药物活性化合物(pharmaceutically active compounds, PhACs)作为一类新型有机污染物, 主要包括抗生素、抗真菌剂、抗抑郁类、镇癫痫类、降血脂类药物等[1].由于PhACs在我国大量生产, 并广泛应用于农业、水产养殖业、畜牧业和人类健康维护等, 造成相当数量的PhACs及其代谢产物排入自然环境[2, 3].近年, PhACs在污水、地表水、地下水、甚至饮用水中都有检出, 直接威胁非靶向水生生物及人类健康安全, 因此PhACs污染问题已经成为环境科学界的热点课题[4~7].
目前, PhACs在水环境中的分布主要集中在传统水相、悬浮颗粒物相、沉积相等介质界面赋存研究[8~11], 忽略了胶体等典型微界面的存在, 这对PhACs环境风险准确评估具有一定影响[12, 13].天然水体中胶体介质是粒径介于1 nm~1 μm的无机和有机非均相颗粒物, 具有体积小、比表面积大、吸附位点多等特点[14].现有研究发现水体中胶体是PhACs类污染物的重要“汇”, 能够改变或控制污染物的降解、转运、生物利用等环境行为[15, 16].在长江三角洲地区40余种PhACs的水体介质分布研究中, 发现胶体能够吸附传统水相中1/3左右的PhACs, 其吸附能力是悬浮颗粒物的2~4倍, 并指出污水受纳水体应重点关注[17, 18].
本研究以城市污水厂尾水受纳水体为研究区域, 选择公众关注度极高的典型PhACs, 调查其在胶体、溶解相等水环境介质中的赋存水平, 评估其在该区域中的环境风险水平, 以期为新型污染物的环境标准和环境容量制定提供基础数据.
1 材料与方法 1.1 试剂与仪器红霉素(ETM)、罗红霉素(ROX)、酮康唑(KTC)、布洛芬(IPF)、苯扎贝特(BZB)、立定痛(CBZ)、吉非罗齐(GFB)、吲哚美辛(IMC)、普萘洛尔(PRP)、舍曲林(SER)10种PhACs购买于梯希爱(上海)化成工业发展有限公司, 纯度>98%;丙酮、乙腈、甲醇(HPLC级)等试剂购买于德国MercK公司; 固相萃取小柱(HLB, 200 mg, 6 mL)购买于美国Waters公司.
1.2 实验方法采样区域及方法:选取南京市江宁污水厂(J1、J2)、城东污水厂(C1、C2)、科学园污水厂(K1、K2)上下游1.5 km等6处作为采样区域.于2017年7月份在采样区域进行河流断面采样, 每个断面设置3个采样点(采样断面中心点和离两岸各1.5 m远处点), 在每个采样点水面以下0.5 m处利用1 L棕色玻璃瓶进行地表水样品采集.具体采样方法参照《地表水和污水监测技术规范》(HJ/T 91-2002)及相关监测分析方法规定的采样要求进行.采集后的水样品放入含有干冰的容器中储存, 并迅速送回实验室做进一步处理.
水样分离及预处理:运回实验室的水样用1 μm玻璃纤维滤膜进行砂滤过滤, 去除悬浮颗粒物, 获得传统水相.传统水相再通过切向超滤装置和1×103的聚醚砜超滤膜进行胶体和溶解相分离, 体积比为1:9(胶体浓缩液/溶解相)[19], 样品分离完毕后, 两种溶液分离用固相萃取装置进行PhACs的提取、浓缩处理.处理前, 依次用10 mL甲醇和10 mL超纯水活化Oasis HLB固相萃取柱.以3~5 mL·min-1的流速对胶体浓缩液和溶解相进行富集.富集后的萃取柱用10 mL超纯水淋洗, 用N2干燥去除萃取柱中水分.然后用2×5 mL甲醇进行洗脱, 洗脱液收集于15 mL玻璃管中并在45℃下氮吹近干, 用甲醇定容至1 mL, 收集在1.5 mL棕色色谱瓶中, 存放于-20℃下储存待测.
