, 2013, 38(8): 166-172.
[34] Xing L Q, Wang L C, Zhang R. Characteristics and health risk assessment of volatile organic compounds emitted from interior materials in vehicles: a case study from Nanjing, China[J]. Environmental Science and Pollution Research, 2018, 25(15): 14789-14798.
[35] 曾培源, 李建军, 廖东奇, 等. 汽车涂料生产环节VOCs的排放特征及安全评价[J]. 环境科学, 2013, 34(12): 4592-4598.
Zeng P Y, Li J J, Liao D Q, et al. Emission characteristics and safety evaluation of volatile organic compounds in manufacturing processes of automotive coatings[J]. Environmental Science, 2013, 34(12): 4592-4598.
[36] 韩博, 吴建会, 王凤炜, 等. 天津滨海新区工业源VOCs及恶臭物质排放特征[J]. 中国环境科学, 2011, 31(11): 1776-1781.
Han B, Wu J H, Wang F W, et al. Characterization of VOCs and odorous compounds from industrial sources in Binhai New Area, Tianjin[J]. China Environmental Science, 2011, 31(11): 1776-1781.
[37] 何梦林, 王旎, 陈扬达, 等. 广东省典型电子工业企业挥发性有机物排放特征研究[J]. 环境科学学报, 2016, 36(5): 1581-1588.
He M L, Wang N, Chen Y D, et al. Emission characteristics of volatile organic compounds (VOCs) from electronic manufacturing factory of Guangdong province[J]. Acta Scientiae Circumstantiae, 2016, 36(5): 1581-1588.
[38] 李霞, 苏伟健, 黎碧霞, 等. 佛山市典型铝型材行业表面涂装VOCs排放组成[J]. 环境科学, 2018, 39(12): 5334-5343.
Li X, Su W J, Li B X, et al. Source profiles and chemical reactivity of volatile organic compounds from surface coating of aluminum products in Foshan, China[J]. Environmental Science, 2018, 39(12): 5334-5343.
[39] 莫梓伟, 陆思华, 李悦, 等. 北京市典型溶剂使用企业VOCs排放成分特征[J]. 中国环境科学, 2015, 35(2): 374-380.
Mo Z W, Lu S H, Li Y, et al. Emission characteristics of volatile organic compounds (VOCs) from typical solvent use factories in Beijing[J]. China Environmental Science, 2015, 35(2): 374-380.
[40] 乔月珍. 上海市机动车和涂料VOCs源成分谱及其大气反应活性研究[D]. 上海: 华东理工大学, 2012.
[41] 田亮, 魏巍, 程水源, 等. 典型有机溶剂使用行业VOCs成分谱及臭氧生成潜势[J]. 安全与环境学报, 2017, 17(1): 314-320.
Tian L, Wei W, Cheng S Y, et al. Source profiles and ozone formation potential of volatile organic compounds from the use of solvents in typical industry[J]. Journal of Safety and Environment, 2017, 17(1): 314-320.
[42] 叶露, 陆华, 俞华明, 等. 上海汽车制造业涂装废气VOCs排放特征[J]. 环境监控与预警, 2019, 11(2): 17-21, 30.
Ye L, Lu H, Yu H M, et al. Emission characteristics of volatile organic compounds from coating exhaust gas of automobile manufacture in Shanghai[J]. Environmental Monitoring and Forewarning, 2019, 11(2): 17-21, 30.
[43] Pan Y, Liu Q, Liu F F, et al. Regional assessment of ambient volatile organic compounds from biopharmaceutical R & D complex[J]. Science of the Total Environment, 2011, 409(20): 4289-4296.
[44] 郭斌, 么瑞静, 张硕, 等. 青霉素发酵尾气VOCs污染特征及健康风险评价[J]. 环境科学, 2018, 39(7): 3102-3109.
Guo B, Yao R J, Zhang S, et al. Pollution condition and health risk assessment of VOCs in fermentation exhaust from penicillin production[J]. Environmental Science, 2018, 39(7): 3102-3109.
[45] 何华飞, 王浙明, 许明珠, 等. 制药行业VOCs排放特征及控制对策研究——以浙江为例[J]. 中国环境科学, 2012, 32(12): 2271-2277.
He H F, Wang Z M, Xu M Z, et al. Studies on the emission characteristics and countermeasures of VOCs from pharmaceutical industry—Based on Zhejiang Province[J]. China Environmental Science, 2012, 32(12): 2271-2277.
[46] 李嫣, 王浙明, 宋爽, 等. 化学合成类制药行业工艺废气VOCs排放特征与危害评估分析[J]. 环境科学, 2014, 35(10): 3663-3668.
Li Y, Wang Z M, Song S, et al. Emission characteristics and hazard assessment analysis of volatile organic compounds from chemical synthesis pharmaceutical industry[J]. Environmental Science, 2014, 35(10): 3663-3668.
[47] 王刚, 魏巍, 米同清, 等. 典型工业无组织源VOCs排放特征[J]. 中国环境科学, 2015, 35(7): 1957-1964.
Wang G, Wei W, Mi T Q, et al. Characteristics of VOCs emitted from typical industrial fugitive[J]. China Environmental Science, 2015, 35(7): 1957-1964.
[48] 徐志荣, 王浙明, 许明珠, 等. 浙江省制药行业典型挥发性有机物臭氧产生潜力分析及健康风险评价[J]. 环境科学, 2013, 34(5): 1864-1870.
Xu Z R, Wang Z M, Xu M Z, et al. Health risk assessment and ozone formation potentials of volatile organic compounds from pharmaceutical industry in Zhejiang province[J]. Environmental Science, 2013, 34(5): 1864-1870.
[49] 竹涛, 吕怡蓉, 边文璟, 等. 抗生素企业VOCs排放清单及影响范围模拟[J]. 环境科学, 2019, 40(12): 5250-5257.
Zhu T, Lü Y R, Bian W J, et al. VOCs emission inventory and impact range simulation of antibiotic enterprises[J]. Environmental Science, 2019, 40(12): 5250-5257.
[50] Mo Z W, Shao M, Lu S H, et al. Process-specific emission characteristics of volatile organic compounds (VOCs) from petrochemical facilities in the Yangtze River Delta, China[J]. Science of the Total Environment, 2015, 533: 422-431.
[51] Zhang Z J, Yan X Y, Gao F L, et al. Emission and health risk assessment of volatile organic compounds in various processes of a petroleum refinery in the Pearl River Delta, China[J]. Environmental Pollution, 2018, 238: 452-461.
