2. 山西大学环境与资源学院, 太原 030006
2. College of Environmental&Resource Sciences, Shanxi University, Taiyuan 030006, China
近些年来, 内分泌干扰物(endocrine disrupting compounds, EDCs)、药物和个人护理品(pharmaceuticals and personal care products, PPCPs)作为新兴污染物受到了众多环保工作者的广泛关注[1~8].药物主要用于预防或治疗人畜疾病, 包括抗生素、止痛药和血脂调节剂等, 其中抗生素因其广泛应用而受到特别关注[4, 7, 8].在治疗期间和治疗之后, 动物和人类排泄代谢部分或完整的药物, 而这些药物最终直接或间接地排放到环境中[8].个人护理品(如消毒剂、香水、洗发水和防晒霜等)常被用于改善人们的生活质量[7].内分泌干扰物是一类即使在浓度极低的情况下, 依然会影响动物和人类的生殖、发育过程或干扰其内分泌系统的化学物质[5, 9]; 它们通常来自于人畜的排泄物(如合成类固醇激素的药物和合成雄激素)或人造产品(如塑料制品)[10].目前EDCs和PPCPs在世界范围内被广泛使用, 并且极易排放到环境中.这些物质大多数易溶于水, 因此EDCs和PPCPs在世界各地的淡水环境中被普遍检出[1, 11~13].而且, 这些物质中的大多数具有持久性有机污染物的特点, 即持久性、毒性和生物富集性.因此, EDCs和PPCPs对生态系统健康的不良影响引起了广泛关注.
由于我国的快速发展和人口激增, 我国成为EDCs和PPCPs的最大生产国和消费国.据估算, 2011年我国的药品消费量约为200万t, 其中抗生素的消费量超过了18万t, 人均消费量远远超过美国[14, 15], 这间接导致了抗生素在水环境中的普遍检出.另外, 其他种类的药物、个人护理品和内分泌干扰物也在水环境中普遍存在.鉴于众多种类的化学物质被检出, 那么, 分析每种化学物质的相对风险, 并确定需要优先控制的污染物已显得非常必要.长江流域是我国的第一大流域, 流域面积约占中国陆地总面积的1/5, 水资源总量超过全国河流径流量的1/3, 人口和经济总量均超过全国的40%[16, 17].因此, 本文以长江流域为研究区, 以文献搜集到的EDCs和PPCPs的环境暴露浓度和生态毒性浓度为数据基础, 计算每种污染物的生态风险并确定优先控制的污染物, 分析长江流域的热点污染区域, 识别最敏感的生物群, 以期为化学品的风险管理提供数据基础.
1 材料与方法 1.1 污染物筛选及环境暴露数据收集污染物的选择由其可获得性和环境暴露数据的质量决定.中文文献来自中国知网、维普和万方数据库, 同时包括硕士毕业论文和博士毕业论文.英文文献来自于Web of Science和Google Scholar两个数据库.首先, 以“内分泌干扰物&水/河/湖&中国”、“药物&水/河/湖&中国”、“抗生素&水/河/湖&中国”和“个人护理品&水/河/湖&中国”为主题关键词进行文献搜索.之后筛选出属于英文SCI期刊和中文核心期刊(包括所有硕士和博士毕业论文)且采样位置位于长江流域的文献进行统计.本文只统计采样时间在2014年1月至2019年9月的文献.若文献里的浓度数据模糊、采样时间不符、地理信息不匹配或不清等, 则予以删除.对于检索到的数据, 若文献里明确说明数据有异常值, 则删除异常值, 否则保留全部数据.对于任何一种污染物而言, 纳入研究的物质必须至少包含3个采样点的数据.此外, 本文不考虑排污河和水库的浓度数据.当污染物的暴露浓度低于检出限(LOD)时, 其浓度用
污染物的生态毒理数据主要在美国环保署(USEPA)网站的ECOTOX数据库里下载得到, 同时包括了从文献中检索到的毒性数据.这里的毒性数据库包括了大多数物种(如藻类、鱼类、植物和软体动物等)的效应浓度.首先, 从数据库里中提取出环境介质为淡水的毒性数据.其次, 本文同时考虑了毒性数据的致死和亚致死效应浓度.对任一物种, EC50(effect concentration 50)和LC50(lethal concentration 50)是最优先选择的评价终点, 其次为ECxx和LCxx(如EC20、EC10和LC20等), 最后为最低效应浓度(LOEC)[14, 18, 19].对任一物种, 若同一评价终点下有多个值, 那么选取最低值.随后, 只有中国的本土物种和标准测试物种数据被保留.最后, 对于任何一种污染物而言, 纳入研究的物质必须至少包含3条毒性数据.
