水圈生态系统中, 微生物群落及其代谢功能与通路复杂多样[1], 许多原核微生物和真核微生物均可代谢产生异嗅化合物[2], 如洋假鱼腥藻、丝状蓝藻、席藻和颤藻等40余种藻类[3, 4]、放线菌[5]及黏细菌[6].其代谢产生异嗅化合物种类繁多, 就目前报道的已达67种, 以2-甲基异冰片(2-methylisoborneol, 2-MIB)和土臭素(trans-1, 10-dimethyl-trans-9-decalol, GSM)[2, 7~14]研究最多, 即使痕量存在于水环境中, 也可产生强烈的异嗅味, 致使公众对水质安全颇为关注[2, 7, 10, 15~23], 系列水环境安全与健康事件频发, 影响全球的水生态系统与城镇供水安全[2].
近年来, 水环境异嗅问题备受关注[24], 成为供水领域的世界性热点问题, 尤其是水源水库[8, 25]和湖泊[26~28]等缓流水生态系统.据统计, 中国重点城市的111座自来水处理厂(DWTPs)均有异嗅事件发生[22], 且中国东部和南部地区异嗅化合物浓度更高, 以霉味/土味和沼泽/腐臭味为主[29]. 2015~2016年, 英国Plas Uchaf水源水库中的2-MIB和GSM浓度峰值达到60 ng·L-1和140 ng·L-1[8]. 2019年, 中国江苏省17个水源水库中有1/3水库的2-MIB超标[30].此外, 我国学者对典型水环境异嗅问题的调查表明, 在太湖及滇池等富营养化的湖泊之中异嗅问题尤为突出[31], 水源地已丧失供水功能.
迄今为止, 国内外学者在水环境异嗅化合物控制的研究上已有建树, 以物理和化学法为主, 应用广泛.微生物法对环境友好, 近年来研究热度逐渐增加[32~43].对于诸如水环境致嗅放线菌是否来源于陆生休眠孢子等问题尚不明确[2], 且存在异嗅化合物浓度影响因素、微生物产嗅机制等方面的系统性研究缺乏和水源水库异嗅问题研究不足等问题.基于此, 本文在回顾已有研究的基础上, 对异嗅化合物的种类、生物源、去除措施和形成机制进行较为全面地综述, 通过推进异嗅化合物的相关研究, 以期为我国供水安全提供科技支撑.
1 异嗅物 1.1 异嗅化合物种类目前, 存在于水环境中的异嗅化合物主要包括(图 1和表 1):GSM、2-MIB、2-异丙基-3-甲氧基吡嗪(IPMP)、2-异丁基-3-甲氧基吡嗪(IBMP)、2, 3, 6-三氯苯甲醚(2, 4, 6-TCA)、三甲基胺、β-环柠檬醛和β-紫罗兰酮[5, 7, 9, 12, 17, 21, 22, 31, 44~50], 及有机硫化物、醛类、酚类、苯类、醚类、酯类、酮类和含氮杂环化合物等[21, 47].GSM表现为土味, 2-MIB表现为霉味, 常与土霉味嗅味事件相关[51], 是水体异味问题的关键化合物[14, 47].嗅阈值均低于10 ng·L-1[3, 28, 51, 52], 却可引起强烈的异嗅味, 为研究热点之一[53].Chiu等[16]于2012年对中国台湾29个水源水库调查研究证实, 2-MIB为水源水库异嗅事件的常见异嗅化合物, 这与Tsao等[11]的研究结果相同.同时, Sun等[22]的研究发现2-MIB引发的异味事件在地表水中发生率高达75%.此外, IPMP、IBMP和氯苯甲醚也是常见的土霉味物质[51].对于氯苯甲醚的研究, 主要集中在2, 4-二氯苯甲醚(2, 4-DCA)、2, 6-二氯苯甲醚(2, 6-DCA)和2, 4, 6-TCA[36, 42, 54, 55](阈值为0.03~4 ng·L-1)上.β-环柠檬醛表现为木头/青草味, β-紫罗兰酮表现为芳香/紫罗兰味[45], 也可引起感官不适, 常与GSM和2-MIB共存于水环境中[56].表现为沼泽/腐臭味的异嗅化合物则主要包括二甲基二硫化物(DMDS)、二甲基三硫化物(DMTS)[47]、二乙基二硫化物(DEDS)、二异丙基硫化物(DIPS)、二丙基硫化物(DPS)、双(2-氯异丙基)醚(BCIE)、二丁基硫醚(DBS)和吲哚等[29].其中, BCIE、DEDS和DMDS为腐臭类异味的3种典型化合物[26].Acero等[57]的研究认为在氯化作用中会有溴酚类异嗅化合物产生, 如2-溴苯酚和2, 6-二溴苯酚(气味阈值分别为30 ng·L-1和0.5 ng·L-1), 可使饮用水产生异嗅味.
![]() |
图 1 水环境中常见异嗅化合物分子结构 Fig. 1 Molecular structures of common taste and odor compounds in aquatic ecosystems |
![]() |
表 1 水环境中典型异嗅化合物 Table 1 Typical off-flavor compounds in aquatic ecosystems |
1.2 致嗅微生物种类及主要致嗅产物
早在1891年, Berthelot和Andre首次提出放线菌可代谢产生土/霉味物质[20]. 1964年, Gerber于放线菌培养基中得到GSM和2-MIB[68].因此, 土/霉味物质被认为最早来源于放线菌[2, 21, 34].放线菌广泛存在于地球生物圈内, 代谢产物常具有异嗅味[17], 即使在水环境中, 依旧为主要致嗅微生物[69].学者们深入研究后揭示, 链霉菌(Streptomyces)是放线菌中引发水生环境异嗅问题的主要贡献者[39, 64, 70], 包括灰色链霉菌(Streptomyces griseus)、土味链霉菌(Streptomyces odorifer)[67]和淡黄链霉菌(Streptomyces flaveolus)[48]等, 均可不同程度产生2-MIB和GSM, 且GSM为典型次级代谢产物.
随后, Jenkins等[23]采用气相色谱技术在蓝藻培养物及含藻饮用水源中发现了几种含硫有机异嗅化合物, 如DMDS、甲基硫醇、异丁基硫醇和N-丁基硫醇[37]. 1994年, Sugiura等[71]的研究中发现放线菌与藻类共生时, 异嗅事件频繁发生, 异嗅化合物浓度显著增高.因此, 人们将注意力转向藻类[20, 21, 25, 39, 68, 72].后续研究证明鱼腥藻(Anabaena spp.)[20, 25, 39, 61, 68, 69, 73]产生GSM, 席藻(Phormidium spp.)[61, 73]、小颤藻(Oscillatoria spp.)[8, 20, 25, 39, 61, 68]和洋假鱼腥藻(Pseudanabaena spp.)[3]产生2-MIB, 小球藻(Chlorella vulgaris)和水华鱼腥藻(Anabaena flos-aquae)代谢2, 4, 6-TCA的能力很强, 湖泊水体中致嗅贡献显著[54].铜绿微囊藻(Microcystis aeruginosa)在繁殖过程中可能产生β-环柠檬醛[46], 硅藻(diatom)被激活时也可产生异嗅化合物[20, 25, 39, 68].更有学者认为, 蓝藻才是水环境中异嗅化合物的主要贡献者[9, 45].Chiu等[16]指出2-MIB为蓝藻代谢产生的常见异嗅化合物.Tsao等[11]分别从澳大利亚和中国台湾地表水中分离得到21株致嗅蓝藻, 均可代谢合成GSM. Sun等[22]经调查湖泊和水源水库发现, 水样多数表现出藻源性异嗅味.日本学者对产生嗅味的30余个蓄水池、湖泊及水源水库的研究表明, 即使藻含量很低, 也会产生较浓异嗅味[20]. Suurnäkki等[65]检测100株蓝藻的致嗅能力时发现, 蓝藻的6个属21株菌均可产生GSM, 有两株同时产生2-MIB, 且在另外55株菌中发现其他异嗅化合物, 如非类胡萝卜素、β-紫罗兰酮和β-环柠檬醛. Zhang等[49]在太湖藻华暴发期采样, 发现IPMP和IBMP、β-紫罗兰酮和β-环柠檬醛主导异嗅事件.Wang等[29]的研究认为, 藻类暴发是硫醚浓度升高的原因.
