2. 中国科学院亚热带农业生态研究所亚热带农业生态过程重点实验室, 长沙 410125
2. Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
氮是植物生长的限制性因子[1].为了提高农作物产量, 大量的化学氮肥被应用于农业生态系统[2].然而, 过量氮肥的施用不仅导致农业生态系统地下水硝酸盐污染[3], 同时也导致温室气体N2O的大量排放[4, 5]等.因此, 如何提高氮肥利用率和降低环境污染风险, 已成为国内外广泛关注的焦点.
土壤氮素循环过程主要由微生物驱动[6].其中, 硝化作用是旱地土壤氮素转化的关键过程.硝化作用共包括氨氧化为亚硝酸盐以及亚硝酸盐被氧化成硝酸盐二步反应[3, 5].氨氧化过程是硝化作用的第一个限速步骤[7], 含amoA基因的氨氧化细菌(AOB)和氨氧化古菌(AOA)是驱动该过程的主要功能微生物[6].目前, 针对土壤硝化微生物及其作用机制已有大量研究[3, 5, 7]. AOB占据较高的生态位, 是驱动硝化作用的主要功能微生物[3, 8, 9], 尤其是在含氮水平较高土壤中[3].然而最新研究表明, AOA在驱动硝化作用中的贡献不容忽视, 尤其是在酸性土壤中, AOA被认为是硝化作用的主导者[10].
硝化抑制剂由于能够有效抑制硝化作用, 减缓铵态氮转化为硝态氮的速率, 因而被认为是提高氮肥利用效率和减少硝酸盐污染的有效调控手段[11].其中, 双氰胺(DCD)和3, 4-二甲基吡唑磷酸盐(DMPP)是普遍应用的两种硝化抑制剂[12, 13]. DCD和DMPP主要通过以底物竞争的形式[14], 干扰AMO酶的活性来抑制AOB和AOA对底物的利用和自身的生长, 从而延长NH4+-N在土壤中的时间, 控制NO3--N的形成[15, 16], 达到抑制硝化作用的目的[16, 17].目前, 关于DCD和DMPP的应用效果已有初步地了解[18~20], 但二者对土壤AOB和AOA的影响机制还缺乏深入了解[16, 20].
蔬菜种植土壤是我国农业土壤的主要类型之一[5].由于其复种指数大、氮肥用量高, 但利用率低, 导致我国蔬菜产地普遍存在农产品硝酸盐超标、地下水硝酸盐污染严重等突出问题[20~22].且氮肥的施用会影响土壤生态系统中微生物群落结构的变化[23~25], 因此, 深入了解蔬菜土氮素转化过程及相关功能微生物特征十分必要.
本研究选取亚热带地区连续耕种蔬菜40 a以上的蔬菜种植土壤, 利用荧光定量PCR分子技术和高通量测序技术, 系统比较DCD和DMPP对氮素形态稳定性的调控效果及对AOB和AOA丰度、群落组成的影响, 以期为蔬菜土氮肥的合理使用和蔬菜品质、产量的提高, 提供重要参考.
1 材料与方法 1.1 采样及室内培养土壤 1.1.1 土壤样品采集供试土壤于2017年5月采自湖南省长沙市黄兴镇蔬菜基地(N28°07′45.7″, E113°04′53.9″), 种植时间为40 a以上的蔬菜土, 该土壤发源于河流冲积母质, 是典型的中国亚热带地区旱地菜田土壤, 之前种植作物为水稻.采用5点法采集0~20 cm的表层土, 混匀后备用.新鲜土壤样品经过风干和过2 mm筛剔除杂物及残留根系后, 一部分土壤被用来测定土壤持水容量, 其余部分在25℃下均质化并预实验培养1周.土壤基本理化性质见表 1.
![]() |
表 1 供试土壤基本理化性质1) Table 1 Physical and chemical properties of the soils tested |
1.1.2 土壤培养实验
供试硝化抑制剂为双氰胺(dicyandiamide, DCD)和3, 4-二甲基吡唑磷酸盐(3, 4-dimethylpyrazole, DMPP), 处理如下:对照处理(CK), 单施尿素态氮0.2 g·kg-1; DMPP处理(DMPP), 0.2 g·kg-1+0.01 g·kg-1(尿素态氮+DMPP, 以干土计); DCD处理(DCD), 0.2 g·kg-1+0.02 g·kg-1(尿素态氮+DCD, 以干土计), 每个处理3个重复.然后将土壤含水量调整至饱和持水量(WHC)的60%, 充分混匀后, 分装放入培养钵(每钵3 kg干土).钵口覆盖有针孔的锡箔纸, 保持有氧条件, 在25℃恒温室培养, 培养过程中保持土壤水分恒定.每个处理18钵, 分别在培养3、7、14、21、28和35 d取新鲜土壤样品用于氮素动态、硝化势和土壤微生物DNA分析.