1.3 风险评价收集完成污染物的毒性数据集和暴露数据集后, 它们反映出的信息便可以分别绘制出来.对每一种污染物的每一个数据集, 需要计算出它们的中值.那么, 毒性数据集和暴露数据集的中值的接近程度可以用一个比例来表示, 如公式(1)所示, 这个比例被定义为污染物的风险R[20~23].那么, 比值越大, 表示污染物的风险越大.
![]() |
(1) |
式中, Mw表示暴露浓度的中值(ng ·L-1), MT表示毒性数据的中值(ng ·L-1).
此外, 这个方法还可用来比较特定污染物对不同生物群体(如藻类和鱼类等)的相对风险, 从而识别最敏感的生物群体.
2 数据概况与范围根据上述数据检索规则, 本文共综述了257篇文献, 其中204篇由于浓度数据模糊、采样时间不符、地理信息不匹配或不清等原因不予考虑.最后进行统计的文献中, 包括19篇中文和34篇英文文献.数据统计完成后发现, 有117种EDCs和PPCPs至少被报道了一次; 之后, 由于缺乏充分的暴露数据或毒性数据, 共有69种EDCs和PPCPs参与风险排序, 包括19种内分泌干扰物, 41种药物和9种个人护理品.初步分析发现, 大多数的药物为抗生素, 包括磺胺类、四环素类、大环内酯类和氟喹诺酮类.个人护理品中, 作为广谱杀菌剂的三氯生(TCS)和三氯卡班(TCC)是报道最多的两种.此外, 酚类EDCs(如双酚A和双酚S)和甾体类EDCs(如17β-雌二醇和17α-乙炔雌二醇)是最主要的两类内分泌干扰物.
3 结果与讨论 3.1 淡水环境中污染物的风险排序基于污染物对所有生物种的风险, 本文得到了69种污染物的相对风险排序结果(图 1).从图 1中可看出, 整体上, 内分泌干扰物(橘色)和个人护理品(蓝色)表现出较高风险, 而药物(绿色)呈现出较低风险.风险最高的10种物质依次是雌酮(E1)、雌三醇(E3)、17β-雌二醇(βE2)、双酚S(BPS)、阿特拉津(ATZ)、17α-乙炔雌二醇(EE2)、对-特辛基苯酚(4-t-OP)、三氯卡班(TCC)、三氯生(TCS)和双酚AF(BPAF), 即以内分泌干扰物和个人护理品为主.相比之下, 苯甲酮-2(BP-2, 排名59)和对-羟基苯甲酸乙酯(EtP, 排名61)对生物体的风险较低.与雌酮的风险相比, 药物的风险低500倍或更多(图 2).药物中, 风险较高的是抗生素类, 如洛美沙星(LOM)、磺胺甲唑(SMX)、红霉素(ETM)、强力霉素(DOX)、四环素(TC)和罗红霉素(RTM)等, 以及氟西汀(FLX); 然而, 氯霉素(CHP)、吉非贝齐(GFB)、美托洛尔(MTP)、吲哚美辛(IMC)、磺胺噻唑(STZ)、萘普生(NAP)、对-乙酰氨基酚(ACE)和苯扎贝特(BZB)等污染物处于较低风险.Li等[24]的评价结果认为, 在众多药物中, 双氯芬酸(DIC)、红霉素、青霉素、阿奇霉素和阿莫西林等抗生素类药物是中国淡水环境风险最高的物质; 与之相比, 本文发现, 在长江流域, 上述内分泌干扰物和个人护理品的风险总体上高于双氯芬酸、红霉素和阿莫西林等药物的风险.此外, 观察图 1中毒性数据集的较小值和暴露数据集的较大值, 发现多种污染物的暴露数据和毒性数据表现出较大比例的重叠分布, 如雌酮、17β-雌二醇、双酚S、阿特拉津、17α-乙炔雌二醇和对-特辛基苯酚等, 表明多种水生生物处于危险状态.