[52] 蕫艳平, 喻义勇, 母应锋, 等. 基于GC-MS分析方法的石油化工行业特征挥发性有机物分析[J]. 环境监控与预警, 2017, 9(2): 46-49.
Dong Y P, Yu Y Y, Mu Y F, et al. Analysis of characteristic VOCs in petrochemical industry based on GC-MS[J]. Environmental Monitoring and Forewarning, 2017, 9(2): 46-49.
[53] 马磊, 孟凡伟. 石化企业VOCs重点排放源排放特征及物质清单的研究[J]. 当代化工, 2019, 48(12): 2750-2753.
Ma L, Meng F W. Study on emission characteristics and material list of VOCs key emission sources in petrochemical enterprises[J]. Contemporary Chemical Industry, 2019, 48(12): 2750-2753.
[54] 张甜甜, 柯国洲, 陈志平, 等. 石化行业废气中挥发性有机污染物的调查[J]. 环境工程, 2016, 34(11): 76-79.
Zhang T T, Ke G Z, Chen Z P, et al. Investigation of the emission of volatile organic compounds released from petrochemical industry[J]. Environmental Engineering, 2016, 34(11): 76-79.
[55] 蕫艳平, 喻义勇, 母应锋, 等. 基于GC-MS方法的焦化行业特征挥发性有机物分析[J]. 环境监测管理与技术, 2016, 28(3): 65-68.
Dong Y P, Yu Y Y, Mu Y F, et al. Characteristic analysis of VOCs from coking chemical industry by GC-MS[J]. The Administration and Technique of Environmental Monitoring, 2016, 28(3): 65-68.
[56] 李国昊, 魏巍, 魏峰, 等. 夏秋季节焦化厂附近大气中臭氧及其前体物变化特征和臭氧生成潜势分析[J]. 环境工程学报, 2014, 8(3): 1130-1138.
Li G H, Wei W, Wei F, et al. Diurnal variations of ozone and its precursors and ozone formation potential of VOCs at the boundary of a coking plant during summer and autumn[J]. Chinese Journal of Environmental Engineering, 2014, 8(3): 1130-1138.
[57] 苗沛然. 钢铁工业挥发性有机物(VOCs)排放特性研究[J]. 环境与发展, 2017, 29(2): 79-86.
Miao P R. Research on VOCs emission characteristics in sintering process[J]. Environment and Development, 2017, 29(2): 79-86.
[58] 谭冰, 王铁宇, 庞博, 等. 农药企业场地空气中挥发性有机物污染特征及健康风险[J]. 环境科学, 2013, 34(12): 4577-4584.
Tan B, Wang T Y, Pang B, et al. Pollution characteristics and health risk assessment of atmospheric volatile organic compounds (VOCs) in pesticide factory[J]. Environmental Science, 2013, 34(12): 4577-4584.
[59] Gao Z Q, Hu G J, Wang H, et al. Characterization and assessment of volatile organic compounds (VOCs) emissions from the typical food manufactures in Jiangsu province, China[J]. Atmospheric Pollution Research, 2019, 10(2): 571-579.
[60] 高占啟, 胡冠九, 王荟, 等. 典型酿造业厂界无组织排放VOCs污染特征与风险评价[J]. 环境科学, 2018, 39(2): 567-575.
Gao Z Q, Hu G J, Wang H, et al. Pollution characteristics and health risk assessment of VOCs fugitively emitted from typical brewers[J]. Environmental Science, 2018, 39(2): 567-575.
[61] 徐志荣, 王鹏, 王浙明, 等. 典型染整企业定型机废气排放特征及潜在环境危害浅析[J]. 环境科学, 2014, 35(3): 847-852.
Xu Z R, Wang P, Wang Z M, et al. Study on the emission characteristics and potential environment hazards of the heat-setting machine of the typical dyeing and finishing enterprise[J]. Environmental Science, 2014, 35(3): 847-852.
[62] Kong X, Liu J G, Song M Y, et al. Spatial and temporal variability of odorous VOC in a food waste treatment plant using hydrothermal hydrolysis and aerobic fermentation technology[J]. Journal of Material Cycles and Waste Management, 2015, 17(4): 626-636. DOI:10.1007/s10163-015-0407-6
[63] Nie E Q, Zheng G D, Shao Z Z, et al. Emission characteristics and health risk assessment of volatile organic compounds produced during municipal solid waste composting[J]. Waste Management, 2018, 79: 188-195.
[64] Zheng G D, Liu J W, Shao Z Z, et al. Emission characteristics and health risk assessment of VOCs from a food waste anaerobic digestion plant: a case study of Suzhou, China[J]. Environmental Pollution, 2020, 257. DOI:10.1016/j.envpol.2019.113546
[65] 邵珠泽, 郑国砥, 王元刚, 等. 生活垃圾堆肥设施VOCs排放特征及臭氧生成潜势分析[J]. 环境科学, 2017, 38(5): 1783-1791.
Shao Z Z, Zheng G D, Wang Y G, et al. Emission characteristics and ozone formation potential of VOCs from a municipal solid waste composting plant[J]. Environmental Science, 2017, 38(5): 1783-1791.
[66] Li J J, Wu Y D, Zhang Y L, et al. Emission of odorous volatile organic compounds from a municipal manure treatment plant and their removal using a biotrickling filter[J]. Environmental Technology, 2015, 36(8): 1050-1056.
[67] Nie E Q, Zheng G D, Gao D, et al. Emission characteristics of VOCs and potential ozone formation from a full-scale sewage sludge composting plant[J]. Science of the Total Environment, 2019, 659: 664-672.
[68] Suthawaree J, Kato S, Pochanart P, et al. Influence of Beijing outflow on volatile organic compounds (VOC) observed at a mountain site in North China Plain[J]. Atmospheric Research, 2012, 111: 46-57.
[69] Barletta B, Meinardi S, Simpson I J, et al. Ambient mixing ratios of nonmethane hydrocarbons (NMHCs) in two major urban centers of the Pearl River Delta (PRD) region: Guangzhou and Dongguan[J]. Atmospheric Environment, 2008, 42(18): 4393-4408.
[70] Geng F H, Cai C J, Tie X X, et al. Analysis of VOC emissions using PCA/APCS receptor model at city of Shanghai, China[J]. Journal of Atmospheric Chemistry, 2009, 62(3): 229-247. DOI:10.1007/s10874-010-9150-5
[71] Gong Y, Wei Y J, Cheng J H, et al. Health risk assessment and personal exposure to volatile organic compounds (VOCs) in metro carriages—A case study in Shanghai, China[J]. Science of the Total Environment, 2017, 574: 1432-1438.