1.2 无机氮动态测定采集新鲜土壤样品用2 mol·L-1 KCl溶液萃取并在流动注射分析仪(Flastar 5000 Analyzer, 瑞典福斯)测定土壤铵态氮(NH4+-N)和硝态氮(NO3--N)的含量.第0 d的土壤铵态氮和硝态氮用来作为预实验培养的土壤使用.
1.3 土壤硝化势测定采用Hart等[26]的方法, 新鲜土壤过2 mm筛, 取15 g土样放入250 mL锥形烧瓶, 加入100 mL[0.2 mol·L-1 KH2PO4和0.2 mol·L-1 K2HPO4, 50 μmol·L-1 (NH4)2SO4]培养液混合溶液, 烧瓶盖上排气盖.将所有烧瓶放在摇床上, 以180 r·min-1速度振荡24 h, 过滤后流动注射分析仪(Flastar 5000 Analyzer, 瑞典福斯)分析硝化势, 见公式(1).
![]() |
(1) |
式中, NO3--N [mg·(L·h)-1]是每小时NO3--N的浓度, 即每小时每升土壤溶液中NO3--N的含量.
1.4 土壤微生物总DNA提取采用SDS-GITC-PEG方法[27]提取土壤微生物总DNA, 用0.8%的琼脂糖凝胶电泳检测所提DNA片段大小, 并用(Nano Drop ND-1000)核酸蛋白测定仪测定DNA的浓度及纯度.
1.5 荧光定量PCR采用实时荧光定量PCR(real-time PCR)技术测定AOB和AOA的amoA基因丰度.反应在罗氏荧光定量PCR仪(LightCycler 480 Ⅱ, 瑞士)上进行, 所用引物见表 2.反应体系如下:DNA模板1 μL(5 ng), 上下游引物各(10 μmol)0.3 μL, SYBR GreenⅠ(Takara, 日本)5 μL, Rox Reference Dye(Takara, 日本)0.2 μL, 无菌水(ddH2O, 实验室)补至10 μL.细菌amoA、古菌amoA基因实时荧光定量PCR扩增条件均为:95℃预变性2 min, 95℃ 5 s, 55℃ 30 s, 72℃ 10 s, 40个循环; 95℃ 15 s, 60℃ 15 s, 95℃ 15 s.质粒及标准曲线的制备参照文献[28].
![]() |
表 2 定量PCR引物信息1) Table 2 Primers for RT-PCR |
1.6 高通量测序及结果处理
采用Illumina MiSeq测序平台对第3 d(氨氮含量上升期)和第21 d(氨氮含量下降期)的AOB和AOA(amoA)基因进行双末端(Paired-end)测序, 测序由上海美吉生物医药科技有限公司完成.每个样品至少获得3万条有效序列以上, 利用上海美吉生物医药科技有限公司生信云平台进行数据分析和比对, 得到AOB和AOA群落α多样性指数及群落组成等信息.
1.7 数据分析采用Microsoft Excel 2007进行相关数据的计算和预处理.用Origin 8绘图, 所有的数据均使用IBM SPSS Statistics 21分析, 氨氧化微生物群落α多样性指数显著性用Duncan法单因素方差分析(One-way ANOVA)进行比较, 当P<0.05时接受.
2 结果与分析 2.1 不同硝化抑制剂处理对蔬菜土氮素动态变化的影响.土壤培养过程中, 两种抑制剂处理的NH4+-N含量均显著高于CK(单施尿素)处理, 整个培养期间DCD处理和DMPP处理分别比CK处理平均升高213%和675%(图 1).培养初始阶段CK处理的菜地土壤NH4+-N含量逐渐上升, 第7 d达到最大值(14.41 mg·kg-1), 后开始缓慢下降, 14 d后基本保持不变, 稳定在4.71 mg·kg-1.然而DCD处理后菜地土壤NH4+-N含量迅速升高, 第3 d时显著高于对照, 之后NH4+-N含量逐渐下降, 最终稳定在5.54 mg·kg-1; DMPP处理的NH4+-N含量初期显著高于对照和DCD处理, 在第7 d达到最大值(78.49 mg·kg-1), 之后有缓慢下降的趋势, 最终稳定在29.8 mg·kg-1.在培养后期, 两种硝化抑制剂处理间也表现出明显的差异, DMPP处理的菜地NH4+-N含量始终显著高于DCD处理(14~35d平均值高7.38倍), 但DCD处理与CK处理的菜地NH4+-N含量在14 d后没有显著差异.结果表明两种硝化抑制剂都可以抑制蔬菜地土壤的硝化作用, 减缓NH4+-N的转化.相比DCD, DMPP对NH4+-N的延缓效果更好, 尤其在培养后期二者差异更为明显.