此外, 一些黏细菌、阿米巴、真菌(如霉菌)、少数植物(如红甜菜)和倍足纲节动物亦可产生异嗅化合物[20, 25, 27, 39, 68]. 2018年, Zhang等[36]为分析产生三氯苯甲醚的菌株, 采用高通量技术对饮用水配水系统中的生物膜进行测序, 结果发现细菌:不动杆菌(Acinetobacter)、假单胞菌(Pseudomonas)、微杆菌(Microbacterium)与红球菌(Rhodococcus); 真菌:曲霉(Aspergillus)、根霉(Rhizopus)与青霉(Penicillium)为优势菌属.Lukassen等[6]的研究认为藻类、链霉菌和黏细菌主导再循环水产业养殖系统异嗅事件.
1.3 异嗅化合物分泌的影响因素水环境中的异嗅味直接影响群众对水质的美学评价, 是水质安全性评价的关键参数.因此, 了解环境、生物和化学因素对异嗅化合物分泌的影响至关重要(表 2).有研究表明, 异嗅化合物的分泌主要与水质参数[pH值、透明度、水温、溶解氧(DO)、氧化还原电位(ORP)及微量金属元素等]和共生微生物等具有相关性[2, 8, 14, 25, 27, 28, 30, 49, 54, 55, 71, 73, 74].当致嗅微生物处于培养状态时, 培养基配方、培养时长与温度等影响着异嗅化合物产量[44, 48, 58].此外, 自来水管网的管材、流速与余氯含量等与异嗅化合物浓度有一定的关系[36].在流域尺度上, 地表径流也会增加水生环境的异嗅化合物浓度[17].
![]() |
表 2 异嗅化合物浓度影响研究 Table 2 Effects of concentration of off-flavor compounds |
1.4 异嗅化合物富集措施
异嗅化合物为挥发性物质, 常以ng·L-1存在于水环境中, 易损失.因此, 在检测之前, 选择有效地富集措施尤为关键[34, 56].
目前报道的异嗅化合物富集措施有闭环吹脱技术(closed-loop stripping analysis, CLSA)、树脂吸附(resin adsorption, RA)、液液萃取法(liquid-liquid extraction, LLE)[47]、液液微萃取技术(liquid-liquid microextraction, LLME)、固相萃取法(solid phase extraction, SPE)[8]、固相微萃取技术(solid-phase microextraction, SPME)[10, 13, 28, 29, 35, 36, 44, 49, 53, 54, 65]、搅拌棒吸附提取技术(stir-bar sorptive extraction, SBSE)[78]、液相微萃取法(liquid-phase microextraction, LPME)、吹扫捕集(purge and trap, P&T)、静态顶空(static headspace, SH)和动态顶空(dynamic headspace, DH)等, 这些方法都具有不同程度的局限性, 如耗时长、灵敏度差及易造成二次污染等[7, 9, 21, 50, 59, 79, 80].随着萃取技术的提高, 顶空-固相微萃取技术(headspace solid-phase microextraction, HS-SPME)具有功能一体化, 容易操作、省时、萃取头循环使用、环境友好及自动进样等优点, 近年来被广泛使用[9, 56, 80].为了提高异嗅化合物检测的精确度与灵敏度, 也有学者将同位素标记法和LLE结合, 实现同时定量测定水环境中51种异嗅化合物[47].
1.5 异嗅化合物检测分析方法迄今为止, 对于嗅味化合物的检测方法主要有感官评价法[48, 62, 81]和仪器测定法[20, 21, 56, 79, 82, 83].还有一些基于非离子检测方法, 如溴代反应(bromine reaction)、酶联免疫检测(enzyme-linked immunosorbent assay)、化学发光反应(chemiluminescence reaction)、生物电子鼻(bioelectronic nose)及电子舌(electronic tongues)等, 但由于检测分析技术不够成熟, 并未得到广泛使用[7, 21, 79].
采用感官评价法评定异嗅味强度[84]的方法, 可了解水中异嗅化合物的物理特征, 快读便捷.包括嗅觉阈值检测法(NTO)、嗅觉层次分析法(FPA)[22, 26]及嗅味等级描述法(FRA).NTO与FPA检测原理相似, 最早用于检测嗅度[21, 76, 85, 86], 需提前稀释水样, 而FPA则不需要做任何预处理, 直接用文字表明水样气味特性和强度, 划分出层次即可.FRA法要求评估小组成员分别在20℃与煮沸稍冷时嗅水样味道, 并描述水样味道特征.在中国, FRA评价标准被分为六级, 美国七级, 而日本则为九级.但评估小组嗅觉、水体杂质及环境等因素影响评估结果, 存在较大误差, 无法实现量化表征.因此, 国内外大多采用仪器测定法[80, 82].
气相色谱-质谱联用技术(gaschromatography-mass spectrometry, GC-MS)是目前最常采用的检测方法[8, 9, 16, 22, 29, 35, 49, 60, 80, 87].Suurnäkki等[65]采用GC-MS研究蓝藻的致嗅特性, Zhang等[36]采用GC-MS检测2, 4, 6-TCA[54], Ma等[10]采用GC-MS鉴定出GSM和2-MIB是UV/Cl处理过程中产生的副产物.为了对此技术进行优化, Wu等[53]优化了提取温度、提取时间、解吸时间、超声处理温度、超声处理时间和GC/MS配置温度程序等参数, 使得在全扫描模式下分析的异嗅化合物达到1~300 ng·L-1的线性响应要求, 且对2-MIB和GSM的检测限降为1 ng·L-1, Chen等[13]通过优化SPME纤维、提取温度与时间、解吸时间、搅拌条件及NaCl剂量等, 使得GC-MS检测限达到0.1~73 ng·L-1, 接近异嗅阈值甚至更低.
此外, 有学者在火焰离子检测器(FID)模式的基础上, 采用气相色谱技术(gas chromatography spectrometry, GC)分析GSM和2-MIB(检测限为1.5 ng·L-1)[11, 14].当化学电离技术与飞行时间质谱结合时, 由于高电离效率, 异嗅化合物能被快速检测, 且不需要预富集操作[66].近年来, 又研究表明将分子印迹聚合物(MIPs)与荧光标记竞争性置换技术运用于测定异嗅化合物的方法兼具可视性、快速和灵敏的特点, 具有极高的应用价值和发展前景[59].
1.6 异嗅化合物去除措施异嗅化合物的有效去除一直持有研究热度.常用的物理方法有吸附剂吸附法及紫外线辐射法(UV)[32, 33], 粉末状活性炭吸附剂(PCA)应用广泛[15].Kim等[35]将PAC和膜法联合使用, 18~20 mg·L-1优级PAC在60 min内便可将初始浓度为50 ng·L-1、200 ng·L-1的2-MIB和GSM去除至检出限以下, 且当温度从5℃升至20℃时, 异嗅化合物的去除率倍增.有研究发现, 葡萄籽油可使初始浓度为360 ng·L-1的GSM降低81%~83%[60], 具有发展潜力.UV可降解GSM和2-MIB[10], 但有副产物生成, 造成二次污染[32].