![]() |
1. estrone (E1), 2.estriol (E3), 3. 17β-estradiol (βE2), 4.bisphenol S (BPS), 5.atrazine (ATZ), 6. 17α-ethynylestradiol (EE2), 7. 4-tert-octylphenol (4-t-OP), 8.triclocarban (TCC), 9.triclosan (TCS), 10.bisphenol AF (BPAF), 11.benzophenone-4 (BP-4), 12.benzophenone (BP), 13.bisphenol A (BPA), 14.lomefloxacin (LOM), 15. 4-nonylphenol (4-NP), 16.testosterone (TES), 17.sulfamethoxazole (SMX), 18. 4-tert-butylphenol (4-TBP), 19.erythromycin (ETM), 20. 4-octylphenol (4-OP), 21.doxycycline (DOX), 22.fluoxetine (FLX), 23.tetracycline (TC), 24.phantolide (PHE), 25.roxithromycin (RTM), 26.ibuprofen (IBU), 27.caffeine (CAF), 28.sulfadimidine (SMD), 29.benzophenone-3 (BP-3), 30.diazepam (DZM), 31.oxytetracycline (OTC), 32.clofibric acid (CA), 33.lincomycin (LCM), 34.diethylstilbestrol (DES), 35.p-hydroxybenzoic acid (PHBA), 36.butyl paraben (BuP), 37.sulfamethazine (SMZ), 38.ofloxacin (OFL), 39.norfloxacin (NOR), 40.mefenamic acid (MA), 41. 4-butylphenol (4-BP), 42.diphenhydramine (DHM), 43.phenazone (PHO), 44.carbamazepine (CBZ), 45.diethyltoluamide (DEET), 46.climbazole (CLM), 47.sulfadiazine (SDZ), 48.diclofenac (DIC), 49.ciprofloxacin (CIP), 50.florfenicol (FFC), 51.methyl paraben (MeP), 52.propyl paraben (PrP), 53.amoxicillin (AMX), 54.chlortetracycline (CTC), 55.enrofloxacin (ENR), 56.thiamphenicol (TAP), 57.trimethoprim (TMP), 58.tylosin tartrate (TS), 59.benzophenone-2 (BP-2), 60.paracetamol (PRC), 61.ethyl paraben (EtP), 62.bezafibrate (BZB), 63.acetaminophen (ACE), 64.naproxen (NAP), 65.sulfathiazole (STZ), 66.indomethacin (IMC), 67.metoprolol (MTP), 68.gemfibrozil (GFB), 69.chloramphenicol (CHP); 每种污染物的左边列和圆形图例表示毒性数据, 右边列和菱形图例表示环境暴露数据; 每一个数据集的中值以空心圆表示 图 1 基于配对的毒性数据和环境暴露数据的69种污染物的风险排序 Fig. 1 Risk ranking of 69 chemicals using paired datasets of all the collected ecotoxicity data and measured freshwater concentrations |
![]() |
图 2 基于污染物暴露数据和毒性数据中值的风险值排序结果 Fig. 2 Risk ranking of the chemicals by plotting the ratios of the median environmental concentrations and median effect concentrations |
雌酮对长江流域的生物体表现出最大风险, 风险值R为0.040, 其次为雌三醇(R=0.034)和17β-雌二醇(R=0.007 9), 见图 2.长江流域的河(湖)水中, 雌酮的暴露浓度的中值为3.00 ng ·L-1.雌酮的最低效应浓度(也即最敏感)为3.30 ng ·L-1, 为幼年虹鳟鱼(Oncorhynchus mykiss)的LOEC值[25]; 对斑马鱼(Danio rerio)而言, 暴露18 d的EC50值低至78.00 ng ·L-1 [26].雌酮和雌三醇是常见且流行的类固醇化合物, 被广泛用为口服避孕药和人类、牲畜疾病的治疗药物, 因此常作为人和牲畜的排泄物进入环境[27].正是由于它们的广泛使用, 它们在世界各地的地表水中的检出率超出70%, 浓度范围从ng ·L-1至μg ·L-1不等[5].长江流域作为我国第一大流域, 人口总量超过全国的40%[16, 17], 养殖业发达, 导致雌酮和雌三醇的暴露浓度范围分别为ND~84.00 ng ·L-1和ND~82.00 ng ·L-1.此外, 内分泌干扰物和个人护理品被广泛用于人类的各种消费品中, 随着长江流域城市化和现代化水平的快速发展, 产生了大量含有内分泌干扰物和个人护理品的生活污水、工业废水和养殖废水, 而这些物质在废水处理过程中并不能被完全去除, 因此这些物质可能经污水处理厂排放、养殖废水排放和地表径流等方式进入长江水域, 从而造成内分泌干扰物和个人护理品在长江流域的高暴露水平[28].加之它们的效应浓度较低, 因此内分泌干扰物和个人护理品呈现出较高风险.