![]() |
图 1 不同抑制剂处理下蔬菜土NH4+-N和NO3--N含量动态 Fig. 1 Dynamics of NH4+-N and NO3--N concentrations in vegetable soil with different nitrification inhibitors |
土壤NO3--N含量变化趋势与土壤NH4+-N完全相反.在整个培养期间, DCD处理和DMPP处理的NO3--N含量分别比CK处理平均降低13.3%和37.2%. CK处理NO3--N含量初期处于较高水平, 培养过程中, 先逐渐下降至61.8 mg·kg-1, 后期又开始缓慢上升, 最终稳定在86.7 mg·kg-1.添加硝化抑制剂处理的NO3--N含量均在培养初期迅速下降, 明显低于CK处理, 这种抑制效应持续到第7 d, 后期出现了差异.其中, DCD处理的NO3--N含量在施用后一直呈缓慢上升趋势, 第7 d后与CK处理没有显著差异, 最终高达100.9 mg·kg-1; DMPP处理NO3--N含量先下降后又逐渐回升, 最终升高至84.4 mg·kg-1.结果表明在菜地土壤中施用硝化抑制剂均可以抑制NO3--N的产生, 且DMPP相比DCD对抑制NO3--N产生具有更好地效果.
2.2 不同硝化抑制剂处理对蔬菜土硝化势的影响土壤培养过程硝化抑制剂处理的土壤硝化势数值显著低于CK处理, 其中DCD处理和DMPP处理分别比对照平均降低20.4%和82.4% (图 2).前期施加硝化抑制剂显著降低了蔬菜土壤的硝化势, 在后期各处理就发生了差异. CK处理始终表现出较高硝化势数值, 后期表现出曲折上升趋势.两种抑制剂处理在土壤培养整个时期表现出明显差异. DCD处理硝化势数值在初期(3~7 d)上升较快, 中期缓慢增长, 第21 d达到最大值[3.74 mg·(kg·h)-1, 以N计, 下同], 后期又开始逐渐下降, 最终降到2.36 mg·(kg·h)-1. DMPP处理始终维持在较低的硝化势水平, 变化趋势相对缓和, 平均值稳定在0.59 mg·(kg·h)-1.结果表明, 施加DCD和DMPP可以有效降低蔬菜土壤硝化势, 且DMPP在整个培养过程中硝化势均较低.
![]() |
图 2 不同硝化抑制剂处理下蔬菜土硝化势动力学 Fig. 2 Dynamics of nitrification potential in vegetable soil with different nitrification inhibitors |
整个实验培养期间, 施加抑制剂处理的AOB基因丰度都显著低于对照(图 3), 其中DCD处理和DMPP处理的AOB(amoA)基因拷贝数分别比对照平均降低51.2%和56.5%. CK处理的AOB(amoA)基因拷贝数在初期随时间变化逐渐下降, 14 d之后先回升后又下降, DCD处理和DMPP处理AOB(amoA)基因拷贝数整体上都呈现缓慢地下降趋势.结果表明, 两种抑制剂都可以有效地抑制菜地土AOB(amoA)基因丰度, DMPP处理比DCD处理对AOB的抑制效果好一点, 但是这种影响在培养末期消失.
![]() |
图 3 不同硝化抑制处理下氨氧化细菌(AOB)和氨氧化古菌(AOA) amoA基因丰度变化情况 Fig. 3 Abundance of bacterial and archaeal amoA gene with application of different nitrification inhibitors |
蔬菜土壤培养实验前期, 各处理AOA(amoA)基因拷贝数都处于较低水平, 后期出现了明显的差异.整个培养期内DCD处理和DMPP处理的AOA(amoA)基因拷贝数比对照平均降低6%和27%.在实验培养前期, DCD处理的AOA(amoA)基因拷贝数与CK处理没有显著差异, 21 d后差异逐渐明显; DMPP处理的AOA(amoA)基因拷贝数处于较低值, 显著低于对照和DCD处理.结果表明, 蔬菜土培养前期、中期DCD处理对AOA(amoA)基因丰度的抑制效果不明显, 但DMPP对其抑制效果较强, DCD和DMPP的抑制影响均在末期消失.
2.4 不同硝化抑制剂处理氨氧化微生物群落α多样性指数采用Illumina MiSeq测序平台对第3 d(氨氮含量上升期)和第21 d(氨氮含量下降期)的AOB和AOA(amoA)基因进行双末端(Paired-end)测序, 分析后发现:Sobs丰富度值、ACE指数、Chao1指数和Simpsoneven均匀度指数显示第3和21 d不同抑制剂处理AOB群落丰富度和AOB Simpson均匀度都无显著差异; 但是, 第3 d各处理AOB群落多样性和AOB Shannon均匀度具有显著差异, 其中Shannon多样性指数和Shannoneven均匀度指数CK>DCD>DMPP, Simpson多样性指数CK<DCD<DMPP(表 3), 第21d无显著差异.然而, AOA群落α多样性指数表明不同抑制剂处理AOA的群落丰富度出现了显著差异, 其中第3 d的Sobs丰富度值、ACE指数处理DCD>DMPP>CK, 第21 d的Sobs丰富度值DCD>CK>DMPP, AOA群落多样性和群落均匀度无显著差异(表 4).