化学处理方法则是通过氧化作用降低水环境中异嗅化合物浓度[9, 23, 33].pH值为7.0~10.0时, 臭氧对2-MIB的去除效果显著[88].TiO2电化学降解法快速、有效[32].高铁酸钾在1 min之内可将DMTS去除92.5%, 效果远高于高锰酸钾(10 min去除率为74.6%)[38].过氧乙酸使部分致嗅微生物失活[39].Xu等[3]发现H2O2具有降解2-MIB的能力.Bu等[40]证实掺硼金刚石对GSM和2-MIB的降解效率高于其他活性阳极, 相较硝酸盐或高氯酸盐电解质, 硫酸盐电解质对异嗅化合物的降解速率更快.电流密度变大、pH降低有利于2-MIB和GSM的降解.但当氧化剂为Cl2和ClO2等时, 去除效果不佳[10, 41].由于异嗅化合物的挥发性、低浓度, 使得化学平衡难以实现.所以化学处理方法的去除效果并不理想[34].
因此, 有学者联合使用物理和化学处理方法.Ma等[10]采用UV/Cl法, 5min内异嗅化合物的去除率达90%, 紫外线强度升高, 游离氯剂量加大和酸性环境都可以显著加快去除速度并提高去除率.Luo等[42]利用UV/过硫酸盐工艺, 酸性环境下过硫酸盐剂量增加, 可显著去除2, 4, 6-TCA.而相较单独使用真空UV, 真空UV/过二硫酸盐会将GSM和2-MIB的去除率分别提高76%和74%[43].此外, 生物处理法也是去除水环境中异嗅化合物的有效措施[9], 相较以上方法更加经济与环保. 1974年, 有学者发现枯草芽孢杆菌和蜡状芽孢杆菌可去除GSM[32]. Sumitomo[89]的研究又发现假丝酵母菌具有去除2-MIB的能力.随后, 假单胞菌[90]、肠杆菌[91]、甲基科菌、草酸杆菌科细菌[92]、黄杆菌、球形芽孢杆菌、中华根瘤菌及寡养单胞菌[32]等陆续被证明能够降解GSM和2-MIB.有研究表明, 生物膜是移动床生物膜反应器反应过程中去除异嗅化合物的关键[5].针对异嗅化合物的控制, 需要继续创新, 挑战依旧艰巨.综上而言, 生物处理法最有应用前景, 但技术不成熟, 降解机制不明确, 仍需深入研究[32].
2 致嗅放线菌研究 2.1 致嗅放线菌分离培养迄今为止, 大多数致嗅放线菌是使用根据放线菌代谢特性和营养需求设计的培养基从环境样品中筛选得到的[93].高氏一号培养基被广泛使用, 常与重铬酸钾溶液联合使用, 选择性分离放线菌菌株[25, 44, 48, 74, 94~97].其他常见配方还有腐殖酸琼脂培养基[93]、国际链霉菌计划培养基2[44, 94, 97, 98]、基础盐培养基[27]和黄豆粉培养基[99~102]等(表 3).
![]() |
表 3 放线菌培养基类型 Table 3 Type of actinomycetes medium |
2.2 致嗅放线菌鉴定:形态学和分子生物学
放线菌具有菌丝体, 菌落呈放射状, 属革兰氏阳性菌[93].大多数学者利用放线菌选择培养基, 根据菌落形态和致嗅特性初步判定, 再利用基因测序技术进行鉴定, 筛选出致嗅放线菌[17]. 1997年, Heuer等[105]利用大肠杆菌基因位点的226~243片段作为放线菌特异性正向引物243F, 采用温度梯度凝胶电泳(TGGE)和变性梯度凝胶电泳(DGGE)评估放线菌在微生物群落中的相对丰度.Klausen等[28]采用16S rRNA鉴定放线菌菌株, 但由于特异性引物太宽而效果不佳.因此针对放线菌生物学和分类鉴定, 该学者提出必须使用特异性较窄的基因探针.随后, 放线菌高效特异性引物被陆续报道(表 4).Auffret等[106]建立实时定量PCR方法, 采用Streptomyces特异性引物AMgeoF/R, 鉴定致嗅放线菌菌种, 为Lindholm-Lehto等[39]的研究提供了科学依据.陈娇等[44]使用特异性引物S-C-Act-235-a-S-20F与S-C-Act-878-a-A-19R对放线菌菌种进行鉴定.随着基因测序技术的发展, 高通量测序的出现, 为放线菌产生异嗅化合物的相关基因的研究带来了希望, 将丰富对致嗅放线菌的存在、活性及潜在环境作用的认识[2].
![]() |
表 4 放线菌测序的特异性引物类型 Table 4 Specific primer types for actinomycete sequencing |
2.3 常见的致嗅放线菌类别
近年来, 水环境致嗅放线菌被陆续报道, 以链霉菌为主[67, 106, 108], 诺卡氏菌其次[28].表 5中为水生态系统中被发现的部分致嗅放线菌, 因栖息环境的物理、化学及生物等因素的不同, 致嗅能力也具有差异性.
![]() |
表 5 致嗅放线菌与异嗅物1) Table 5 Odor-producing actinomycetes and odorants |
2.4 典型水环境中致嗅放线菌分布情况
有研究发现, 几乎所有水环境中都广泛存在着放线菌, 如水循环养殖系统、湖泊、溪流、海洋和水源水库等典型水环境(表 6). 1994年, 日本学者便在富营养的Kasumigaura湖中发现两株具有致嗅能力的链霉菌[71], 又有研究人员于水产养殖场养鱼池沉积物中分离得到半链霉菌(Strreptomyces halstedii), 在麦芽糖为唯一碳源时, 半链霉菌致嗅能力加强[58], Auffret等[106]也分离出了两株可产生GSM和2-MIB的链霉菌.Klausen等[28]在溪流中发现了致嗅放线菌; 陈娇等[44]从水源水库中分离得到的40株放线菌均具有致嗅作用, Park等[69]则分离得到60株具有致嗅作用的放线菌均为链霉菌, 而在Zuo等[25]的研究中认为, 水源水库水样异嗅化合物浓度与沉积物相关, 这些研究均为水环境放线菌的存在提供了证据.在热带地区, 年均适宜的温度促使水环境异嗅事件频发[113].关于水环境放线菌的来源研究中, Asquith等[70]的研究猜测, 地表径流的冲刷作用, 大大丰富了水环境放线菌生物多样性及生物密度, 为水环境放线菌的来源提出了新的研究方向.而对于海生红球菌(Rhodococcus marinonascens)、海藻气单胞菌(Aeromicrobium marinum)、链霉菌(Streptomyces)、放线菌(Actinoplanetes)和微单孢菌属(Micromonospora)的生境更像是水环境[2, 17, 114].然而, 水生态系统相对于陆生环境中放线菌数量却显得极少[115].
![]() |
表 6 水环境致嗅放线菌研究 Table 6 Research on odor-producing actinomycetes in water ecosystems |
3 致嗅微生物分泌异嗅化合物的产嗅机制
对于2-MIB的生物合成途径, 多数学者认为与磷酸(GPP)有关, 且放线菌和蓝藻具有相似性[110, 112, 116].Komatsu等[110]将Markoy模型、蛋白质家族与基因序列比对相结合, 发现在GPP甲基转移酶和单萜环化酶的作用下, GPP即可转化为2-MIB.合成机制具体如下:①异戊烯基焦磷酸(isopentenyl diphosphate, IPP)和二甲基烯丙基焦磷酸(dimethylallyl diphosphate, DMAPP)在GPP合成酶催化下合成GPP, GPP又经GPP甲基转移酶转化为甲酰化GPP; ②Mg2+和单萜环化酶(2-MIB合成酶)将甲酰化GPP环化生成2-MIB.后有学者认为微生物可将死亡蓝藻细胞裂解后释放的二甲基磺基丙酯(dimethyl-sulfoniopropi-onate, DMSP)转化为DMDS, 部分DMDS继续被转化生成甲硫醚和甲硫醇.厌氧条件下, 微生物可直接将DMSP转化生成甲硫醇.此外, 胡萝卜素在溶解氧的诱导下可产生β-环柠檬醛[31].这为Zhang等[46]的研究提供了一定的科学依据, 证明了β-环柠檬醛浓度与胡萝卜素浓度的正相关性.Zhang等[54]进一步研究后提出, 苯酚邻甲基转移酶(CPOMTs)可将2, 4, 6-三氯苯酚(2, 4, 6-TCP)催化生成2, 4, 6-TCA, 在此过程中, 依赖性活性腺苷甲硫氨酸(SAM)和非依赖性SAM的CPOMTs均起到重要作用, 胞外CPOMTs也参与了2, 4, 6-TCA的生物合成.Tsao等[11]采用qPCR技术研究21株蓝藻, 证实基因geoA主导GSM的合成[6].在Suurnäkki等[65]的实验中同样验证了GSM和2-MIB的合成与基因geoA相关, 蓝藻中的geoA和2-MIB合成酶的基因序列与放线菌、变形杆菌的萜烯合成酶基因序列具有同源性.