[72] Gu Y Y, Li Q Q, Wei D, et al. Emission characteristics of 99 NMVOCs in different seasonal days and the relationship with air quality parameters in Beijing, China[J]. Ecotoxicology and Environmental Safety, 2019, 169: 797-806.
[73] Han D M, Gao S, Fu Q Y, et al. Do volatile organic compounds (VOCs) emitted from petrochemical industries affect regional PM2.5?[J]. Atmospheric Research, 2018, 209: 123-130.
[74] Han D M, Wang Z, Cheng J P, et al. Volatile organic compounds (VOCs) during non-haze and haze days in Shanghai: characterization and secondary organic aerosol (SOA) formation[J]. Environmental Science and Pollution Research, 2017, 24(22): 18619-18629.
[75] Han M, Lu X Q, Zhao C S, et al. Characterization and source apportionment of volatile organic compounds in urban and suburban Tianjin, China[J]. Advances in Atmospheric Sciences, 2015, 32(3): 439-444.
[76] He Z R, Wang X M, Ling Z H, et al. Contributions of different anthropogenic volatile organic compound sources to ozone formation at a receptor site in the Pearl River Delta region and its policy implications[J]. Atmospheric Chemistry and Physics, 2019, 19(13): 8801-8816.
[77] Li C Q, Li Q Q, Tong D G, et al. Environmental impact and health risk assessment of volatile organic compound emissions during different seasons in Beijing[J]. Journal of Environmental Sciences, 2020, 93: 1-12.
[78] Li J, Wu R R, Li Y Q, et al. Effects of rigorous emission controls on reducing ambient volatile organic compounds in Beijing, China[J]. Science of the Total Environment, 2016, 557-558: 531-541.
[79] Li L, Li H, Zhang X M, et al. Pollution characteristics and health risk assessment of benzene homologues in ambient air in the northeastern urban area of Beijing, China[J]. Journal of Environmental Sciences, 2014, 26(1): 214-223.
[80] Li L Y, Xie S D, Zeng L M, et al. Characteristics of volatile organic compounds and their role in ground-level ozone formation in the Beijing-Tianjin-Hebei region, China[J]. Atmospheric Environment, 2015, 113: 247-254.
[81] Li Q Q, Su G J, Li C Q, et al. An investigation into the role of VOCs in SOA and ozone production in Beijing, China[J]. Science of the Total Environment, 2020, 720. DOI:10.1016/j.scitotenv.2020.137536
[82] Ling Z H, Guo H, Cheng H R, et al. Sources of ambient volatile organic compounds and their contributions to photochemical ozone formation at a site in the Pearl River Delta, southern China[J]. Environmental Pollution, 2011, 159(10): 2310-2319.
[83] Liu Y H, Wang H L, Jing S G, et al. Characteristics and sources of volatile organic compounds (VOCs) in Shanghai during summer: Implications of regional transport[J]. Atmospheric Environment, 2019, 215. DOI:10.1016/j.atmosenv.2019.116902
[84] Mao T, Wang Y S, Jiang J, et al. The vertical distributions of VOCs in the atmosphere of Beijing in autumn[J]. Science of the Total Environment, 2008, 390(1): 97-108.
[85] Song C B, Liu B S, Dai Q L, et al. Temperature dependence and source apportionment of volatile organic compounds (VOCs) at an urban site on the North China plain[J]. Atmospheric Environment, 2019, 207: 167-181.
[86] Song Y, Dai W, Shao M, et al. Comparison of receptor models for source apportionment of volatile organic compounds in Beijing, China[J]. Environmental Pollution, 2008, 156(1): 174-183.
[87] Tang J H, Chan C Y, Wang X M, et al. Volatile organic compounds in a multi-storey shopping mall in guangzhou, South China[J]. Atmospheric Environment, 2005, 39(38): 7374-7383.
[88] Wang G, Cheng S Y, Wei W, et al. Characteristics and source apportionment of VOCs in the suburban area of Beijing, China[J]. Atmospheric Pollution Research, 2016, 7(4): 711-724.
[89] Wang P, Zhao W. Assessment of ambient volatile organic compounds (VOCs) near major roads in urban Nanjing, China[J]. Atmospheric Research, 2008, 89(3): 289-297.
[90] Wang X, Liu G J, Hu R Y, et al. Distribution, sources, and health risk assessment of volatile organic compounds in Hefei city[J]. Archives of Environmental Contamination and Toxicology, 2020, 78(3): 392-400. DOI:10.1007/s00244-019-00704-y
[91] Wei W, Li Y, Wang Y T, et al. Characteristics of VOCs during haze and non-haze days in Beijing, China: Concentration, chemical degradation and regional transport impact[J]. Atmospheric Environment, 2018, 194: 134-145.
[92] Wu F K, Yu Y, Sun J, et al. Characteristics, source apportionment and reactivity of ambient volatile organic compounds at Dinghu Mountain in Guangdong Province, China[J]. Science of the Total Environment, 2016, 548-549: 347-359.
[93] Wu R R, Zhao Y, Zhang J, et al. Variability and sources of ambient volatile organic compounds based on online measurements in a suburban region of Nanjing, Eastern China[J]. Aerosol and Air Quality Research, 2020, 20(3): 606-619.
[94] Yan Y L, He Q, Song Q, et al. Exposure to hazardous air pollutants in underground car parks in Guangzhou, China[J]. Air Quality, Atmosphere & Health, 2017, 10(5): 555-563.
[95] Yang Y, Ji D S, Sun J, et al. Ambient volatile organic compounds in a suburban site between Beijing and Tianjin: Concentration levels, source apportionment and health risk assessment[J]. Science of the Total Environment, 2019, 695. DOI:10.1016/j.scitotenv.2019.133889
[96] Zhang H, Li H, Zhang Q Z, et al. Atmospheric volatile organic compounds in a typical urban area of Beijing: Pollution characterization, health risk assessment and source apportionment[J]. Atmosphere, 2017, 8(3). DOI:10.3390/atmos8030061
[97] Zhang L H, Li H, Wu Z H, et al. Characteristics of atmospheric volatile organic compounds in urban area of Beijing: Variations, photochemical reactivity and source apportionment[J]. Journal of Environmental Sciences, 2020, 95: 190-200.
[98] Zhao Q Y, Bi J, Liu Q, et al. Sources of volatile organic compounds and policy implications for regional ozone pollution control in an urban location of Nanjing, East China[J]. Atmospheric Chemistry and Physics, 2020, 20(6): 3905-3919.
[99] Zheng S S, Xu X F, Zhang Y J, et al. Characteristics and sources of VOCs in urban and suburban environments in Shanghai, China, during the 2016 G20 summit[J]. Atmospheric Pollution Research, 2019, 10(6): 1766-1779.