![]() |
表 3 不同硝化抑制剂处理AOB群落α多样性指数1) Table 3 The α diversity index of the AOB ammonia oxidizing bacteria community in different nitrification inhibitors treatments |
![]() |
表 4 不同硝化抑制剂处理AOA群落α多样性指数 Table 4 The α diversity index of the AOA ammonia oxidizing archaea community in different nitrification inhibitors treatments |
2.5 不同硝化抑制剂处理氨氧化微生物群落组成分析
AOB群落在属水平上有4个优势类群, 其中norank-environmental-samples占总序列19.0%~31.0%, 第3和21 d两种抑制剂处理都明显高于CK; unclassified-Nitrosomonadaceae、unclassified-Bactertia和Nitrosospira分别占总序列的7.0%~20.6%、21.3%~28.0%和19.0%~26.9%, 它们的群落丰度在第3 d和21 d处理DCD、DMPP都显著低于CK(表 5).
![]() |
表 5 不同硝化抑制剂处理在属水平上AOB群落丰度百分比1)/% Table 5 Percent of community abundance of AOB at the genus level in different nitrification inhibitors treatments/% |
AOA群落在属水平上有3个优势类群, 其中norank-Crenarchaeota占总序列58.2%~72.2%, DCD、DMPP处理下其群落丰度均显著低于CK. norank-enviromental-samples占总序列10.3%~21.2%, 第3 d处理DCD和DMPP都显著高于CK; 第21 d处理DCD比CK升高了21.9%, 处理DMPP比CK降低了32.8%. Nitrososphaera占总序列9.2%~18.0%, 其群落丰度处理均高于CK(表 6).
![]() |
表 6 不同硝化抑制剂处理在属水平上AOA群落丰度百分比/% Table 6 Percent of community abundance of AOA at the genus level in different nitrification inhibitors treatments/% |
3 讨论
菜地土壤是我国现代农业生产中具有鲜明特点的一类农田土壤, 由于其蔬菜根系浅、生产力高、复种指数大、化肥施用量是粮棉作物的数倍, 而且氮肥利用效率远低于其它作物, 因此, 我国菜地土壤普遍存在农产品硝酸盐超标和地下水硝酸盐污染等突出问题.
NH4+-N是蔬菜生长必需的养分之一.蔬菜土壤中NH4+-N主要由尿素水解作用产生, 并在硝化细菌和古菌的作用下由亚硝酸盐转换为硝酸盐, 从而导致土壤中NH4+-N浓度下降[8].本研究中, DMPP和DCD的施用显著延缓了土壤NH4+-N向NO3--N的转化, 降低了NO3--N的累积(图 1).有研究也指出, DMPP和DCD分别与NH4+基肥联合施用可以有效减少农业土壤N2O的排放和NO3--N的损失[7, 8, 23].在培养前期, DMPP和DCD都可以明显抑制蔬菜土壤的硝化作用, 使NH4+-N含量维持较高水平, NO3--N含量和硝化势相比CK处理均显著降低.在培养后期, DMPP对硝化作用的抑制效果相比DCD要更显著[30~32].其原因可能为, 相比DCD, DMPP挥发性更低, 且在土壤中流动性低[30].另外, DMPP和DCD在培养过程中, 会随着培养时间的延长而逐渐被土壤微生物降解.之前的研究表明, 在25℃温度条件下, DCD的降解速度显著高于DMPP[8, 33].因此, DMPP比DCD在土壤中具有较高的持久性和稳定性, 以及持久的抑制作用[7].