Citron等[117]在放线菌中发现了55种GSM合成酶、23种2-MIB同系物合成酶及98种其他倍半萜烯环化酶同系物.Singh等[111]对Streptomyces peucetius基因组深入研究发现, 倍半萜烯合成酶基因表达时, 可使菌株产生大量GSM.Auffret等[106]对分离得到的7株致嗅链霉菌进行基因检测, 发现产生GSM的菌株中均发现geoA基因, 产生2-MIB的菌株中则发现tpc基因, Anuar等[27]的实验证实了这一结果.Lindholm-Lehto等[39]的研究也发现, 当GSM浓度较高时, geoA基因含量相应较高, 进一步确定基因geoA在GSM合成过程中的作用.此外, 有学者指出, 链霉菌的次生菌丝发育过程中会产生GSM和2-MIB[2].综上, 胞内部分异嗅化合物生物合成途径如图 2所示.然而, 菌体具体的泌嗅机制尚需进一步研究.
![]() |
图 2 细胞内部分异嗅化合物生物合成机制 Fig. 2 Biosynthesis mechanism of some taste and odor compounds in cells |
对于缓解全球水环境问题而言, 对异嗅化合物的控制至关重要.深入研究异嗅化合物产生和释放机制的规律, 是优化水质和缓减全球水环境异嗅问题的关键.国内外学者在异嗅化合物的种类、来源、尤其是控制措施有了较为全面地研究, 而随着异嗅问题的深入促使人们对控制措施要求更高, 其发展潜力在于微生物法控制上.迄今对于异嗅化合物影响因素的研究逐渐增多, 但影响因素体系尚未形成.虽然部分异嗅化合物生物合成途径的研究取得突破性进展, 随着高通量技术的发展, 仍需深入研究, 丰富生物合成层面的知识.至今与水环境致嗅放线菌相关的研究, 仍存在大量问题, 亟待解决:①尚不明确水源水库致嗅放线菌是否完全来源于陆生环境, 对于异嗅味贡献报道缺乏; ②致嗅放线菌的快速有效鉴定方法缺乏、致嗅途径及系统发育树研究不足; ③致嗅放线菌与异嗅化合物的相关性尚未确定等.综上, 对于异嗅化合物的全面分析有助于水环境异嗅问题的治理, 后续研究应具有侧重点:①深入研究微生物控制异嗅化合物的机制, 实现应用价值; ②系统分析异嗅化合物影响因素, 从生境层面上调控异嗅味; ③探索致嗅微生物新的代谢途径, 基于合成生物学技术研发异嗅物分解工程菌, 用于控制工程系统中的异嗅物质.
[1] | Dias M F, da Rocha Fernandes G, Cristina de Paiva M, et al. Exploring the resistome, virulome and microbiome of drinking water in environmental and clinical settings[J]. Water Research, 2020, 174. DOI:10.1016/j.watres.2020.115630 |
[2] | Asquith E A, Evans C A, Geary P M, et al. The role of Actinobacteria in taste and odour episodes involving geosmin and 2-methylisoborneol in aquatic environments[J]. Journal of Water Supply:Research and Technology-Aqua, 2013, 62(7): 452-467. DOI:10.2166/aqua.2013.055 |
[3] | Xu H Z, Brookes J, Hobson P, et al. Impact of copper sulphate, potassium permanganate, and hydrogen peroxide on Pseudanabaena galeata cell integrity, release and degradation of 2-methylisoborneol[J]. Water Research, 2019, 157: 64-73. DOI:10.1016/j.watres.2019.03.082 |
[4] | Lu K Y, Chiu Y T, Burch M, et al. A molecular-based method to estimate the risk associated with cyanotoxins and odor compounds in drinking water sources[J]. Water Research, 2019, 164. DOI:10.1016/j.watres.2019.114938 |
[5] | Doederer K, Gale D, Keller J. Effective removal of MIB and geosmin using MBBR for drinking water treatment[J]. Water Research, 2019, 149: 440-447. DOI:10.1016/j.watres.2018.11.034 |
[6] | Lukassen M B, Saunders A M, Sindilariu P D, et al. Quantification of novel geosmin-producing bacteria in aquaculture systems[J]. Aquaculture, 2017, 479: 304-310. DOI:10.1016/j.aquaculture.2017.06.004 |
[7] | Bristow R L, Young I S, Pemberton A, et al. An extensive review of the extraction techniques and detection methods for the taste and odour compound geosmin (trans-1, 10-dimethyl-trans-9-decalol) in water[J]. Trends in Analytical Chemistry, 2019, 110: 233-248. DOI:10.1016/j.trac.2018.10.032 |
[8] | Perkins R G, Slavin E I, Andrade T M C, et al. Managing taste and odour metabolite production in drinking water reservoirs:the importance of ammonium as a key nutrient trigger[J]. Journal of Environmental Management, 2019, 244: 276-284. |
[9] | Srinivasan R, Sorial G A. Treatment of taste and odor causing compounds 2-methyl isoborneol and geosmin in drinking water:a critical review[J]. Journal of Environmental Sciences, 2011, 23(1): 1-13. |
[10] | Ma L F, Wang C Y, Li H P, et al. Degradation of geosmin and 2-methylisoborneol in water with UV/chlorine:influencing factors, reactive species, and possible pathways[J]. Chemosphere, 2018, 211: 1166-1175. DOI:10.1016/j.chemosphere.2018.08.029 |
[11] | Tsao H W, Michinaka A, Yen H K, et al. Monitoring of geosmin producing Anabaena circinalis using quantitative PCR[J]. Water Research, 2014, 49: 416-425. DOI:10.1016/j.watres.2013.10.028 |
[12] | Schöller C E G, Gürtler H, Pedersen R, et al. Volatile metabolites from actinomycetes[J]. Journal of Agricultural and Food Chemistry, 2002, 50(9): 2615-2621. DOI:10.1021/jf0116754 |
[13] | Chen X C, Luo Q, Yuan S G, et al. Simultaneous determination of ten taste and odor compounds in drinking water by solid-phase microextraction combined with gas chromatography-mass spectrometry[J]. Journal of Environmental Sciences, 2013, 25(11): 2313-2323. DOI:10.1016/S1001-0742(12)60290-3 |
[14] | Wang R, Li D, Jin C X, et al. Seasonal occurrence and species specificity of fishy and musty odor in Huajiang Reservoir in winter, China[J]. Water Resources and Industry, 2015, 11: 13-26. DOI:10.1016/j.wri.2015.04.002 |
[15] | Huang X, Lu Q, Hao H T, et al. Evaluation of the treatability of various odor compounds by powdered activated carbon[J]. Water Research, 2019, 156: 414-424. DOI:10.1016/j.watres.2019.03.043 |
[16] | Chiu Y T, Yen H K, Lin T F. An alternative method to quantify 2-MIB producing cyanobacteria in drinking water reservoirs:method development and field applications[J]. Environmental Research, 2016, 151: 618-627. DOI:10.1016/j.envres.2016.08.034 |
[17] | Zaitlin B, Watson S B. Actinomycetes in relation to taste and odour in drinking water:myths, tenets and truths[J]. Water Research, 2006, 40(9): 1741-1753. DOI:10.1016/j.watres.2006.02.024 |
[18] |
李维唯, 郭康宁, 刘莉文, 等. 若干水华相关藻类对太湖水体异味物质贡献的初步研究[J]. 湖泊科学, 2018, 30(4): 916-924. Li W W, Guo K N, Liu L W, et al. Relationship of odor compounds to some algal strains associated with bloom in Lake Taihu[J]. Journal of Lake Science, 2018, 30(4): 916-924. |
[19] |
李勇, 陈超, 张晓健, 等. 东江水中典型致嗅物质的调查[J]. 中国环境科学, 2008, 28(11): 974-978. Li Y, Chen C, Zhang X J, et al. Typical odorant component of Dongjiang River in China——a survey[J]. China Environmental Science, 2008, 28(11): 974-978. |
[20] |
李宁, 安裕敏, 张军方. 饮用水中土臭素和二甲基异冰片检测方法[J]. 环保科技, 2014, 20(2): 39-43. Li N, An Y M, Zhang J F. Reviews on test methods of geosmin and 2-methylisoborneo in drinking water[J]. Environmental Protection and Technology, 2014, 20(2): 39-43. |