在风险较高的药物中, 氟西汀为临床广泛应用的抗抑郁药物, 其环境浓度范围为ND~40.20 ng ·L-1, 中值为1.60 ng ·L-1; 其效应浓度的中值为169.81μg ·L-1.洛美沙星、磺胺甲唑、红霉素、强力霉素、四环素和罗红霉素都是常用的抗生素.在长江流域, 洛美沙星、磺胺甲唑、红霉素、强力霉素、四环素和罗红霉素的环境浓度范围分别为0.50~14.60、ND~173.46、ND~982.00、ND~23.93、ND~1454.80和ND~190.00 ng ·L-1, 中值分别为2.85、11.80、5.80、2.20、8.89和8.10 ng ·L-1.它们效应浓度的中值分别为141.50、775.00、430.00、215.50、1 000.00和1 000.00 ng ·L-1.文献报道的洛美沙星的效应浓度的最低值为30.00 μg ·L-1, 为暴露7 d的浮萍(Lemna gibba)的LOEC值, 该浓度会影响浮萍的繁殖[29].磺胺甲唑的效应浓度的最低值为3.36 μg ·L-1, 为暴露7 d的浮萍的EC50值.事实上, 磺胺类、氟喹诺酮类和大环内酯类的抗生素在中国的消费量约占抗生素总消费量的12%、15%和20%[14, 30, 31].然而, 现有的研究结果发现抗生素对水生生物体是相对安全的, 而且本文没有考虑生物体对抗生素的抗药性.
3.2 热点污染区域分析每种污染物的最高浓度及其相应位置见表 1.从中可知, 湘江是长江流域污染最重的河流, 其中15种污染物的最高浓度均位于此, 包括对-特辛基苯酚[9]、双酚A(BPA)[9]、睾酮(TES)[9]、罗红霉素[47]、布洛芬(IBU)[47]、己烯雌酚(DES)[49]、对-羟基苯甲酸丁酯(BuP)[49]、氯咪巴唑(CLM)[47]、对-羟基苯甲酸甲酯(MeP)[49]、对-羟基苯甲酸丙酯(PrP)[49]、阿莫西林(AMX)[47]、甲砜霉素(TAP)[47]、对-羟基苯甲酸乙酯(EtP)[49]、吲哚美辛[47]和氯霉素[47].污染热点区域其次是洪湖及其周边河流[32, 45]、太湖[33, 37, 39, 42, 48]、洞庭湖[44, 52]和长江三角洲地区[46].另外, 从污染物的风险高低顺序可看出, 洪湖及其周边河流、太湖和湘江的多种污染物处于较高风险(表 1).
![]() |
表 1 EDCs和PPCPs的最高浓度分析1)/ng ·L-1 Table 1 Rivers/lakes with the highest reported concentrations of EDCs and PPCPs/ng ·L-1 |
湘江是长江流域的一个主要支流, 长约856 km, 流域人口大于4千万, 被誉为湖南省的“母亲河”, 是湖南省的重要经济纽带[9, 47].湘江流域包含着许多养殖区、工业区、耕作区、医院和药品生产企业[47].近些年来, 随着人口增长、经济发展和快速的城市化过程, 湘江流域的水污染现象日益突出.有研究表明, 工业加工助剂是对-特辛基苯酚和双酚A的主要来源[9]; 此外, 污水处理厂污水的低处理效率和生活污水的直接排放也是上述污染物的主要来源[47, 49].
洪湖是长江中游的一个典型浅水湖, 水产养殖业是其支柱产业, 围网养鱼现象在洪湖周边普遍存在; 而围栏和围网是围网养殖业的主要方式, 因此成为内分泌干扰物的主要来源[32].另外, 洪湖周边的人口密集, 畜牧业也非常发达(>8百万头猪), 有大量生活污水和畜牧业污水排入湖内, 而内分泌干扰物和抗生素被广泛用于人类生活和水产养殖业、畜牧业中, 因此洪湖及其周边河流内的多种内分泌干扰物和抗生素呈现出最高水平[45].
3.3 敏感物种识别根据图 1的风险排序结果, 本文选择排名前40的污染物, 并筛选出那些毒性数据包含共同生物群的污染物, 来进行敏感物种分析.这些污染物是阿特拉津、红霉素、磺胺甲唑、对-壬基苯酚(4-NP)、双酚A、氟西汀、四环素、17β-雌二醇和17α-乙炔雌二醇, 之后分别计算出这些污染物对藻类、鱼类和虫类的风险, 计算得到的风险排序结果见图 3.从中可知, 内分泌干扰物对藻类、鱼类和虫类的风险都较高.具体地, 阿特拉津对藻类和虫类的风险较高, 风险值几乎处于同一量级, 但是对鱼类的风险较低(图 3). 17α-乙炔雌二醇和17β-雌二醇(分别排名1和2)对鱼类的风险远远高于其他污染物, 但是对藻类(分别排名8和9)和虫类(分别排名5和6)的风险极低.另一区别是, 药物(红霉素和磺胺甲唑)对藻类和虫类呈现出较高风险, 而对鱼类的风险很低.