土壤NH4+-N的转化主要由氨氧化细菌和古菌驱动, 抑制微生物氨氧化过程可以降低土壤硝态氮的累积速率, 降低反硝化过程中氮素流失的风险[7].其中氮素含量影响AOB和AOA的分布, 以往的研究普遍认为, 在高氮环境或营养丰富的农田土壤中AOB在氨氧化过程中发挥更重要的作用, 古菌在与细菌的竞争中处于劣势地位[8, 34, 35].另外, 土壤理化性质也会显著影响AOB和AOA的分布[7, 8], 有研究发现土壤类型和pH值很大程度上决定了AOB和AOA的丰度和组成.例如, 稻田中AOA较丰富, 氮丰富的湿地和湿地沉积物中AOB更丰富[36]. Xi等[37]研究了土壤pH值与AOB和AOA丰度的关系, 结果表明土壤pH值对AOA丰度的影响更大, 而对AOB丰度的影响较小.有研究认为在中性土壤中AOA的作用会受到抑制[38, 39].本研究采用了pH为7.0、长期施氮肥的蔬菜种植土壤, 结果表明AOB的种群丰度明显高于AOA的种群丰度, 这与之前的研究结论基本一致. DMPP和DCD的添加均显著抑制了AOB的种群丰度, 且DMPP相比DCD对AOB的抑制作用更为明显.之前的报道也指出DMPP对AOB的丰度和硝化反应的抑制作用强于DCD[7, 8].对于AOA来说, 本研究中DMPP显著抑制了AOA的种群丰度, 但是其抑制程度要低于对AOB的抑制效果, 其原因为DMPP对土壤中AOB氨单加氧酶的转录活性的抑制作用大于AOA[8].有报道又指出, DMPP的应用使细菌胞体略有增大从而加速氨向亚硝酸盐和硝酸盐的转化[40], 但DMPP对AOA的显著抑制效果可以确保NH4+-N的转化显著放缓.然而, 本研究中DCD的添加并没有显著影响AOA的种群丰度.其原因可能是DCD添加到土壤后通过螯合AOA中氨氧化酶的铜离子而逐渐失去对AOA氨氧化酶的抑制效果, 因此DCD对AOA的抑制能力不如DMPP[8].
有研究指出硝化抑制剂的添加短期内对AOB和AOA的群落多样性没有显著影响[41], 本研究施用DCD和DMPP, α多样性指数分析也出现了类似的结果(表 3和表 4).然而, Chen等[8]认为尿素+DCD或尿素+DMPP处理中AOB的种群组成存在显著差异.本研究群落组成分析发现DMPP和DCD的施用显著改变了AOB和AOA的种群组成, 且DMPP对AOB和AOA种群组成的影响更大. Norank-environmental-samples、unclassified-Bactertia、unclassified-Nitrosomonadaceae和Nitrosospira为AOB优势属水平类群, 尿素与DCD、DMPP配施显著改变了其各自组成.这可能是连续集约化蔬菜生产刺激了土壤AOB群落单一优势群体Nitrosospira的形成[39].同时, 本研究中norank-Crenarchaeota、norank-enviromental-samples和Nitrososphaera是AOA的优势属水平类群. Zhong等[42]也指出蔬菜土壤中AOA的优势种群主要隶属于group 1.1b thaumarchaeota, Prosser等[43]报道来源于土壤中的氨氧化古菌大多聚类于group 1.1b, 此外Nitrososphaera的功能基因序列与group 1.1b有较高的同源性, 也具有氨氧化能力[44].但是, Gong等[41]在棕色土壤上也发现AOA的优势种群主要隶属于泉古菌门Crenarchaeota, 与本研究中发现的norank-Crenarchaeota具有较高的同源性, 都隶属于AOA类群.已有研究证实DMPP和DCD主要是通过抑制土壤硝化微生物活性和氨氧化微生物群落组成[20, 23], 延缓氨氧化进程, 从而降低硝化作用强度.
4 结论(1) 与单施尿素相比, DCD和DMPP施用显著抑制了蔬菜土壤NH4+-N的转化、NO3--N的产生和硝化势, 且DMPP的抑制程度比DCD更显著.
(2) DMPP的添加显著降低了AOB和AOA的种群丰度和改变了AOB和AOA的种群组成, 且对AOB的影响比AOA更显著; DCD的添加主要通过显著抑制AOB的种群丰度和改变AOB的种群组成, 而对AOA的种群丰度和组成影响较小.
(3) 综上, DMPP对土壤硝化过程和AOB、AOA的抑制效果较DCD强, 说明DMPP是一种较DCD更为理想的硝化抑制剂, 在提高蔬菜土壤氮肥利用率方面具有更好地应用前景.