[100] Zou Y, Deng X J, Zhu D, et al. Characteristics of 1 year of observational data of VOCs, NOx and O3 at a suburban site in Guangzhou, China[J]. Atmospheric Chemistry and Physics, 2015, 15(12): 6625-6636.
[101] 包翔. 合肥市臭氧污染特征及协同控制路径研究[D]. 合肥: 合肥工业大学, 2019.
[102] 蔡长杰, 耿福海, 俞琼, 等. 上海中心城区夏季挥发性有机物(VOCs)的源解析[J]. 环境科学学报, 2010, 30(5): 926-934.
Cai C J, Geng F H, Yu Q, et al. Source apportionment of VOCs at city centre of Shanghai in summer[J]. Acta Scientiae Circumstantiae, 2010, 30(5): 926-934.
[103] 常青, 罗毅, 姜建彪, 等. 石家庄市冬春季环境空气中挥发性有机物的污染特征[J]. 河北科技大学学报, 2015, 36(3): 330-336.
Chang Q, Luo Y, Jiang J B, et al. Pollution characteristic of VOCs of ambient air in winter and spring in Shijiazhuang City[J]. Journal of Hebei University of Science and Technology, 2015, 36(3): 330-336.
[104] 陈长虹, 苏雷燕, 王红丽, 等. 上海市城区VOCs的年变化特征及其关键活性组分[J]. 环境科学学报, 2012, 32(2): 367-376.
Chen C H, Su L Y, Wang H L, et al. Variation and key reactive species of ambient VOCs in the urban area of Shanghai, China[J]. Acta Scientiae Circumstantiae, 2012, 32(2): 367-376.
[105] 丁洁然, 景长勇. 唐山夏季大气VOCs污染特征及臭氧生成潜势[J]. 环境工程, 2016, 34(6): 130-135.
Ding J R, Jing C Y. Pollution characteristics and ozone formation potential of ambient VOCs in summer in Tangshan[J]. Environmental Engineering, 2016, 34(6): 130-135.
[106] 董海燕, 朱玲, 边玮瓅, 等. 天津市滨海新区夏季挥发性有机物的污染特征分析[J]. 环境污染与防治, 2016, 38(5): 77-81.
Dong H Y, Zhu L, Bian W L, et al. Pollution characteristics of volatile organic compounds in the summer of Binhai New Aera, Tianjin[J]. Environmental Pollution and Control, 2016, 38(5): 77-81.
[107] 高璟赟, 唐邈, 陈魁, 等. 天津市不同功能区大气挥发性有机物污染特征及来源分析[J]. 环境污染与防治, 2016, 38(5): 43-47.
Gao J Y, Tang M, Chen K, et al. Pollution characteristics and source analysis of atmospheric volatile organic compounds in different function areas, Tianjin[J]. Environmental Pollution and Control, 2016, 38(5): 43-47.
[108] 韩萌, 卢学强, 冉靓, 等. 天津市城区夏季VOCs来源解析[J]. 环境科学与技术, 2011, 34(10): 76-80.
Han M, Lu X Q, Ran L, et al. Source apportionment of volatile organic compounds in urban Tianjin in the summer[J]. Environmental Science & Technology, 2011, 34(10): 76-80.
[109] 解鑫, 邵敏, 刘莹, 等. 大气挥发性有机物的日变化特征及在臭氧生成中的作用——以广州夏季为例[J]. 环境科学学报, 2009, 29(1): 54-62.
Xie X, Shao M, Liu Y, et al. The diurnal variation of ambient VOCs and their role in ozone formation: case study in summer in Guangzhou[J]. Acta Scientiae Circumstantiae, 2009, 29(1): 54-62.
[110] 景盛翱, 叶旭红, 高雅琴, 等. 典型光化学污染期间杭州大气挥发性有机物污染特征及反应活性[J]. 环境科学, 2020, 41(7): 3076-3084.
Jing S A, Ye X H, Gao Y Q, et al. Characteristics and reactivity of VOCs in Hangzhou during a typical photochemical pollution episode[J]. Environmental Science, 2020, 41(7): 3076-3084.
[111] 李康为, 应方, 陈玲红, 等. 杭州市主城区VOCs污染特征及影响因素[J]. 浙江大学学报(工学版), 2019, 53(4): 671-683.
Li K W, Ying F, Chen L H, et al. Ambient VOCs characteristics and associated effects in urban Hangzhou[J]. Journal of Zhejiang University (Engineering Science), 2019, 53(4): 671-683.
[112] 李雷, 李红, 王学中, 等. 广州市中心城区环境空气中挥发性有机物的污染特征与健康风险评价[J]. 环境科学, 2013, 34(12): 4558-4564.
Li L, Li H, Wang X Z, et al. Pollution characteristics and health risk assessment of atmospheric VOCs in the downtown area of Guangzhou, China[J]. Environmental Science, 2013, 34(12): 4558-4564.
[113] 李磊, 卢艳丽. 廊坊市挥发性有机物来源解析及活性评估[J]. 环境与发展, 2017, 29(4): 42-44.
Li L, Lu Y L. The sources apportionment andactivity evaluationof volatile organic compounds (VOCs) of Langfang City[J]. Environment and Development, 2017, 29(4): 42-44.
[114] 林旭, 陈超, 叶辉, 等. 杭州秋季大气VOCs变化特征及化学反应活性研究[J]. 中国环境监测, 2020, 36(2): 196-204.
Lin X, Chen C, Ye H, et al. Variation characteristics and chemical reactivity of VOCs in different functional zones of Hangzhou in autumn[J]. Environmental Monitoring in China, 2020, 36(2): 196-204.
[115] 刘彬, 李丹, 刘振宇, 等. 天津市夏季挥发性有机物(VOCs)特征分析[J]. 环境与可持续发展, 2018, 43(2): 137-139.
Liu B, Li D, Liu Z Y, et al. Characteristics of volatile organic compounds (VOCs) in summer of Tianjin[J]. Environment and Sustainable Development, 2018, 43(2): 137-139.
[116] 刘丹, 解强, 张鑫, 等. 北京冬季雾霾频发期VOCs源解析及健康风险评价[J]. 环境科学, 2016, 37(10): 3693-3701.
Liu D, Xie Q, Zhang X, et al. Source apportionment and health risk assessment of VOCs during the haze period in the winter in Beijing[J]. Environmental Science, 2016, 37(10): 3693-3701.
[117] 罗达通, 高健, 王淑兰, 等. 北京秋季大气挥发性有机物及相关污染物特征分析[J]. 中国科学院大学学报, 2014, 31(3): 329-336.