![]() |
图 3 部分内分泌干扰物和药物对藻类、鱼类和虫类的风险排序 Fig. 3 Risk ratio ranking of some EDCs and pharmaceuticals by algae, fish, and worms |
从风险值来看, 与藻类和虫类相比, 鱼类是最敏感的生物, 尤其是对17α-乙炔雌二醇和17β-雌二醇, 风险值分别为0.27和0.10[图 3(b)], 约为藻类和虫类的100 000倍.与这两种污染物相比, 其他污染物对鱼类的风险低1 000倍或更多.藻类是对阿特拉津(一种除草剂)最敏感的物种, 而鱼类是最不敏感的.相比之下, 因为较高的效应浓度, 虫类是最不敏感的物种.
4 结论(1) 内分泌干扰物和个人护理品的生态风险相对较高, 而药物的风险较低; 药物中, 风险较高的属抗生素类.
(2) 湘江流域是长江流域污染最重的区域, 其次是洪湖及其周边河流、太湖、洞庭湖和长江三角洲地区.
(3) 与藻类和虫类相比, 鱼类是最敏感的物种, 尤其对17α-乙炔雌二醇和17β-雌二醇, 风险值约为藻类和虫类的100 000倍.相比之下, 虫类是最不敏感的物种.
(4) 长江流域是我国的第一大流域, 对其淡水生态系统的新兴污染物开展风险评估及排序, 可为化学品的风险管理提供指导.
[1] | García-Galán M J, Arashiro L, Santos L H M L M, et al. Fate of priority pharmaceuticals and their main metabolites and transformation products in microalgae-based wastewater treatment systems[J]. Journal of Hazardous Materials, 2020, 390: 121771. DOI:10.1016/j.jhazmat.2019.121771 |
[2] | La Merrill M A, Vandenberg L N, Smith M T, et al. Consensus on the key characteristics of endocrine-disrupting chemicals as a basis for hazard identification[J]. Nature Reviews Endocrinology, 2020, 16(1): 45-57. |
[3] | Fu Q G, Malchi T, Carter L J, et al. Pharmaceutical and personal care products:from wastewater treatment into agro-food systems[J]. Environmental Science & Technology, 2019, 53(24): 14083-14090. |
[4] |
樊静静, 王赛, 唐金鹏, 等. 广州市流溪河水体中6种内分泌干扰素时空分布特征与环境风险[J]. 环境科学, 2018, 39(3): 1053-1064. Fan J J, Wang S, Tang J P, et al. Spatio-temporal patterns and environmental risk of endocrine disrupting chemicals in the Liuxi River[J]. Environmental Science, 2018, 39(3): 1053-1064. |
[5] | Tan R J, Liu R X, Li B, et al. Typical endocrine disrupting compounds in rivers of northeast China:occurrence, partitioning, and risk assessment[J]. Archives of Environmental Contamination and Toxicology, 2018, 75(2): 213-223. |
[6] | Wang Y W, Li Y, Hu A Y, et al. Monitoring, mass balance and fate of pharmaceuticals and personal care products in seven wastewater treatment plants in Xiamen City, China[J]. Journal of Hazardous Materials, 2018, 354: 81-90. DOI:10.1016/j.jhazmat.2018.04.064 |
[7] | Boxall A B A, Rudd M A, Brooks B W, et al. Pharmaceuticals and personal care products in the environment:what are the big questions?[J]. Environmental Health Perspectives, 2012, 120(9): 1221-1229. DOI:10.1289/ehp.1104477 |
[8] | Bu Q W, Cao Y B, Yu G, et al. Identifying targets of potential concern by a screening level ecological risk assessment of human use pharmaceuticals in China[J]. Chemosphere, 2020, 246: 125818. DOI:10.1016/j.chemosphere.2020.125818 |
[9] | Luo Z F, Tu Y, Li H P, et al. Endocrine-disrupting compounds in the Xiangjiang River of China:spatio-temporal distribution, source apportionment, and risk assessment[J]. Ecotoxicology and Environmental Safety, 2019, 167: 476-484. DOI:10.1016/j.ecoenv.2018.10.053 |
[10] | Wang W F, Ndungu A W, Wang J. Monitoring of endocrine-disrupting compounds in surface water and sediments of the Three Gorges reservoir region, China[J]. Archives of Environmental Contamination and Toxicology, 2016, 71(4): 509-517. |
[11] | Batt A L, Kincaid T M, Kostich M S, et al. Evaluating the extent of pharmaceuticals in surface waters of the United States using a National-scale Rivers and Streams Assessment survey[J]. Environmental Toxicology and Chemistry, 2016, 35(4): 874-881. DOI:10.1002/etc.3161 |
[12] | Guruge K S, Goswami P, Tanoue R, et al. First nationwide investigation and environmental risk assessment of 72 pharmaceuticals and personal care products from Sri Lankan surface waterways[J]. Science of The Total Environment, 2019, 690: 683-695. DOI:10.1016/j.scitotenv.2019.07.042 |