[1] | Gilsanz C, Báez D, Misselbrook T H, et al. Development of emission factors and efficiency of two nitrification inhibitors, DCD and DMPP[J]. Agriculture, Ecosystems & Environment, 2016, 216: 1-8. |
[2] | Song A L, Liang Y C, Zeng X B, et al. Substrate-driven microbial response:a novel mechanism contributes significantly to temperature sensitivity of N2O emissions in upland arable soil[J]. Soil Biology and Biochemistry, 2018, 118: 18-26. DOI:10.1016/j.soilbio.2017.11.021 |
[3] | Ouyang Y, Norton J M, Stark J M, et al. Ammonia-oxidizing bacteria are more responsive than archaea to nitrogen source in an agricultural soil[J]. Soil Biology and Biochemistry, 2016, 96: 4-15. DOI:10.1016/j.soilbio.2016.01.012 |
[4] | Scheer C, Rowlings D, Firrell M, et al. Nitrification inhibitors can increase post-harvest nitrous oxide emissions in an intensive vegetable production system[J]. Scientific Reports, 2017, 7: 43677. DOI:10.1038/srep43677 |
[5] | Duan P P, Wu Z, Zhang Q Q, et al. Thermodynamic responses of ammonia-oxidizing archaea and bacteria explain N2O production from greenhouse vegetable soils[J]. Soil Biology and Biochemistry, 2018, 120: 37-47. DOI:10.1016/j.soilbio.2018.01.027 |
[6] |
刘远, 王光利, 李恋卿, 等. 土壤硝化和反硝化微生物群落及活性对大气CO2浓度和温度升高的响应[J]. 环境科学, 2017, 38(3): 1245-1252. Liu Y, Wang G L, Li L Q, et al. Response of soil nitrifier and denitrifier community and activity to elevated atmospheric CO2 concentration and temperature[J]. Environmental Science, 2017, 38(3): 1245-1252. |
[7] | Fan X P, Yin C, Chen H, et al. The efficacy of 3, 4-dimethylpyrazole phosphate on N2O emissions is linked to niche differentiation of ammonia oxidizing archaea and bacteria across four arable soils[J]. Soil Biology and Biochemistry, 2019, 130: 82-93. DOI:10.1016/j.soilbio.2018.11.027 |
[8] | Chen Q H, Qi L Y, Bi Q F, et al. Comparative effects of 3, 4-dimethylpyrazole phosphate (DMPP) and dicyandiamide (DCD) on ammonia-oxidizing bacteria and archaea in a vegetable soil[J]. Applied Microbiology and Biotechnology, 2015, 99(1): 477-487. DOI:10.1007/s00253-014-6026-7 |
[9] |
刘莹, 王丽华, 郝春博, 等. 酸性矿山废水库周边土壤微生物多样性及氨氧化菌群落研究[J]. 环境科学, 2014, 35(6): 2305-2313. Liu Y, Wang L H, Hou C B, et al. Microbial diversity and ammonia-oxidizing microorganism of a soil sample near an acid mine drainage lake[J]. Environmental Science, 2014, 35(6): 2305-2313. |
[10] | Rui L, Hayden H L, Hu H W, et al. Effects of the nitrification inhibitor acetylene on nitrous oxide emissions and ammonia-oxidizing microorganisms of different agricultural soils under laboratory incubation conditions[J]. Applied Soil Ecology, 2017, 119: 80-90. DOI:10.1016/j.apsoil.2017.05.034 |
[11] | Kong X W, Eriksen J, Petersen S O. Evaluation of the nitrification inhibitor 3, 4-dimethylpyrazole phosphate (DMPP) for mitigating soil N2O emissions after grassland cultivation[J]. Agriculture, Ecosystems & Environment, 2018, 259: 174-183. |
[12] | Rodrigues J M, Lasa B, Aparicio-Tejo P M, et al. 3, 4-dimethylpyrazole phosphate and 2-(N-3, 4-dimethyl-1h-pyrazol-1-yl) succinic acid isomeric mixture nitrification inhibitors:quantification in plant tissues and toxicity assays[J]. Science of the Total Environment, 2018, 624: 1180-1186. DOI:10.1016/j.scitotenv.2017.12.241 |
[13] | Zhang Z Z, Shi X J, Li H, et al. Inorganic nitrogen transformation in purple soil as affected by major nitrification inhibitors in China[A]. 20165th International Conference on Energy and Environmental Protection (ICEEP 2016)[C]. Amsterdam: Atlantis Press, 2016. |
[14] |
张苗苗, 沈菊培, 贺纪正, 等. 硝化抑制剂的微生物抑制机理及其应用[J]. 农业环境科学学报, 2014, 33(11): 2077-2083. Zhang M M, Shen J P, He J Z, et al. Microbial mechanisms of nitrification inhibitors and their application[J]. Journal of Agro-Environment Science, 2014, 33(11): 2077-2083. DOI:10.11654/jaes.2014.11.001 |
[15] |
伍延正, 张苗苗, 秦红灵, 等. 双氰胺对冬闲稻田和油菜地N2O排放的影响[J]. 环境科学, 2017, 38(5): 2084-2092. Wu Y Z, Zhang M M, Qing H L, et al. Effect of dicyandiamide on N2O emission in fallow paddy field and rape cropping[J]. Environmental Science, 2017, 38(5): 2084-2092. |