胶体质量的测定:取1 L经1 μm玻璃纤维滤膜过滤后的水样, 用切向超滤装置进行胶体浓缩, 胶体浓缩液与溶解相的比达到1:9以上时, 将胶体浓缩液倒入预烘干的1×103的聚醚砜超滤膜折叠杯中, 将此折叠杯置于60℃的烘箱中烘至质量不变为止, 通过质量差值法计算水体中胶体的质量浓度.
1.3 仪器检测与质量控制利用超高效液相色谱质谱联用仪对10种PhACs进行定性、定量分析, 分别以含有0.05%甲酸的甲醇水溶液和含有5 mol·L-1乙酸铵的乙腈水溶液为正负离子流动相.采用多重反应监测模式(MRM)对目标化合物进行定量分析. ROX、ETM、IPF、IMC、GFB、PRP、CBZ、KTC和SER以正离子模式检测, 而BZB用负离子模式检测.样品前处理过程中采用严格的质量保证与控制, 每批次处理12个样品, 其中包含1个溶剂空白、1个野外空白、1个基质加标和9个野外样品.胶体相回收率实验采用的是经过高温灭菌后的天然胶体物质. 10种PhACs的定量限为0.05~1.2 ng·L-1, 回收率为75%~110%, 相对标准偏差低于20%, 溶剂空白和野外空白中未检出目标化合物.
1.4 数据分析方法为研究水体中PhACs对水生生物的影响, 采用风险熵值法(RQ)进行生态风险评估, 其计算公式如下:
![]() |
(1) |
![]() |
(2) |
式中, MEC为环境检出浓度; PNEC为预测无效应浓度. LC50、EC50和NOEC是半致死浓度、半效应浓度和无可见效应浓度; AF为评价因子. LC50、EC50和NOEC根据前期研究获得, AF选取欧盟Water Framework Directive的推荐值[12, 20].
胶体-溶解相分配系数(Kcol)和胶体吸附率(Acol)是衡量PhACs在胶体、溶解相间分配关系和胶体对PhACs吸附能力的参数, 其计算公式如下:
![]() |
(3) |
![]() |
(4) |
式中, Ccol为胶体中目标污染物的含量(ng·g-1); mcol为水体中胶体的质量浓度(mg·L-1); Cwater为溶解相中目标污染物的质量浓度(ng·L-1). SigmaPlot 12.5数据处理包对数据进行处理和图形绘制.
2 结果与讨论 2.1 PhACs溶解相中的分布特征10种PhACs在3个污水厂上下游水体中均被检出, 除KTC和CFB外, 其余8种PhACs检出率为100%. PhACs在污水厂上下游总质量浓度范围分别为27.2~104.3 ng·L-1和48.0~168.1 ng·L-1 [图 1(a)], 其中IPF浓度最高, 在城东污水厂下游(C2)达到101.0 ng·L-1, 其次是ROX和ETM, 最高浓度分别达到34.3 ng·L-1和26.1 ng·L-1.从空间分布来看, 城东污水厂排放口附近PhACs污染浓度最高, 这是因为3个污水厂受纳河流中, 城东污水厂尾水受纳河流流量最小, 稀释效应最低.此外, 3个排放口下游水体中PhACs浓度都明显高于下游, 表明污水厂尾水仍是PhACs进入自然水环境的重要途径.从单一药物贡献率来看[图 1(b)], IPF、ROX和ETM是检出浓度较高的3种PhACs, 三者浓度平均贡献率达到80%, 这与我国对IPF、ROX和ETM的生产和使用量直接相关. 2013年在南京秦淮河水体中同样广泛检出了IPF、ROX和ETM的存在, 最高浓度分别达到86.0、66.5和85.3 ng·L-1[12], 这与本研究结果相似, 但都明显高于长江水体(南京段)中3种污染物的检出浓度(IPF、ROX和ETM平均浓度分别为36.0、22.1和9.7 ng·L-1)[21].相似的浓度分布在我国珠江、长江、黄河、海河、辽河等江河流域均被发现, 而且IPF被视为检验城市尾水排放的典型特征性物质[5].