[13] | Archer E, Petrie B, Kasprzyk-Hordern B, et al. The fate of pharmaceuticals and personal care products (PPCPs), endocrine disrupting contaminants (EDCs), metabolites and illicit drugs in a WWTW and environmental waters[J]. Chemosphere, 2017, 174: 437-446. DOI:10.1016/j.chemosphere.2017.01.101 |
[14] | Zhang M, Shi Y J, Lu Y L, et al. The relative risk and its distribution of endocrine disrupting chemicals, pharmaceuticals and personal care products to freshwater organisms in the Bohai Rim, China[J]. Science of the Total Environment, 2017, 590-591: 633-642. DOI:10.1016/j.scitotenv.2017.03.011 |
[15] | Zheng Q, Zhang R J, Wang Y H, et al. Occurrence and distribution of antibiotics in the Beibu Gulf, China:impacts of river discharge and aquaculture activities[J]. Marine Environmental Research, 2012, 78: 26-33. DOI:10.1016/j.marenvres.2012.03.007 |
[16] |
马永存.长江口低氧区及邻近海域浮游植物研究[D].上海: 上海海洋大学, 2013. Ma Y C. Study on phytoplankton of Changjiang estuary hypoxia area and the adjacent east China sea[D]. Shanghai: Shanghai Ocean University, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10264-1014013617.htm |
[17] |
张莉.长江流域上中游典型区水土保持生态恢复分区及恢复效果研究[D].重庆: 西南农业大学, 2005. Zhang L. Study on effect of ecological restoration in soil and water conservation and division of exemplary area in middle and upper reaches of Changjiang River[D]. Chongqing: Southwest Agricultural University, 2005. http://cdmd.cnki.com.cn/Article/CDMD-10625-2005089773.htm |
[18] | Zhang Y Q, Johnson A C, Su C, et al. Which persistent organic pollutants in the rivers of the Bohai Region of China represent the greatest risk to the local ecosystem?[J]. Chemosphere, 2017, 178: 11-18. DOI:10.1016/j.chemosphere.2017.02.137 |
[19] | Su C, Lu Y L, Johnson A C, et al. Which metal represents the greatest risk to freshwater ecosystem in Bohai Region of China?[J]. Ecosystem Health and Sustainability, 2017, 3(2): e01260. DOI:10.1002/ehs2.1260 |
[20] | Donnachie R L, Johnson A C, Moeckel C, et al. Using risk-ranking of metals to identify which poses the greatest threat to freshwater organisms in the UK[J]. Environmental Pollution, 2014, 194: 17-23. DOI:10.1016/j.envpol.2014.07.008 |
[21] | Donnachie R L, Johnson A C, Sumpter J P. A rational approach to selecting and ranking some pharmaceuticals of concern for the aquatic environment and their relative importance compared with other chemicals[J]. Environmental Toxicology and Chemistry, 2016, 35(4): 1021-1027. DOI:10.1002/etc.3165 |
[22] | Johnson A C, Donnachie R L, Sumpter J P, et al. An alternative approach to risk rank chemicals on the threat they pose to the aquatic environment[J]. Science of The Total Environment, 2017, 599-600: 1372-1381. DOI:10.1016/j.scitotenv.2017.05.039 |
[23] | Johnson A C, Jürgens M D, Su C, et al. Which commonly monitored chemical contaminant in the Bohai region and the Yangtze and Pearl Rivers of China poses the greatest threat to aquatic wildlife?[J]. Environmental Toxicology and Chemistry, 2018, 37(4): 1115-1121. DOI:10.1002/etc.4042 |
[24] | Li Y, Zhang L Y, Liu X S, et al. Ranking and prioritizing pharmaceuticals in the aquatic environment of China[J]. Science of The Total Environment, 2019, 658: 333-342. DOI:10.1016/j.scitotenv.2018.12.048 |
[25] | Thorpe K L, Cummings R I, Hutchinson T H, et al. Relative potencies and combination effects of steroidal estrogens in fish[J]. Environmental Science & Technology, 2003, 37(6): 1142-1149. |
[26] | Holbech H, Kinnberg K, Petersen G I, et al. Detection of endocrine disrupters:evaluation of a fish sexual development test (FSDT)[J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology, 2006, 144(1): 57-66. |