Luo D T, Gao J, Wang S L, et al. Characteristics of volatile organic compounds and relative pollutants observed in autumn in Beijing[J]. Journal of University of Chinese Academy of Sciences, 2014, 31(3): 329-336.
[118] 乔月珍, 陈凤, 李慧鹏, 等. 连云港不同功能区挥发性有机物污染特征及臭氧生成潜势[J]. 环境科学, 2020, 41(2): 630-637.
Qiao Y Z, Chen F, Li H P, et al. Pollution characteristics and ozone formation potential of ambient volatile organic compounds (VOCs) in summer and autumn in different functional zones of Lianyungang, China[J]. Environmental Science, 2020, 41(2): 630-637.
[119] 宋锴, 俞颖, 陆思华, 等. 珠海市秋季大气挥发性有机物变化趋势和大气化学反应活性[J]. 环境科学学报, 2020, 40(7): 2323-2332.
Song K, Yu Y, Lu S H, et al. Variation and reactivity of ambient volatile organic compounds (VOCs) in autumn of Zhuhai[J]. Acta Scientiae Circumstantiae, 2020, 40(7): 2323-2332.
[120] 孙杰, 王跃思, 吴方堃, 等. 唐山市和北京市夏秋季节大气VOCs组成及浓度变化[J]. 环境科学, 2010, 31(7): 1438-1443.
Sun J, Wang Y S, Wu F K, et al. Concentration and change of VOCs in summer and autumn in Tangshan[J]. Environmental Science, 2010, 31(7): 1438-1443.
[121] 王伶瑞, 李海燕, 陈程, 等. 长三角北部沿海城市2018年大气VOCs分布特征[J]. 环境科学学报, 2020, 40(4): 1385-1400.
Wang L R, Li H Y, Chen C, et al. Distributions of VOCs in a coastal city in the Northern Yangtze River Delta during 2018[J]. Acta Scientiae Circumstantiae, 2020, 40(4): 1385-1400.
[122] 王梦璇, 田建立, 宋岚, 等. 石家庄市环境空气中VOCs的时空变化规律研究[J]. 煤炭与化工, 2018, 41(10): 155-160.
Wang M X, Tian J L, Song L, et al. Study on the temporal and spatial variation of VOCs in environmental air of Shijiazhuang City[J]. Coal and Chemical Industry, 2018, 41(10): 155-160.
[123] 王倩, 陈长虹, 王红丽, 等. 上海市秋季大气VOCs对二次有机气溶胶的生成贡献及来源研究[J]. 环境科学, 2013, 34(2): 424-433.
Wang Q, Chen C H, Wang H L, et al. Forming potential of secondary organic aerosols and sources apportionment of VOCs in autumn of Shanghai, China[J]. Environmental Science, 2013, 34(2): 424-433.
[124] 王琴, 刘保献, 张大伟, 等. 北京市大气VOCs的时空分布特征及化学反应活性[J]. 中国环境科学, 2017, 37(10): 3636-3646.
Wang Q, Liu B X, Zhang D W, et al. Temporal and spatial distribution of VOCs and their role in chemical reactivity in Beijing[J]. China Environmental Science, 2017, 37(10): 3636-3646.
[125] 王雨, 王丽涛, 杨光, 等. 邯郸市秋季大气挥发性有机物污染特征[J]. 环境科学研究, 2019, 32(7): 1134-1142.
Wang Y, Wang L T, Yang G, et al. Characteristics of volatile organic compounds in autumn in Handan City, China[J]. Research of Environmental Sciences, 2019, 32(7): 1134-1142.
[126] 吴方堃, 王跃思, 安俊琳, 等. 北京奥运时段VOCs浓度变化、臭氧产生潜势及来源分析研究[J]. 环境科学, 2010, 31(1): 10-16.
Wu F K, Wang Y S, An J L, et al. Study on concentration, ozone production potential and sources of VOCs in the atmosphere of Beijing during Olympics period[J]. Environmental Science, 2010, 31(1): 10-16.
[127] 闫磊, 黄银芝, 高松, 等. 杭州湾北岸36种挥发性有机物污染特征及来源解析[J]. 环境科学研究, 2020, 33(3): 536-546.
Yan L, Huang Y Z, Gao S, et al. Pollution characteristics and source analysis of 36 volatile organic compounds on the north coast of Hangzhou bay[J]. Research of Environmental Sciences, 2020, 33(3): 536-546.
[128] 杨笑笑, 汤莉莉, 张运江, 等. 南京夏季市区VOCs特征及O3生成潜势的相关性分析[J]. 环境科学, 2016, 37(2): 443-451.
Yang X X, Tang L L, Zhang Y J, et al. Correlation analysis between characteristics of VOCs and ozone formation potential in summer in Nanjing urban district[J]. Environmental Science, 2016, 37(2): 443-451.
[129] 叶露. 上海北郊大气挥发性有机物(VOCs)变化特征及来源解析[J]. 装备环境工程, 2020, 17(6): 107-116.
Ye L. Change characteristics and source apportionment of volatile organic compounds (VOCs) in the northern suburb of Shanghai[J]. Equipment Environmental Engineering, 2020, 17(6): 107-116.
[130] 翟增秀, 邹克华, 李伟芳, 等. 天津中心城区环境空气挥发性有机物污染特征分析[J]. 环境科学, 2013, 34(12): 4513-4518.
Zhai Z X, Zou K H, Li W F, et al. Pollution characterization of volatile organic compounds in ambient air of Tianjin downtown[J]. Environmental Science, 2013, 34(12): 4513-4518.
[131] 张敬巧, 吴亚君, 李慧, 等. 廊坊开发区秋季VOCs污染特征及来源解析[J]. 中国环境科学, 2019, 39(8): 3186-3192.
Zhang J Q, Wu Y J, Li H, et al. Characteristics and source apportionment of ambient volatile organic compounds in autumn in Langfang development zones[J]. China Environmental Science, 2019, 39(8): 3186-3192.
[132] 张露露, 蒋卫兵, 张元勋, 等. 上海市青浦区大气挥发性有机化合物的特征[J]. 中国环境科学, 2015, 35(12): 3550-3561.
Zhang L L, Jiang W B, Zhang Y X, et al. The characteristics of ambient volatile organic compounds (VOCs) in Qingpu Shanghai, China[J]. China Environmental Science, 2015, 35(12): 3550-3561.
[133] 张启钧, 吴琳, 刘明月, 等. 南京市机动车排放VOCs的污染特征与健康风险评价[J]. 中国环境科学, 2016, 36(10): 3118-3125.