[21] |
沈丽娟. 水体异味来源及致嗅物质检测技术概述[J]. 环境研究与监测, 2019, 32(1): 23-27. Shen L J. Introduction about the source of odor in water and the detection technology for olfactory compounds[J]. Environmental Research and Monitoring, 2019, 32(1): 23-27. |
[22] | Sun D L, Yu J W, Yang M, et al. Occurrence of odor problems in drinking water of major cities across China[J]. Frontiers of Environmental Science & Engineering, 2014, 8(3): 411-416. |
[23] | Jenkins D, Medsker L L, Thomas J F. Odorous compounds in natural waters. Some sulfur compounds associated with blue-green algae[J]. Environmental Science & Technology, 1967, 1(9): 731-735. |
[24] | Wang C M, An W, Guo Q Y, et al. Assessing the hidden social risk caused by odor in drinking water through population behavioral responses using economic burden[J]. Water Research, 2020, 172. DOI:10.1016/j.watres.2020.115507 |
[25] | Zuo Y X, Li L, Zhang T, et al. Contribution of Streptomyces in sediment to earthy odor in the overlying water in Xionghe Reservoir, China[J]. Water Research, 2010, 44(20): 6085-6094. DOI:10.1016/j.watres.2010.08.001 |
[26] | Guo Q Y, Yu J W, Su M, et al. Synergistic effect of musty odorants on septic odor:verification in Huangpu River source water[J]. Science of the Total Environment, 2019, 653: 1186-1191. DOI:10.1016/j.scitotenv.2018.11.062 |
[27] | Anuar N S S, Kassim A A, Utsumi M, et al. Characterization of musty odor-producing actinomycetes from tropics and effects of temperature on the production of musty odor compounds[J]. Microbes and Environments, 2017, 32(4): 352-357. DOI:10.1264/jsme2.ME17109 |
[28] | Klausen C, Nicolaisen M H, Strobel B W, et al. Abundance of actinobacteria and production of geosmin and 2-methylisoborneol in Danish streams and fish ponds[J]. FEMS Microbiology Ecology, 2005, 52(2): 265-278. |
[29] | Wang C M, Yu J W, Guo Q Y, et al. Occurrence of swampy/septic odor and possible odorants in source and finished drinking water of major cities across China[J]. Environmental Pollution, 2019, 249: 305-310. |
[30] |
史鹏程, 朱广伟, 杨文斌, 等. 江苏水源地型水库异味物质发生风险及影响因素[J]. 环境科学, 2019, 40(9): 4000-4008. Shi P C, Zhu G W, Yang W B, et al. Occurrence and influencing factors of odorous compounds in reservoirs used as drinking water resources in Jiangsu province[J]. Environmental Science, 2019, 40(9): 4000-4008. |
[31] |
苏晓燕, 许燕娟, 沈斐, 等. 无锡市水源地致嗅物质调查及原因分析[J]. 环境监控与预警, 2011, 3(2): 33-37. Su X Y, Xu Y J, Shen F, et al. Investigation and causes analysis of odor compounds in drinking source water in Wuxi[J]. Environmental Monitoring and Forewarning, 2011, 3(2): 33-37. |
[32] | 马念念, 罗国芝, 谭洪新, 等. 养殖水中土腥异味物质——土臭素和二甲基异冰片去除方法[J]. 中国水产, 2014(12): 72-74. |
[33] |
李勇, 陈超, 张晓健, 等. 饮用水中典型致嗅物质去除技术研究[J]. 环境科学, 2008, 29(11): 3049-3053. Li Y, Chen C, Zhang X J, et al. Removal technology of typical odorant in drinking water[J]. Environmental Science, 2008, 29(11): 3049-3053. |
[34] |
刘欣, 何进, 喻子牛. 微生物产生的土腥味化合物及其清除方法[J]. 中国生物工程杂志, 2005, 25(8): 35-38. Liu X, He J, Yu Z N. Earthy-smelling compounds produced by microorganisms and the smell-removing measures[J]. China Biotechnology, 2005, 25(8): 35-38. |
[35] | Kim C, Lee S I, Hwang S, et al. Removal of geosmin and 2-Methylisoboneol (2-MIB) by membrane system combined with Powdered Activated Carbon (PAC) for drinking water treatment[J]. Journal of Water Process Engineering, 2014, 4: 91-98. DOI:10.1016/j.jwpe.2014.09.006 |
[36] | Zhang K J, Cao C, Zhou X Y, et al. Pilot investigation on formation of 2, 4, 6-trichloroanisole via microbial O-methylation of 2, 4, 6-trichlorophenol in drinking water distribution system:an insight into microbial mechanism[J]. Water Research, 2018, 131: 11-21. DOI:10.1016/j.watres.2017.12.013 |
[37] | Moldaenke C, Fang Y, Yang F, et al. Early warning method for cyanobacteria toxin, taste and odor problems by the evaluation of fluorescence signals[J]. Science of the Total Environment, 2019, 667: 681-690. DOI:10.1016/j.scitotenv.2019.02.271 |
[38] |
马晓雁, 张泽华, 王红宇, 等. 高铁酸钾对水中藻类及其次生嗅味污染物二甲基三硫醚同步去除研究[J]. 环境科学, 2013, 34(5): 1767-1772. Ma X Y, Zhang Z H, Wang H Y, et al. Simultaneous removal of algae and its odorous metabolite dimethyl trisulfide in water by potassium ferrate[J]. Environmental Science, 2013, 34(5): 1767-1772. |
[39] | Lindholm-Lehto P C, Suurnäkk S, Pulkkinen J T, et al. Effect of peracetic acid on levels of geosmin, 2-methylisoborneol, and their potential producers in a recirculating aquaculture system for rearing rainbow trout (Oncorhynchus mykiss)[J]. Aquacultural Engineering, 2019, 85: 56-64. DOI:10.1016/j.aquaeng.2019.02.002 |
[40] | Bu L J, Zhou S Q, Shi Z, et al. Removal of 2-MIB and geosmin by electrogenerated persulfate:performance, mechanism and pathways[J]. Chemosphere, 2017, 168: 1309-1316. DOI:10.1016/j.chemosphere.2016.11.134 |
[41] | Cook D, Newcombe G, Sztajnbok P. The application of powdered activated carbon for MIB and geosmin removal:predicting PAC doses in four raw waters[J]. Water Research, 2001, 35(5): 1325-1333. DOI:10.1016/S0043-1354(00)00363-8 |
[42] | Luo C W, Jiang J, Ma J, et al. Oxidation of the odorous compound 2, 4, 6-trichloroanisole by UV activated persulfate:kinetics, products, and pathways[J]. Water Research, 2016, 96: 12-21. DOI:10.1016/j.watres.2016.03.039 |
[43] |
孙昕, 史路肖, 张燚, 等. 真空紫外/过二硫酸盐去除饮用水中嗅味物质[J]. 环境科学, 2018, 39(5): 2195-2201. Sun X, Shi L X, Zhang Y, et al. Removal of odorants in drinking water using VUV/persulfate[J]. Environmental Science, 2018, 39(5): 2195-2201. |
[44] |