[27] | Wang S, Zhu Z L, He J F, et al. Steroidal and phenolic endocrine disrupting chemicals (EDCs) in surface water of Bahe River, China:distribution, bioaccumulation, risk assessment and estrogenic effect on Hemiculter leucisculus[J]. Environmental Pollution, 2018, 243: 103-114. DOI:10.1016/j.envpol.2018.08.063 |
[28] |
陈晓雯, 赵建亮, 刘有胜, 等. 长江中下游环境激素效应的污染特征及生态风险[J]. 生态毒理学报, 2016, 11(3): 191-203. Chen X W, Zhao J L, Liu Y S, et al. Occurrence and ecological risks of hormonal activities in the middle and lower reaches of Yangtze River[J]. Asian Journal of Ecotoxicology, 2016, 11(3): 191-203. |
[29] | Brain R A, Johnson D J, Richards S M, et al. Effects of 25 pharmaceutical compounds to Lemna gibba using a seven-day static-renewal test[J]. Environmental Toxicology and Chemistry, 2004, 23(2): 371-382. DOI:10.1897/02-576 |
[30] | Xu W H, Zhang G, Zou S C, et al. A preliminary investigation on the occurrence and distribution of antibiotics in the Yellow River and its tributaries, China[J]. Water Environment Research, 2009, 81(3): 248-254. DOI:10.2175/106143008X325719 |
[31] | Zhang Q Q, Ying G G, Pan C G, et al. Comprehensive evaluation of antibiotics emission and fate in the river basins of China:source analysis, multimedia modeling, and linkage to bacterial resistance[J]. Environmental Science & Technology, 2015, 49(11): 6772-6782. |
[32] | Yang Y Y, Cao X H, Zhang M M, et al. Occurrence and distribution of endocrine-disrupting compounds in the Honghu Lake and East Dongting Lake along the Central Yangtze River, China[J]. Environmental Science and Pollution Research, 2015, 22(22): 17644-17652. DOI:10.1007/s11356-015-4980-y |
[33] |
陈玫宏, 郭敏, 徐怀洲, 等. 太湖表层水体及沉积物中双酚A类似物的分布特征及潜在风险[J]. 环境科学, 2017, 38(7): 2793-2800. Chen M H, Guo M, Xu H Z, et al. Distribution characteristics and potential risk of bisphenol analogues in surface water and sediments of Lake Taihu[J]. Environmental Science, 2017, 38(7): 2793-2800. |
[34] |
朴海涛.京杭运河及沿岸区域地表水中药物及个人护理品污染地理分布特征及来源辨析[D].北京: 中国地质科学院, 2017. Piao H T. Distribution and source analysis of pharmaceutical and personal care products in the Grand Canal and related areas[D]. Beijing: Chinese Academy of Geological Sciences, 2017. http://cdmd.cnki.com.cn/Article/CDMD-82501-1017055369.htm |
[35] |
高月, 李杰, 许楠, 等. 汉江水相和沉积物中药品和个人护理品(PPCPs)的污染水平与生态风险[J]. 环境化学, 2018, 37(6): 1706-1719. Gao Y, Li J, Xu N, et al. Pollution levels and ecological risks of PPCPs in water and sediment samples of Hanjiang River[J]. Environmental Chemistry, 2018, 37(6): 1706-1719. |
[36] | Ma X Q, Wan Y J, Wu M Y, et al. Occurrence of benzophenones, parabens and triclosan in the Yangtze River of China, and the implications for human exposure[J]. Chemosphere, 2018, 213: 517-525. DOI:10.1016/j.chemosphere.2018.09.084 |
[37] | Liu Y H, Zhang S H, Song N H, et al. Occurrence, distribution and sources of bisphenol analogues in a shallow Chinese freshwater lake (Taihu Lake):implications for ecological and human health risk[J]. Science of the Total Environment, 2017, 599-600: 1090-1098. DOI:10.1016/j.scitotenv.2017.05.069 |
[38] | Wu M H, Xie D G, Xu G, et al. Benzophenone-type UV filters in surface waters:an assessment of profiles and ecological risks in Shanghai, China[J]. Ecotoxicology and Environmental Safety, 2017, 141: 235-241. DOI:10.1016/j.ecoenv.2017.03.013 |
[39] | Zhou L J, Wu Q L, Zhang B B, et al. Occurrence, spatiotemporal distribution, mass balance and ecological risks of antibiotics in subtropical shallow Lake Taihu, China[J]. Environmental Science:Processes & Impacts, 2016, 18(4): 500-513. |