Zhang Q J, Wu L, Liu M Y, et al. Pollution characteristics and health risk assessment of VOCs from vehicle exhaust in Nanjing, China[J]. China Environmental Science, 2016, 36(10): 3118-3125.
[134] 赵乐, 刘新军, 范莉茹, 等. 石家庄夏季典型时段臭氧污染特征及来源解析[J]. 中国环境监测, 2019, 35(4): 78-84.
Zhao L, Liu X J, Fan L R, et al. Pollution characteristic and source apportionment of VOCs during summer typical periods in Shijiazhuang[J]. Environmental Monitoring in China, 2019, 35(4): 78-84.
[135] 赵秋月, 李春燕, 陈凤, 等. 南通市夏季VOCs污染特征与来源研究[J]. 中国环境监测, 2020, 36(2): 148-156.
Zhao Q Y, Li C Y, Chen F, et al. Pollution characteristics and source analysis of ambient VOCs in summer in Nantong[J]. Environmental Monitoring in China, 2020, 36(2): 148-156.
[136] 郑伟巍, 毕晓辉, 吴建会, 等. 宁波市大气挥发性有机物污染特征及关键活性组分[J]. 环境科学研究, 2014, 27(12): 1411-1419.
Zheng W W, Bi X H, Wu J H, et al. Pollution characteristics and key reactive species of ambient VOCs in Ningbo City[J]. Research of Environmental Sciences, 2014, 27(12): 1411-1419.
[137] 周雪明, 项萍, 段菁春, 等. 佛山市冬夏季非甲烷烃污染特征研究[J]. 环境科学, 2016, 37(11): 4124-4132.
Zhou X M, Xiang P, Duan J C, et al. Pollution characteristics of non-methane hydrocarbons during winter and summer in Foshan City[J]. Environmental Science, 2016, 37(11): 4124-4132.
[138] 周炎, 岳玎利, 张涛. 春季广州城区空气中VOCs来源解析[J]. 环境监控与预警, 2017, 9(1): 42-47.
Zhou Y, Yue D L, Zhang T. Source apportionment of spring ambient volatile organic compounds in Guangzhou[J]. Environmental Monitoring and Forewarning, 2017, 9(1): 42-47.
[139] 周裕敏, 郝郑平, 王海林. 北京地区城乡结合部大气挥发性有机物污染及来源分析[J]. 环境科学, 2011, 32(12): 3560-3565.
Zhou Y M, Hao Z P, Wang H L. Pollution and source of atmospheric volatile organic compounds in urban-rural juncture belt area in Beijing[J]. Environmental Science, 2011, 32(12): 3560-3565.
[140] 朱少峰, 黄晓锋, 何凌燕, 等. 深圳大气VOCs浓度的变化特征与化学反应活性[J]. 中国环境科学, 2012, 32(12): 2140-2148.
Zhu S F, Huang X F, He L Y, et al. Variation characteristics and chemical reactivity of ambient VOCs in Shenzhen[J]. China Environmental Science, 2012, 32(12): 2140-2148.
[141] 邹巧莉, 孙鑫, 田旭东, 等. 嘉善夏季典型时段大气VOCs的臭氧生成潜势及来源解析[J]. 中国环境监测, 2017, 33(4): 91-98.
Zou Q L, Sun X, Tian X D, et al. Ozone formation potential and sources apportionment of atmospheric VOCs during typical periods in summer of Jiashan[J]. Environmental Monitoring in China, 2017, 33(4): 91-98.
[142] 邹宇, 邓雪娇, 王伯光, 等. 广州番禺大气成分站挥发性有机物的污染特征[J]. 中国环境科学, 2013, 33(5): 808-813.
Zou Y, Deng X J, Wang B G, et al. Pollution characteristics of volatile organic compounds in Panyu Composition Station[J]. China Environmental Science, 2013, 33(5): 808-813.
[143] An J L, Zhu B, Wang H L, et al. Characteristics and source apportionment of VOCs measured in an industrial area of Nanjing, Yangtze River Delta, China[J]. Atmospheric Environment, 2014, 97: 206-214.
[144] 王鑫, 张敏, 张付海, 等. 合肥市城区大气挥发性有机物污染特征及健康风险评价[J]. 中国科学技术大学学报, 2018, 48(3): 210-220.
Wang X, Zhang M, Zhang F H, et al. Pollution characteristics and health risk assessment of volatile organic compounds in Hefei urban area[J]. Journal of University of Science and Technology of China, 2018, 48(3): 210-220.
[145] Shao P, An J L, Xin J Y, et al. Source apportionment of VOCs and the contribution to photochemical ozone formation during summer in the typical industrial area in the Yangtze River Delta, China[J]. Atmospheric Research, 2016, 176-177: 64-74.
[146] Wei W, Lv Z F, Yang G, et al. VOCs emission rate estimate for complicated industrial area source using an inverse-dispersion calculation method: a case study on a petroleum refinery in northern China[J]. Environmental Pollution, 2016, 218: 681-688.
[147] Zhang Y C, Li R, Fu H B, et al. Observation and analysis of atmospheric volatile organic compounds in a typical petrochemical area in Yangtze River Delta, China[J]. Journal of Environmental Sciences, 2018, 71: 233-248.
[148] 曹梦瑶, 林煜棋, 章炎麟. 南京工业区秋季大气挥发性有机物污染特征及来源解析[J]. 环境科学, 2020, 41(6): 2565-2576.
Cao M Y, Lin Y Q, Zhang Y L. Characteristics and source apportionment of atmospheric VOCs in the Nanjing industrial area in autumn[J]. Environmental Science, 2020, 41(6): 2565-2576.
[149] 郭斌, 宋玉, 律国黎, 等. 制药企业密集区空气中VOCs污染特性及健康风险评价[J]. 环境化学, 2014, 33(8): 1354-1360.
Guo B, Song Y, Lyu G L, et al. Pollution analysis and health risk assessment of volatile organic compounds from dense pharmaceutical production areas[J]. Environmental Chemistry, 2014, 33(8): 1354-1360.
[150] 黄俊梅, 赵波. 上海市吴泾工业区VOCs的监测分析与来源解析[J]. 环境科学与技术, 2014, 37(S2): 382-386, 390.
Huang J M, Zhao B. Monitoring analysis and source apportionment of volatile organic compounds in Shanghai Wujing industrial zone[J]. Environmental Science & Technology, 2014, 37(S2): 382-386, 390.
[151] 李春玉, 陈素文, 章霖之. 某污染场地大气中挥发性有机物污染特征与健康风险评价[J]. 安徽农学通报, 2018, 24(1): 65-68, 79.