陈娇, 白晓慧, 卢宁, 等. 地表水体放线菌分离鉴定与致嗅能力研究[J]. 环境科学, 2014, 35(10): 3769-3774. Chen J, Bai X H, Lu N, et al. Actinobacteria and their odor-producing capacities in a surface water in Shanghai[J]. Environmental Science, 2014, 35(10): 3769-3774. |
[45] | Maruti A, Durán-Guerrero E, Barroso C G, et al. Optimization of a multiple headspace sorptive extraction method coupled to gas chromatography-mass spectrometry for the determination of volatile compounds in macroalgae[J]. Journal of Chromatography A, 2018, 1551: 41-51. DOI:10.1016/j.chroma.2018.04.011 |
[46] | Zhang K J, Lin T F, Zhang T Q, et al. Characterization of typical taste and odor compounds formed by Microcystis aeruginosa[J]. Journal of Environmental Sciences, 2013, 25(8): 1539-1548. |
[47] | Wang C M, Yu J W, Guo Q Y, et al. Simultaneous quantification of fifty-one odor-causing compounds in drinking water using gas chromatography-triple quadrupole tandem mass spectrometry[J]. Journal of Environmental Sciences, 2019, 79: 100-110. DOI:10.1016/j.jes.2018.11.008 |
[48] |
李学艳, 沈吉敏, 陈忠林, 等. 致嗅放线菌的分离培养及其致嗅代谢物的测定[J]. 哈尔滨工业大学学报, 2008, 40(4): 563-567. Li X Y, Shen J M, Chen Z L, et al. Isolation and cultivation of actinomycetes causing T&Os and detection of its metabolized T&O compounds[J]. Journal of Harbin Institute of Technology, 2008, 40(4): 563-567. |
[49] | Zhang Y C, Zhang N, Xu B B, et al. Occurrence of earthy-musty taste and odors in the Taihu Lake, China:spatial and seasonal patterns[J]. RSC Advances, 2016, 6(83): 79723-79733. DOI:10.1039/C6RA16733K |
[50] | Callejón R M, Ubeda C, Ríos-Reina R, et al. Recent developments in the analysis of musty odour compounds in water and wine:a review[J]. Journal of Chromatography A, 2016, 1428: 72-85. DOI:10.1016/j.chroma.2015.09.008 |
[51] |
章丽萍, 崔炎炎, 贾泽宇, 等. 等离子体高级氧化技术去除饮用水中土霉味物质[J]. 中国给水排水, 2019, 35(5): 36-42. Zhang L P, Cui Y Y, Jia Z Y, et al. Removal of earthy/musty odor compounds in drinking water using an advanced oxidation process based on plasma[J]. China Water & Wastewater, 2019, 35(5): 36-42. |
[52] |
徐彬铭.饮用水嗅味控制技术研究[D].西安: 西安建筑科技大学, 2015. Xu B M. Study on ordor control technologies of drinking water[D]. Xi'an: Xi'an University of Architecture and Technology, 2015. http://cdmd.cnki.com.cn/Article/CDMD-10703-1015994894.htm |
[53] | Wu D Y, Duirk S E. Quantitative analysis of earthy and musty odors in drinking water sources impacted by wastewater and algal derived contaminants[J]. Chemosphere, 2013, 91(11): 1495-1501. DOI:10.1016/j.chemosphere.2012.12.024 |
[54] | Zhang K J, Luo Z, Zhang T Q, et al. Study on formation of 2, 4, 6-trichloroanisole by microbial O-methylation of 2, 4, 6-trichlorophenol in lake water[J]. Environmental Pollution, 2016, 219: 228-234. DOI:10.1016/j.envpol.2016.10.042 |
[55] | Zhang K J, Zhou X Y, Zhang T Q, et al. Kinetics and mechanisms of formation of earthy and musty odor compounds:chloroanisoles during water chlorination[J]. Chemosphere, 2016, 163: 366-372. DOI:10.1016/j.chemosphere.2016.08.051 |
[56] |
周雪, 黄勇, 李学艳, 等. HS-SPME-GC/MS法测定地表水中典型嗅味物质[J]. 中国给水排水, 2012, 28(20): 146-148. Zhou X, Huang Y, Li X Y, et al. Determination of typical odor compounds in surface water by HS-SPME-GC/MS[J]. China Water & Wastewater, 2012, 28(20): 146-148. |
[57] | Acero J L, Piriou P, von Gunten U. Kinetics and mechanisms of formation of bromophenols during drinking water chlorination:assessment of taste and odor development[J]. Water Research, 2005, 39(13): 2979-2993. DOI:10.1016/j.watres.2005.04.055 |
[58] | Schrader K K, Blevins W T. Effects of carbon source, phosphorus concentration, and several micronutrients on biomass and geosmin production by Streptomyces halstedii[J]. Journal of Industrial Microbiology and Biotechnology, 2001, 26(4): 241-247. DOI:10.1038/sj.jim.7000121 |
[59] | Li C, Ngai M H, Reddy K K, et al. A fluorescence-displacement assay using molecularly imprinted polymers for the visual, rapid, and sensitive detection of the algal metabolites, geosmin and 2-methylisoborneol[J]. Analytica Chimica Acta, 2019, 1066: 121-130. DOI:10.1016/j.aca.2019.03.041 |
[60] | Lisanti M T, Gambuti A, Genovese A, et al. Earthy off-flavour in wine:evaluation of remedial treatments for geosmin contamination[J]. Food Chemistry, 2014, 154: 171-178. DOI:10.1016/j.foodchem.2013.12.100 |
[61] | Negoro T, Ando M, Ichikawa N. Blue-green algae in lake Biwa which produce earthy-musty odors[J]. Water Science & Technology, 1988, 20(8-9): 117-123. |
[62] | Young W F, Horth H, Crane R, et al. Taste and odour threshold concentrations of potential potable water contaminants[J]. Water Research, 1996, 30(2): 331-340. DOI:10.1016/0043-1354(95)00173-5 |
[63] | Guzmán-Trampe S M, Ikeda H, Vinuesa P, et al. Production of distinct labdane-type diterpenoids using a novel cryptic labdane-like cluster from Streptomyces thermocarboxydus K155[J]. Applied Microbiology and Biotechnology, 2020, 104(2): 741-750. DOI:10.1007/s00253-019-10240-3 |
[64] | Hwang K S, Kim H U, Charusanti P, et al. Systems biology and biotechnology of Streptomyces species for the production of secondary metabolites[J]. Biotechnology Advances, 2014, 32(2): 255-268. DOI:10.1016/j.biotechadv.2013.10.008 |
[65] | Suurnäkki S, Gomez-Saez G V, Rantala-Ylinen A, et al. Identification of geosmin and 2-methylisoborneol in cyanobacteria and molecular detection methods for the producers of these compounds[J]. Water Research, 2015, 68: 56-66. DOI:10.1016/j.watres.2014.09.037 |
[66] | Zhang H X, Ma P K, Shu J N, et al. Rapid detection of taste and odor compounds in water using the newly invented chemi-ionization technique coupled with time-of-flight mass spectrometry[J]. Analytica Chimica Acta, 2018, 1035: 119-128. DOI:10.1016/j.aca.2018.07.051 |