[16] | Wang Q, Zhang L M, Shen J P, et al. Effects of dicyandiamide and acetylene on N2O emissions and ammonia oxidizers in a fluvo-aquic soil applied with urea[J]. Environmental Science and Pollution Research, 2016, 23(22): 23023-23033. DOI:10.1007/s11356-016-7519-y |
[17] | Keiblinger K M, Zehetner F, Mentler A, et al. Biochar application increases sorption of nitrification inhibitor 3, 4-dimethylpyrazole phosphate in soil[J]. Environmental Science and Pollution Research, 2018, 25(11): 11173-11177. DOI:10.1007/s11356-018-1658-2 |
[18] | Scheer C, Rowlings D W, Firrel M, et al. Impact of nitrification inhibitor (DMPP) on soil nitrous oxide emissions from an intensive broccoli production system in sub-tropical Australia[J]. Soil Biology and Biochemistry, 2014, 77: 243-251. DOI:10.1016/j.soilbio.2014.07.006 |
[19] | Xu J J, Zhu T B, Xue W F, et al. Influences of nitrification inhibitor 3, 4-dimethylpyrazole phosphate (DMPP) and application method on nitrogen dynamics at the centimeter-scale[J]. European Journal of Soil Biology, 2019, 90: 44-50. DOI:10.1016/j.ejsobi.2018.12.004 |
[20] | Li J, Shi Y L, Luo J F, et al. Effects of 3, 4-dimethylpyrazole phosphate (DMPP) on the abundance of ammonia oxidizers and denitrifiers in two different intensive vegetable cultivation soils[J]. Journal of Soils and Sediments, 2019, 19(3): 1250-1259. DOI:10.1007/s11368-018-2155-4 |
[21] |
许超, 邝丽芳, 吴启堂, 等. 2-氯-6(三氯甲基)吡啶对菜地土壤氮素转化和径流流失及菜心品质的影响[J]. 水土保持学报, 2013, 27(6): 26-30. Xu C, Kuang L F, Wu Q T, et al. Effects of nitrification inhibitor nitrapyrin on nitrogen transformation and nitrogen loss and quality of brassica parachinensis in vegetable soil[J]. Journal of Soil and Water Conservation, 2013, 27(6): 26-30. DOI:10.3969/j.issn.1009-2242.2013.06.006 |
[22] |
俞巧钢, 符建荣, 马军伟, 等. DMPP对菜地土壤氮素径流损失的影响[J]. 环境科学, 2009, 30(3): 870-874. Yu Q G, Fu J R, Ma J W, et al. Effect of DMPP on inorganic nitrogen runoff loss from vegetable soil[J]. Environmental Science, 2009, 30(3): 870-874. DOI:10.3321/j.issn:0250-3301.2009.03.041 |
[23] |
杨扬, 孟德龙, 秦红灵, 等. 硝化抑制剂对蔬菜土硝化和反硝化细菌的影响[J]. 生态学报, 2012, 32(21): 6803-6810. Yang Y, Meng D L, Qing H L, et al. Mechanism of nitrification inhibitor on nitrogen-transformation bacteria in vegetable soil[J]. Acta Ecologica Sinica, 2012, 32(21): 6803-6810. |
[24] | Segal L M, Miller D N, McGhee R P, et al. Bacterial and archaeal ammonia oxidizers respond differently to long-term tillage and fertilizer management at a continuous maize site[J]. Soil and Tillage Research, 2017, 168: 110-117. DOI:10.1016/j.still.2016.12.014 |
[25] | Wang X L, Han C, Zhang J B, et al. Long-term fertilization effects on active ammonia oxidizers in an acidic upland soil in China[J]. Soil Biology and Biochemistry, 2015, 84: 28-37. DOI:10.1016/j.soilbio.2015.02.013 |
[26] | Hart S C, Stark J M, Davidson E A, et al. Nitrogen mineralization, immobilization, and nitrification[A]. In: Weaver R W, Angle J S, Bottomley P J, et al (Eds.). Methods of Soil Analysis, Part 2. Microbiological and Bio-Chemical Properties[C]. Madison, Wisconsin: Soil Science Society of America, 1994. 985-1018. |
[27] | Chen Z, Luo X Q, Hu R G, et al. Impact of long-term fertilization on the composition of denitrifier communities based on nitrite reductase analyses in a paddy soil[J]. Microbial Ecology, 2010, 60(4): 850-861. DOI:10.1007/s00248-010-9700-z |
[28] | Lopez-Gutiérrez J C, Henry S, Hallet S, et al. Quantification of a novel group of nitrate-reducing bacteria in the environment by real-time PCR[J]. Journal of Microbiological Methods, 2004, 57(3): 399-407. DOI:10.1016/j.mimet.2004.02.009 |
[29] | Sahan E, Muyzer G. Diversity and spatio-temporal distribution of ammonia-oxidizing Archaea and Bacteria in sediments of the westerschelde estuary[J]. FEMS Microbiology Ecology, 2008, 64(2): 175-186. DOI:10.1111/j.1574-6941.2008.00462.x |