Li C Y, Chen S W, Zhang L Z. Atmospheric volatile organic compounds pollution characteristics and health risk assessment in a typical polluted area[J]. Anhui Agricultural Science Bulletin, 2018, 24(1): 65-68, 79.
[152] 李大伟, 熊杰, 胡峰, 等. 珠海金湾区三灶镇大气中挥发性有机物成分监测[J]. 重庆三峡学院学报, 2016, 32(3): 74-77.
Li D W, Xiong J, Hu F, et al. Monitoring air volatile organic compounds in Sanzao Town of Zhuhai Jinwan District[J]. Journal of Chongqing Three Gorges University, 2016, 32(3): 74-77.
[153] 李用宇, 朱彬, 安俊琳, 等. 南京北郊秋季VOCs及其光化学特征观测研究[J]. 环境科学, 2013, 34(8): 2933-2942.
Li Y Y, Zhu B, An J L, et al. Characteristics of VOCs and their photochemical reactivity in autumn in Nanjing Northern Suburb[J]. Environmental Science, 2013, 34(8): 2933-2942.
[154] 梁文萍. 石化企业典型区域VOCs污染特征及来源解析[J]. 现代化工, 2019, 39(9): 5-10.
Liang W P. Pollution characteristics and source of VOCs in typical areas of petrochemical enterprises[J]. Modern Chemical Industry, 2019, 39(9): 5-10.
[155] 林旭, 朱彬, 安俊琳, 等. 南京北郊VOCs对臭氧和二次有机气溶胶潜在贡献的研究[J]. 中国环境科学, 2015, 35(4): 976-986.
Lin X, Zhu B, An J L, et al. Potential contribution of secondary organic aerosols and ozone of VOCs in the Northern Suburb of Nanjing[J]. China Environmental Science, 2015, 35(4): 976-986.
[156] 凌盼盼, 王安东. 连云港市化工园区VOCs排放情况调查研究[J]. 环境与发展, 2019, 31(10): 40-41.
Ling P P, Wang A D. Investigation on VOCs emissions in Lianyungang chemical industry park[J]. Environment and Development, 2019, 31(10): 40-41.
[157] 刘杰, 翟晓曼, 陈曦, 等. 火葬场场所PM2.5和VOCs排放特征及控制对策分析[J]. 环境科学学报, 2019, 39(12): 4207-4214.
Liu J, Zhai X M, Chen X, et al. PM2.5 and VOCs emission characteristics of the boundary of crematorium and their control strategy[J]. Acta Scientiae Circumstantiae, 2019, 39(12): 4207-4214.
[158] 刘金荣, 张宁红, 汤莉莉, 等. 苏州青剑湖VOCs季节污染特征及来源解析[J]. 环境科学与技术, 2018, 41(8): 126-134.
Liu J R, Zhang N H, Tang L L, et al. Seasonal characterization and source apportionment of VOCs in Suzhou's Qingjian Lake Area[J]. Environmental Science & Technology, 2018, 41(8): 126-134.
[159] 潘锦, 彭虹, 吴文威, 等. 家具制造企业密集区空气中VOCs污染状况及健康风险评价[J]. 环境监测管理与技术, 2015, 27(3): 41-44.
Pan J, Peng H, Wu W W, et al. Pollution situation and health risk assessment of volatile organic compounds from dense area of furniture manufacturers[J]. The Administration and Technique of Environmental Monitoring, 2015, 27(3): 41-44.
[160] 裴冰, 刘娟, 孙焱婧. 某化学工业区挥发性有机物组成特征及大气化学反应活性[J]. 环境监测管理与技术, 2011, 23(S1): 1-6, 23.
Pei B, Liu J, Sun Y J. The composition and chemical reactivity of volatile organic compounds (VOCs) in a Certain Chemical Industry Park[J]. The Administration and Technique of Environmental Monitoring, 2011, 23(S1): 1-6, 23.
[161] 乔月珍, 陈凤, 王社扣, 等. 徐州某工业区VOCs的污染特征及来源初步分析[J]. 污染防治技术, 2019, 32(4): 34-36.
Qiao Y Z, Chen F, Wang S K, et al. Preliminary analysis on characteristics and source of volatile organic compounds pollutionin an industrial area in Xuzhou[J]. Pollution Control Technology, 2019, 32(4): 34-36.
[162] 盛涛, 高松, 段玉森, 等. 典型钢铁企业VOCs污染特征及SOA生成潜势估算[J]. 环境科学研究, 2017, 30(12): 1979-1988.
Sheng T, Gao S, Duan Y S, et al. Characteristics of VOCs in typical iron and steel industry and estimation of secondary organic aerosol formation potentia[J]. Research of Environmental Sciences, 2017, 30(12): 1979-1988.
[163] 吴晓怡. 工业区大气挥发性有机物特征研究[J]. 环境科学与管理, 2015, 40(1): 127-131.
Wu X Y. Study on Pollution characteristics of ambient volatile organic compounds in a Industry District of Shanghai[J]. Environmental Science and Management, 2015, 40(1): 127-131.
[164] 杨辉, 朱彬, 高晋徽, 等. 南京市北郊夏季挥发性有机物的源解析[J]. 环境科学, 2013, 34(12): 4519-4528.
Yang H, Zhu B, Gao J H, et al. Source apportionment of VOCs in the Northern Suburb of Nanjing in summer[J]. Environmental Science, 2013, 34(12): 4519-4528.
[165] 杨丽丽, 冯媛, 姜建彪. 石家庄市环境空气中VOCs及恶臭污染特征研究[J]. 河北工业科技, 2013, 30(4): 291-296.
Yang L L, Feng Y, Jiang J B. Characteristics of air VOCs and odor pollutants of Shijiazhuang City[J]. Hebei Journal of Industrial Science and Technology, 2013, 30(4): 291-296.
[166] 姚青, 韩素芹, 张裕芬, 等. 天津夏季郊区VOCs对臭氧生成的影响[J]. 环境科学, 2020, 41(4): 1573-1581.
Yao Q, Han S Q, Zhang Y F, et al. Effects of VOCs on ozone formation in the Tianjin Suburbs in summer[J]. Environmental Science, 2020, 41(4): 1573-1581.
[167] 张冰洁. 南京工业园区挥发性有机物污染特征观测研究[D]. 南京: 南京信息工程大学, 2016.
[168] 张玉欣, 安俊琳, 王俊秀, 等. 南京工业区挥发性有机物来源解析及其对臭氧贡献评估[J]. 环境科学, 2018, 39(2): 502-510.