[67] | Gnah Y S A, Harris N D. Determination of musty odor compounds produced by Streptomyces griseus and Streptomyces odorifer[J]. Journal of Food Science, 1985, 50(1): 132-135. |
[68] |
赵洪娟. 来源于微生物的易挥发性物质——geosmin[J]. 国外医药抗生素分册, 2001, 22(3): 105-107. Zhao H J. Geosmin, a volatile compounds derived from microorganisms[J]. World Notes on Antibiotics, 2001, 22(3): 105-107. |
[69] | Park T J, Yu M N, Kim H S, et al. Characteristics of actinomycetes producing geosmin in Paldang Lake, Korea[J]. Desalination and Water Treatment, 2016, 57(2): 888-899. DOI:10.1080/19443994.2014.970583 |
[70] | Asquith E, Evans C, Dunstan R H, et al. Distribution, abundance and activity of geosmin and 2-methylisoborneol-producing Streptomyces in drinking water reservoirs[J]. Water Research, 2018, 145: 30-38. DOI:10.1016/j.watres.2018.08.014 |
[71] | Sugiura N, Inamori Y, Hosaka Y, et al. Algae enhancing musty odor production by actinomycetes in Lake Kasumigaura[J]. Hydrobiologia, 1994, 288(1): 57-64. |
[72] | Liu T T, Yu Y W, Su M, et al. Production and fate of fishy odorants produced by two freshwater chrysophyte species under different temperature and light conditions[J]. Water Research, 2019, 157: 529-534. DOI:10.1016/j.watres.2019.04.004 |
[73] | Li Z L, Hobson P, An W, et al. Earthy odor compounds production and loss in three cyanobacterial cultures[J]. Water Research, 2012, 46(16): 5165-5173. DOI:10.1016/j.watres.2012.06.008 |
[74] |
陈锐, 孙晓宇, 赵玲侠, 等. 不同种植期棚室黄瓜土壤放线菌多样性研究[J]. 土壤通报, 2018, 49(3): 588-595. Chen R, Sun X Y, Zhao L X, et al. Diversity of soil actinomycetes in greenhouse at different growth stages of cucumber[J]. Chinese Journal of Soil Science, 2018, 49(3): 588-595. |
[75] |
于建伟, 陈克云, 苏命, 等. 不同营养源条件下螺旋鱼腥藻生长与产嗅特征研究[J]. 环境科学, 2011, 32(8): 2254-2259. Yu J W, Chen K Y, Su M, et al. Influence of nutrient sources on Anabaena spiroides growth and odorous compounds production characteristics[J]. Environmental Science, 2011, 32(8): 2254-2259. |
[76] | 李霞, 魏魏, 乔莉, 等. 低温期黄河水源鱼腥味问题的预处理技术应用探讨[J]. 给水排水, 2015, 41(S1): 25-29. |
[77] |
王捷, 冯佳, 谢树莲, 等. 汾河太原河段浮游植物多样性及微囊藻产异味物质成因[J]. 生态学报, 2015, 35(10): 3357-3363. Wang J, Feng J, Xie S L, et al. Phytoplankton diversity and off-flavor-producing Microcystis in the Taiyuan region of the Fenhe River[J]. Acta Ecologica Sinica, 2015, 35(10): 3357-3363. |
[78] |
范苓, 张晓赟, 秦宏兵, 等. 搅拌棒萃取-热脱附/气质联用法测定水中2-MIB和土臭素[J]. 环境监测管理与技术, 2013, 25(6): 24-27. Fan L, Zhang X Y, Qin H B, et al. Determination of 2-methylisoborneol and geosmin in water using stir bar sorptive extraction-thermal desorption/gas chromatography coupled with mass spectrometry[J]. The Administration and Technique of Environmental Monitoring, 2013, 25(6): 24-27. |
[79] |
丁文捷. 饮用水中嗅味物质的检测技术研究进展[J]. 广东化工, 2010, 37(12): 195-197. Ding W J. Research progress in detection of tastes and odors compounds in drinking water[J]. Guangdong Chemical Industry, 2010, 37(12): 195-197. |
[80] |
孙红梅, 朱玉梅, 周军. HS/SPME-GC/MS/MS法测定水中痕量2-甲基异莰醇和土臭素[J]. 环境监控与预警, 2017, 9(6): 40-44. Sun H M, Zhu Y M, Zhou J. Determination of trace 2-MIB and GSM in water by HS/SPME-GC/MS/MS[J]. Environmental Monitoring and Forewarning, 2017, 9(6): 40-44. |
[81] |
李勇, 张晓健, 陈超. 我国饮用水中嗅味问题及其研究进展[J]. 环境科学, 2009, 30(2): 583-588. Li Y, Zhang X J, Chen C. Review on the tastes and odors compounds in drinking water of China[J]. Environmental Science, 2009, 30(2): 583-588. |
[82] |
王家磊, 曾海英, 刘志敏, 等. 气相色谱-质谱联用法测定水中嗅味物质二甲基异茨醇[J]. 食品安全质量检测学报, 2017, 8(12): 4755-4759. Wang J L, Zeng H Y, Liu Z M, et al. Determination of 2-methylisoborneol in water by gas chromatography-mass spectrometry[J]. Journal of Food Safety & Quality, 2017, 8(12): 4755-4759. |
[83] |
王春苗, 赵宇, 杨凯, 等. 饮用水嗅和味的感官评价方法及应用研究进展[J]. 中国给水排水, 2018, 34(2): 18-23. Wang C M, Zhao Y, Yang K, et al. Drinking water taste and odor sensory evaluation:methods and applications[J]. China Water & Wastewater, 2018, 34(2): 18-23. |
[84] | Grimm C C, Lloyd S W, Zimba P V. Instrumental versus sensory detection of off-flavors in farm-raised channel catfish[J]. Aquaculture, 2004, 236(1-4): 309-319. DOI:10.1016/j.aquaculture.2004.02.020 |
[85] | Worley J L, Dietrich A M, Hoehn R C. Dechlorination techniques to improve sensory odor testing of geosmin and 2-MIB[J]. Journal-American Water Works Association, 2003, 95(3): 109-117. DOI:10.1002/j.1551-8833.2003.tb10319.x |
[86] | Rashash D M C, Dietrich A M, Hoehn R C. FPA of selected odorous compounds[J]. Journal-American Water Works Association, 1997, 89(4): 131-141. DOI:10.1002/j.1551-8833.1997.tb08213.x |
[87] | Jüttner F. Evidence that polyunsaturated aldehydes of diatoms are repellents for pelagic crustacean grazers[J]. Aquatic Ecology, 2005, 39(3): 271-282. DOI:10.1007/s10452-005-3419-9 |
[88] |
马军, 李学艳, 陈忠林, 等. 臭氧氧化分解饮用水中嗅味物质2-甲基异莰醇[J]. 环境科学, 2006, 27(12): 2483-2487. Ma J, Li X Y, Chen Z L, et al. Removal of 2-methylisoborneol in drinking water by ozonation[J]. Environmental Science, 2006, 27(12): 2483-2487. |
[89] | Sumitomo H. Odor decomposition by the yeast Candida[J]. Water Science & Technology, 1988, 20(8-9): 157-162. |
[90] | Izaguirre G, Wolfe R L, Means III E G. Degradation of 2-methylisoborneol by aquatic bacteria[J]. Applied and Environmental Microbiology, 1988, 54(10): 2424-2431. DOI:10.1128/AEM.54.10.2424-2431.1988 |
[91] | Tanaka A, Oritani T, Uehara F, et al. Biodegradation of a musty odour component, 2-methylisoborneol[J]. Water Research, 1996, 30(3): 759-761. DOI:10.1016/0043-1354(95)00223-5 |
[92] | Xue Q, Shimizu K, Sakharkar M K, et al. Geosmin degradation by seasonal biofilm from a biological treatment facility[J]. Environmental Science and Pollution Research, 2012, 19(3): 700-707. DOI:10.1007/s11356-011-0613-2 |
[93] | 徐丽华, 李文均, 刘志恒, 等. 放线菌系统学——原理、方法及实践[M]. 北京: 科学出版社, 2007. |