[30] | Wu D, Zhao Z C, Han X, et al. Potential dual effect of nitrification inhibitor 3, 4-dimethylpyrazole phosphate on nitrifier denitrification in the mitigation of peak N2O emission events in north China Plain cropping systems[J]. Soil Biology and Biochemistry, 2018, 121: 147-153. DOI:10.1016/j.soilbio.2018.03.010 |
[31] | Fangueiro D, Fernandes A, Coutinho J, et al. Influence of two nitrification inhibitors (DCD and DMPP) on annual ryegrass yield and soil mineral N dynamics after incorporation with cattle slurry[J]. Communications in Soil Science and Plant Analysis, 2009, 40(21-22): 3387-3398. DOI:10.1080/00103620903325976 |
[32] | Wissemeier A H, Linzmeier W, Gutser R, et al. The new nitrification inhibitor DMPP (ENTEC®)-comparisons with DCD in model studies and field applications[A]. Horst W J (ed.). Plant Nutrition[M]. Dordrecht: Springer, 2001. |
[33] |
戴宇, 贺纪正, 沈菊培. 双氰胺在农业生态系统中的应用效果及其影响因素[J]. 应用生态学报, 2014, 25(1): 279-286. Dai Y, He J Z, Shen J P. Effects and influence factors of dicyandiamide (DCD) application in agricultural ecosystem[J]. Chinese Journal of Applied Ecology, 2014, 25(1): 279-286. |
[34] | Kou Y P, Wei K, Chen G X, et al. Effects of 3, 4-dimethylpyrazole phosphate and dicyandiamide on nitrous oxide emission in a greenhouse vegetable soil[J]. Plant Soil and Environment, 2015, 61(1): 29-35. |
[35] | Kong X W, Duan Y F, Schramm A, et al. 3, 4-Dimethylpyrazole phosphate (DMPP) reduces activity of ammonia oxidizers without adverse effects on non-target soil microorganisms and functions[J]. Applied Soil Ecology, 2016, 105: 67-75. DOI:10.1016/j.apsoil.2016.03.018 |
[36] |
刘天琳, 任佳琪, 王天佑, 等. 中性紫色水稻土硝化作用中细菌和古菌的相对贡献[J]. 土壤通报, 2018, 49(5): 1091-1096. Liu T L, Ren J Q, Wang T Y, et al. Relative contribution of bacteria and Archaea to soil nitrification in neutral paddy soil[J]. Chinese Journal of Soil Science, 2018, 49(5): 1091-1096. |
[37] | Xi R J, Long X E, Huang S, et al. pH rather than nitrification and urease inhibitors determines the community of ammonia oxidizers in a vegetable soil[J]. AMB Express, 2017, 7: 129. DOI:10.1186/s13568-017-0426-x |
[38] |
毛新伟, 程敏, 徐秋芳, 等. 硝化抑制剂对毛竹林土壤N2O排放和氨氧化微生物的影响[J]. 土壤学报, 2016, 53(6): 1528-1540. Mao X W, Cheng M, Xu Q F, et al. Effects of nitriifcation inhibitors on Soil N2O Emission and community structure and abundance of ammonia oxidation microorganism in soil under extensively managed phyllostachys edulis stands[J]. Acta Pedologica Sinica, 2016, 53(6): 1528-1540. |
[39] | Shen W S, Lin X G, Gao N, et al. Nitrogen fertilization changes abundance and community composition of ammonia-oxidizing bacteria[J]. Soil Science Society of America Journal, 2011, 75(6): 2198-2205. DOI:10.2136/sssaj2010.0459 |
[40] | Benckiser G, Christ E, Herbert T, et al. The nitrification inhibitor 3, 4-dimethylpyrazole-phosphat (DMPP)-quantification and effects on soil metabolism[J]. Plant and Soil, 2013, 371(1-2): 257-266. DOI:10.1007/s11104-013-1664-6 |
[41] | Gong P, Zhang L L, Wu Z J, et al. Responses of ammonia-oxidizing bacteria and archaea in two agricultural soils to nitrification inhibitors DCD and DMPP:A Pot Experiment[J]. Pedosphere, 2013, 23(6): 729-739. DOI:10.1016/S1002-0160(13)60065-X |
[42] | Zhong W H, Bian B Y, Gao N, et al. Nitrogen fertilization induced changes in ammonia oxidation are attributable mostly to bacteria rather than archaea in greenhouse-based high N input vegetable soil[J]. Soil Biology and Biochemistry, 2016, 93: 150-159. DOI:10.1016/j.soilbio.2015.11.003 |
[43] | Prosser J I, Nicol G W. Relative contributions of archaea and bacteria to aerobic ammonia oxidation in the environment[J]. Environmental Microbiology, 2008, 10(11): 2931-2941. DOI:10.1111/j.1462-2920.2008.01775.x |
[44] |
陈秋会.设施菜地土壤硝化作用的特征及其微生物学机制[D].杭州: 浙江大学, 2014. Chen Q H. Nitrification in greenhouse vegetable soils and corresponding microbial mechanisms[D]. Hangzhou: Zhejiang University, 2014. |