![]() |
图 1 10种PhACs在溶解相中的浓度分布和单一药物贡献率 Fig. 1 Concentrations and contributions of the 10 PhACs in the dissolved phase |
在胶体相中, 10种PhACs均被100%检出, 在尾水排放口上下游的总含量分别为196.9~751.1 ng·g-1和164.5~733.1 ng·g-1 [图 2(a)].与溶解相中PhACs的空间分布相似, 城东污水处理厂排放口附近是PhACs污染最为严重区域, 其次是江宁污水处理厂、科学园污水处理厂, 但是排放口上下游水体胶体中PhACs含量并没有明显差异.从单一药物贡献率来看[图 2(b)], ROX、IPF和ETM是胶体介质吸附含量最高的3种PhACs, 平均贡献率分别达到38.7%(平均含量为190.6 ng·g-1)、29.0%(平均含量为150.7 ng·g-1)和19.2%(平均含量为91.6 ng·g-1); 三者总贡献率为87%, 这与溶解相质量浓度分布相似.但从胶体/水分配系数(Kcol)和胶体吸附率来看[图 2(c)和2(d)], ROX、KTC、ETM和SER都表现出较强的吸附性能, 平均lgKcol在3.2~4.0之间, 胶体对这4种PhACs的吸附率分别达到了34.5%、29.9%、27.2%和21.1%.由于IPF平均lgKcol仅为3.5, 因此其在胶体中吸附含量有所下降.先前研究发现, 在污水厂尾水受纳水体中IPF的lgKcol在2.35~3.06之间[17], 略低于本研究结果.但本研究结果又低于长江三角洲地区水体中PhACs的lgKcol(5.75~7.58), 这与河流水质特征(盐度、温度等)和胶体理化性质(颗粒组成、有机碳含量等)直接相关[22].
![]() |
图 2 10种PhACs在胶体中的浓度分布、单一药物贡献率、胶体/溶解相分配系数和胶体吸附率 Fig. 2 Concentrations, contributions, colloid/water distribution coefficients (Kcol), and colloidal adsorption of the 10 PhACs in the colloids |
根据水体中PhACs溶解相浓度和目标污染物的急慢性毒理数据, 基于风险熵值计算模型对目标污染物进行生态风险评估.评估结果一般分为4个等级:RQ < 0.01为无风险; 0.01≤RQ < 0.1为低风险; 0.1≤RQ < 1中等风险; RQ≥1高风险[23, 24].评估结果如图 3所示, 从急性风险评估结果来看[图 3(a)], ROX、ETM、KTC和SER在大部分采样点对绿藻RQ均大于0.1, 表明监测区域水体中这4种PhACs的赋存水平可能对低等水生生物绿藻产生中等急性风险, 其它PhACs对绿藻为低等急性风险或无风险.所有PhACs对水溞和鱼类的急性风险值都低于0.1, 属于低等急性风险或无风险.整体来看, PhACs对水生生物的急性毒性风险值随着水生生物营养级的增大而逐步降低.从慢性风险评估结果来看[图 3(b)], ROX、ETM、KTC和IPF对绿藻表现出中等慢性毒理风险, IMC属于低等慢性风险, 其他PhACs对绿藻为无风险.值得注意的是相对于急性风险水平, 更多的PhACs对鱼类产生了中等或低等慢性风险, 如GFB、PRP、KTC和IPF.尤其是IPF, 其在所有采样点均对鱼类产生高等慢性毒理风险, 可能在鱼类的生殖系统产生不利影响, 如雌鱼孵化延迟、怀卵次数降低、雄鱼卵黄蛋白升高等[25].根据目前IPF、ETM和ROX的使用量、污水厂去除效能、水体污染水平和潜在生态风险, 多项研究建议对这3种PhACs应加强排放管理和优先控制[5, 12, 26].