[94] |
杜英侠, 李晶莹, 傅敏, 等. 一株海绵放线菌的分离培养、发酵条件优化及其抑制弧菌效果[J]. 大连海洋大学学报, 2017, 32(4): 457-464. Du Y X, Li J Y, Fu M, et al. Isolation, optimization of fermentation conditions and inhibition of Vibrio in a sponge-associated actinobacterium FH[J]. Journal of Dalian Ocean University, 2017, 32(4): 457-464. |
[95] |
张玉便, 张改云. 南大西洋深海沉积物中可培养放线菌的多样性[J]. 应用海洋学学报, 2014, 33(4): 508-515. Zhang Y B, Zhang G Y. Diversity of cultivable actinomycetes in deepsea sediments of the South Atlantic Ocean[J]. Journal of Applied Oceanography, 2014, 33(4): 508-515. |
[96] |
杨文轩, 方成, 陈鸣, 等. 群体感应抑制活性海洋放线菌的分离筛选及优化培养[J]. 现代盐化工, 2017, 44(5): 12-13, 21. Yang W X, Fang C, Chen M, et al. Isolation, screening and optimization culture of marine actinomycetes with quorum sensing inhibitory activity[J]. Modern Salt and Chemical Industry, 2017, 44(5): 12-13, 21. |
[97] |
周渊, 谢富全, 牛文涛, 等. 琼东海域珊瑚共附生放线菌的多样性[J]. 应用海洋学学报, 2018, 37(2): 218-228. Zhou Y, Xie F Q, Niu W T, et al. Diversity of coral-associated actinobacteria in the east coast of Hainan Island[J]. Journal of Applied Oceanography, 2018, 37(2): 218-228. |
[98] |
马赛箭, 安超, 常帆, 等. 环青海湖地区可培养放线菌多样性及生物活性[J]. 西北农业学报, 2015, 24(11): 133-139. Ma S J, An C, Chang F, et al. Diversity and bioactivity of culturable actinobacteria from region of around Qinghai Lake[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2015, 24(11): 133-139. |
[99] | 鹿连明, 杜丹超, 胡秀荣, 等. 海洋放线菌A3202在不同培养基中的培养特征比较[J]. 浙江农业科学, 2017, 58(3): 446-449. |
[100] |
蒋茜.海洋放线菌GY-4的鉴定及其抗菌物质研究[D].南京: 南京农业大学, 2011. Jiang Q. Identification of marine Streptomyces sp. GY-4 and researches on its antimicrobial substances[D]. Nanjing: Nanjing Agricultural University, 2011. http://d.wanfangdata.com.cn/thesis/Y2038823 |
[101] |
许英俊, 薛泉宏, 邢胜利, 等. 3株放线菌对草莓的促生作用及对PPO活性的影响[J]. 西北农业学报, 2008, 17(1): 129-136. Xu Y J, Xue Q H, Xing S L, et al. The growth promoting effect and induced endurance of three actinomyces strains to strawberry[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2008, 17(1): 129-136. |
[102] |
杨斌.放线菌分离方法的研究[D].杨凌: 西北农林科技大学, 2008. Yang B. Study on isolation methods of actinomycetes[D]. Yangling: Northwest A&F University, 2008. |
[103] |
杨斌, 薛泉宏, 陈占全, 等. 微波处理对土壤放线菌分离效果的影响[J]. 应用生态学报, 2008, 19(5): 1091-1098. Yang B, Xue Q H, Chen Z Q, et al. Effects of microwave irradiation on isolation of soil actinomycetes[J]. Chinese Journal of Applied Ecology, 2008, 19(5): 1091-1098. |
[104] |
张璇.黄河三角洲滨海湿地放线菌的分离培养, MLSA分析及一株新种的分类鉴定[D].青岛: 中国海洋大学, 2014. Zhang X. Isolation and multilocus sequence analysis of actinobacteria isolated from a coastal wetland of the Yellow River delta and identification of a novel actinomycete species[D]. Qingdao: Ocean University of China, 2014. http://cdmd.cnki.com.cn/article/cdmd-10423-1014329324.htm |
[105] | Heuer H, Krsek M, Baker P, et al. Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients[J]. Applied and Environmental Microbiology, 1997, 63(8): 3233-3241. DOI:10.1128/AEM.63.8.3233-3241.1997 |
[106] | Auffret M, Pilote A, émilie P, et al. Establishment of a real-time PCR method for quantification of geosmin-producing Streptomyces spp. in recirculating aquaculture systems[J]. Water Research, 2011, 45(20): 6753-6762. DOI:10.1016/j.watres.2011.10.020 |
[107] |
李静, 张金羽, 张琪, 等. 大熊猫肠道放线菌的种群组成及多样性分析[J]. 微生物学通报, 2017, 44(5): 1138-1148. Li J, Zhang J Y, Zhang Q, et al. Diversity and community structure of gut actinobacteria of giant panda[J]. Microbiology China, 2017, 44(5): 1138-1148. |
[108] | Řezanka T, Líbalová D, Votruba J, et al. Identification of odorous compounds from Streptomyces avermitilis[J]. Biotechnology Letters, 1994, 16(1): 75-78. |
[109] | 周萍, 邓建明. 饮用水中土嗅素和2-甲基异莰醇的微生物学来源和降解机制[J]. 西南给排水, 2013, 35(6): 25-31. |
[110] | Komatsu M, Tsuda M, Ōmura S, et al. Identification and functional analysis of genes controlling biosynthesis of 2-methylisoborneol[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(21): 7422-7427. DOI:10.1073/pnas.0802312105 |
[111] | Singh B, Oh T J, Sohng J K. Exploration of geosmin synthase from Streptomyces peucetius ATCC 27952 by deletion of doxorubicin biosynthetic gene cluster[J]. Journal of Industrial Microbiology & Biotechnology, 2009, 36(10): 1257-1265. |
[112] | Wang Z J, Xu Y, Shao J H, et al. Genes associated with 2-methylisoborneol biosynthesis in cyanobacteria:isolation, characterization, and expression in response to light[J]. PLoS One, 2011, 6(4): e1866. DOI:10.1371/journal.pone.0018665 |
[113] | Leetanasaksakul K, Thamchaipenet A. Potential anti-biofilm producing marine actinomycetes isolated from sea sediments in Thailand[J]. Agriculture and Natural Resources, 2018, 52(3): 228-233. DOI:10.1016/j.anres.2018.09.003 |
[114] |
胡媛媛, 蒙建州, 郝立凯, 等. 印度洋深海沉积物可培养放线菌多样性及抗革兰阴性菌活性物质研究[J]. 中国抗生素杂志, 2018, 43(4): 415-423. Hu Y Y, Meng J Z, Hao L K, et al. Diversity of culturable actinomycetes from the Indian Ocean deep-sea sediment and the identification of the antibacterial metabolites against gram-negative bacteria[J]. Chinese Journal of Antibiotics, 2018, 43(4): 415-423. |
[115] |
徐方继, 李桂鼎, 李沁元, 等. 怒江大峡谷怒江州段土壤放线菌多样性[J]. 微生物学通报, 2018, 45(2): 250-265. Xu F J, Li G D, Li Q Y, et al. Diversity of actinomycetes in soil from Nujiang Grand Canyon in Nujiang Prefecture[J]. Microbiology China, 2018, 45(2): 250-265. |
[116] | Giglio S, Chou W K W, Ikeda H, et al. Biosynthesis of 2-methylisoborneol in cyanobacteria[J]. Environmental Science & Technology, 2011, 45(3): 992-998. |
[117] | Citron C A, Gleitzmann J, Laurenzano G, et al. Terpenoids are widespread in actinomycetes:a correlation of secondary metabolism and genome data[J]. Chembiochem, 2012, 13(2): 202-214. DOI:10.1002/cbic.201100641 |