Zhang Y X, An J L, Wang J X, et al. Source analysis of volatile organic compounds in the Nanjing Industrial Area and evaluation of their contribution to ozone[J]. Environmental Science, 2018, 39(2): 502-510.
[169] 郑俊. 上海市典型工业区大气中VOCs及其来源分析[J]. 上海师范大学学报(自然科学版), 2017, 46(2): 298-303.
Zheng J. Study on VOCs in atmosphere and their sources of a typical industrial park in Shanghai[J]. Journal of Shanghai Normal University (Natural Sciences), 2017, 46(2): 298-303.
[170] 张莹婷. 国务院印发《"十三五"生态环境保护规划》[J]. 工业炉, 2020, 42(3): 31.
[171] 中华人民共和国生态环境部政策法规司. 国务院关于印发国家环境保护"十二五"规划的通知[EB/OL]. http://www.mee.gov.cn/zcwj/gwywj/201811/t20181129_676522.shtml, 2011-12-21.
[172] 中央政府门户网站. 国务院关于印发大气污染防治行动计划的通知[EB/OL]. http://www.mee.gov.cn/zcwj/gwywj/201811/t20181129_676555.shtml, 2013-09-12.
[173] 全国人大常委会. 中华人民共和国大气污染防治法(2015修订)[EB/OL]. https://duxiaofa.baidu.com/detail?cid=4c1f15fa8c652dd2d01b1a31a5563585_law&searchType=statute, 2015-08-29.
[174] 新华社. 中华人民共和国国民经济和社会发展第十三个五年规划纲要[EB/OL]. http://www.xinhuanet.com//politics/2016lh/2016-03/17/c_1118366322.htm, 2016-03-17.
[175] 国务院. 国务院关于印发"十三五"节能减排综合工作方案的通知[EB/OL]. http://www.mee.gov.cn/ywgz/fgbz/gz/201701/t20170106_394020.shtml, 2017-01-06.
[176] 中共中央办公厅, 国务院办公厅. 中共中央办公厅国务院办公厅印发《关于构建现代环境治理体系的指导意见》[EB/OL]. http://www.mee.gov.cn/zcwj/zyygwj/202003/t20200303_767074.shtml, 2020-03-03.
[177] 叶代启, 刘锐源, 田俊泰. 我国挥发性有机物排放量变化趋势及政策研究[J]. 环境保护, 2020, 48(15): 23-26.
Ye D Q, Liu R Y, Tian J T. Trends of volatile organic compounds emissions and research on policy in China[J]. Environmental Protection, 2020, 48(15): 23-26.
[178] 生态环境部, 国家发展和改革委员会, 工业和信息化部, 等. 关于印发《长三角地区2019-2020年秋冬季大气污染综合治理攻坚行动方案》的通知[EB/OL]. http://www.mee.gov.cn/xxgk2018/xxgk/xxgk03/201911/t20191112_741901.html, 2019-11-06.
[179] 广东省环境保护厅, 广东省发展和改革委员会, 广东省财政厅, 等. 关于印发《广东省挥发性有机物(VOCs)整治与减排工作方案(2018-2020年)》的通知(有效)[EB/OL]. http://gdee.gd.gov.cn/shbtwj/content/post_2305531.html, 2018-06-28.
[180] 河北省环境保护厅. 关于印发《建筑类涂料与胶粘剂挥发性有机化合物含量限值标准》的通知[EB/OL]. http://hbepb.hebei.gov.cn/root8/auto454/202003/t20200303_91316.html, 2017-05-03.
[181] Zheng C H, Shen J L, Zhang Y X, et al. Atmospheric emission characteristics and control policies of anthropogenic VOCs from industrial sources in Yangtze River Delta region, China[J]. Aerosol and Air Quality Research, 2017, 17(9): 2263-2275.
[182] GB 37822-2019, 挥发性有机物无组织排放控制标准[S].
[183] 蒋卫兵. 工业固定源挥发性有机物治理技术效果研究[J]. 资源节约与环保, 2020(1): 1-3, 6.
[184] 高宗江, 李成, 郑君瑜, 等. 工业源VOCs治理技术效果实测评估[J]. 环境科学研究, 2015, 28(6): 994-1000.
Gao Z J, Li C, Zheng J Y, et al. Evaluation of industrial VOCs treatment techniques by field measurement[J]. Research of Environmental Sciences, 2015, 28(6): 994-1000.
[185] 栾志强, 郝郑平, 王喜芹. 工业固定源VOCs治理技术分析评估[J]. 环境科学, 2011, 32(12): 3476-3486.
Luan Z Q, Hao Z P, Wang X Q. Evaluation of treatment technology of volatile organic compounds for fixed industrial resources[J]. Environmental Science, 2011, 32(12): 3476-3486.
[186] 江梅, 张国宁, 魏玉霞, 等. 工业挥发性有机物排放控制的有效途径研究[J]. 环境科学, 2011, 32(12): 3487-3490.
Jiang M, Zhang G N, Wei Y X, et al. Emission control way of volatile organic compounds in industry[J]. Environmental Science, 2011, 32(12): 3487-3490.
[187] 王海林, 王俊慧, 祝春蕾, 等. 包装印刷行业挥发性有机物控制技术评估与筛选[J]. 环境科学, 2014, 35(7): 2503-2507.
Wang H L, Wang J H, Zhu C L, et al. Evaluation and selection of VOCs treatment technologies in packaging and printing industry[J]. Environmental Science, 2014, 35(7): 2503-2507.
[188] 李佳羽, 刘利民, 韩建华, 等. 典型化工园区VOCs排放控制技术的评价[J]. 化工进展, 2016, 35(4): 1250-1256.
Li J Y, Liu L M, Han J H, et al. Evaluation of VOCs emission control technologies in typical chemical industry park[J]. Chemical Industry and Engineering Progress, 2016, 35(4): 1250-1256.
[189] 胡庆荣. 水性涂料废渣利用及废水废气处理技术[J]. 云南化工, 2018, 45(7): 145-146.
Hu Q R. Utilization of waste water from waterborne coatings and treatment technology of wastewater and waste gas[J]. Yunnan Chemical Technology, 2018, 45(7): 145-146.
[190] 欧洲共同体联合研究中心. 污染综合防治技术的经济效益与跨介质影响[M]. 北京: 化学工业出版社, 2013. 16-31.
[191] 羌宁, 史天哲, 缪海超. 挥发性有机物污染控制方案的运行费用效能比较[J]. 环境科学, 2020, 41(2): 638-646.
Qiang N, Shi T Z, Miao H C, et al. Operation and maintenance of cost-effective volatile organic compounds abatement alternatives[J]. Environmental Science, 2020, 41(2): 638-646.