[40] | Liu Y H, Zhang S H, Ji G X, et al. Occurrence, distribution and risk assessment of suspected endocrine-disrupting chemicals in surface water and suspended particulate matter of Yangtze River (Nanjing section)[J]. Ecotoxicology and Environmental Safety, 2017, 135: 90-97. DOI:10.1016/j.ecoenv.2016.09.035 |
[41] | Yao L L, Wang Y X, Tong L, et al. Occurrence and risk assessment of antibiotics in surface water and groundwater from different depths of aquifers:A case study at Jianghan Plain, central China[J]. Ecotoxicology and Environmental Safety, 2017, 135: 236-242. DOI:10.1016/j.ecoenv.2016.10.006 |
[42] | Liu D, Liu J N, Guo M, et al. Occurrence, distribution, and risk assessment of alkylphenols, bisphenol A, and tetrabromobisphenol A in surface water, suspended particulate matter, and sediment in Taihu Lake and its tributaries[J]. Marine Pollution Bulletin, 2016, 112(1-2): 142-150. DOI:10.1016/j.marpolbul.2016.08.026 |
[43] |
丁惠君.鄱阳湖水环境抗生素污染特征及典型抗生素的吸附和降解研究[D].武汉: 武汉大学, 2018. Ding H J. Study on the characteristics of antibiotics in Poyang Lake and the adsorption and degradation of typical antibiotics[D]. Wuhan: Wuhan University, 2018. |
[44] | Ma R X, Wang B, Lu S Y, et al. Characterization of pharmaceutically active compounds in Dongting Lake, China:occurrence, chiral profiling and environmental risk[J]. Science of the Total Environment, 2016, 557-558: 268-275. DOI:10.1016/j.scitotenv.2016.03.053 |
[45] | Wang Z, Du Y, Yang C, et al. Occurrence and ecological hazard assessment of selected antibiotics in the surface waters in and around Lake Honghu, China[J]. Science of The Total Environment, 2017, 609: 1423-1432. DOI:10.1016/j.scitotenv.2017.08.009 |
[46] | Peng Y, Fang W D, Krauss M, et al. Screening hundreds of emerging organic pollutants (EOPs) in surface water from the Yangtze River Delta (YRD):occurrence, distribution, ecological risk[J]. Environmental Pollution, 2018, 241: 484-493. DOI:10.1016/j.envpol.2018.05.061 |
[47] | Lin H J, Chen L L, Li H P, et al. Pharmaceutically active compounds in the Xiangjiang River, China:Distribution pattern, source apportionment, and risk assessment[J]. Science of the Total Environment, 2018, 636: 975-984. DOI:10.1016/j.scitotenv.2018.04.267 |
[48] | Xie Z X, Lu G H, Yan Z H, et al. Bioaccumulation and trophic transfer of pharmaceuticals in food webs from a large freshwater lake[J]. Environmental Pollution, 2017, 222: 356-366. DOI:10.1016/j.envpol.2016.12.026 |
[49] | Lu J, Li H P, Luo Z F, et al. Occurrence, distribution, and environmental risk of four categories of personal care products in the Xiangjiang River, China[J]. Environmental Science and Pollution Research, 2018, 25(27): 27524-27534. DOI:10.1007/s11356-018-2686-7 |
[50] | Yan M T, Xu C, Huang Y M, et al. Tetracyclines, sulfonamides and quinolones and their corresponding resistance genes in the Three Gorges Reservoir, China[J]. Science of the Total Environment, 2018, 631-632: 840-848. DOI:10.1016/j.scitotenv.2018.03.085 |
[51] |
封丽, 程艳茹, 封雷, 等. 三峡库区主要水域典型抗生素分布及生态风险评估[J]. 环境科学研究, 2017, 30(7): 1031-1040. Feng L, Cheng Y R, Feng L, et al. Distribution of typical antibiotics and ecological risk assessment in main waters of Three Gorges Reservoir area[J]. Research of Environmental Sciences, 2017, 30(7): 1031-1040. |
[52] | Wang Y Q, Liu Y, Lu S Y, et al. Occurrence and ecological risk of pharmaceutical and personal care products in surface water of the Dongting Lake, China-during rainstorm period[J]. Environmental Science and Pollution Research, 2019, 26(28): 28796-28807. DOI:10.1007/s11356-019-06047-4 |