![]() |
图 3 各采样点中PhACs对绿藻、溞、鱼的急性和慢性生态风险 Fig. 3 RQacute and RQchronic of each PhAC based on acute and chronic data for algae, daphnids, and fish |
本文调查了10种典型PhACs在尾水受纳河流溶解相和胶体中的污染水平及环境风险现状.结果显示:10种PhACs在研究区域被广泛检出, 其中城东污水处理厂尾水受纳河流, 因其流量最小, 成为PhACs污染最为严重区域, 在溶解相和胶体中的最高浓度分别达到168.1 ng·L-1和751.1 ng·g-1; 且在溶解相中, 尾水排放口下游PhACs质量浓度明显高于上游, 表明尾水仍是城市河流中PhACs的重要来源. ROX、ETM和IPF是溶解相和胶体介质中污染丰度最高的3种PhACs, 三者总贡献率达到80%以上. 10种PhACs的lgKcol和吸附率分别为3.2~4.0和7.2%~34.5%, 其中ROX、KTC、ETM和SER表现出较高的吸附特性, 胶体吸附量占传统水相的20%以上.相对于急性风险, PhACs对水生生物产生的慢性毒理风险更应引起注意, 尤其是IPF对高等水生生物鱼类产生的慢性不利影响.
[1] | Cecconet D, Molognoni D, Callegari A, et al. Biological combination processes for efficient removal of pharmaceutically active compounds from wastewater:a review and future perspectives[J]. Journal of Environmental Chemical Engineering, 2017, 5(4): 3590-3603. DOI:10.1016/j.jece.2017.07.020 |
[2] | Bu Q W, Wang B, Huang J, et al. Pharmaceuticals and personal care products in the aquatic environment in China:a review[J]. Journal of Hazardous Materials, 2013, 262: 189-211. DOI:10.1016/j.jhazmat.2013.08.040 |
[3] |
温智皓, 段艳平, 孟祥周, 等. 城市污水处理厂及其受纳水体中5种典型PPCPs的赋存特征和生态风险[J]. 环境科学, 2013, 34(3): 927-932. Wen Z H, Duan Y P, Meng X Z, et al. Occurrence and risk assessment of five selected PPCPs in municipal wastewater treatment plant and the receiving water[J]. Environmental Science, 2013, 34(3): 927-932. |
[4] | Munz N A, Fu Q G, Stamm C, et al. Internal concentrations in gammarids reveal increased risk of organic micropollutants in wastewater-impacted streams[J]. Environmental Science & Technology, 2018, 52(18): 10347-10358. |
[5] | Liu J L, Wong M H. Pharmaceuticals and personal care products (PPCPs):a review on environmental contamination in China[J]. Environment International, 2013, 59: 208-224. DOI:10.1016/j.envint.2013.06.012 |
[6] |
张新波, 宋姿, 张丹, 等. 天津供水系统中抗生素分布变化特征与健康风险评价[J]. 环境科学, 2018, 39(1): 99-108. Zhang X B, Song Z, Zhang D, et al. Distribution characteristics and health risk assessment of antibiotics in the water supply system in Tianjin[J]. Environmental Science, 2018, 39(1): 99-108. |
[7] |
陈晓雯, 赵建亮, 刘有胜, 等. 长江中下游环境激素效应的污染特征及生态风险[J]. 生态毒理学报, 2016, 11(3): 191-203. Chen X W, Zhao J L, Liu Y S, et al. Occurrence and ecological risks of hormonal activities in the middle and lower reaches of Yangtze River[J]. Asian Journal of Ecotoxicology, 2016, 11(3): 191-203. |
[8] | Biel-Maeso M, Baena-Nogueras R M, Corada-Fernández C, et al. Occurrence, distribution and environmental risk of pharmaceutically active compounds (PhACs) in coastal and ocean waters from the Gulf of Cadiz (SW Spain)[J]. Science of the Total Environment, 2018, 612: 649-659. DOI:10.1016/j.scitotenv.2017.08.279 |
[9] | Burns E E, Carter L J, Kolpin D W, et al. Temporal and spatial variation in pharmaceutical concentrations in an urban river system[J]. Water Research, 2018, 137: 72-85. DOI:10.1016/j.watres.2018.02.066 |
[10] | Lin H J, Chen L L, Li H P, et al. Pharmaceutically active compounds in the Xiangjiang River, China:distribution pattern, source apportionment, and risk assessment[J]. Science of the Total Environment, 2018, 636: 975-984. DOI:10.1016/j.scitotenv.2018.04.267 |
[11] |
张盼伟, 周怀东, 赵高峰, 等. 北京城区水体中PPCPs的分布特征及潜在风险[J]. 环境科学, 2017, 38(5): 1852-1862. Zhang P W, Zhou H D, Zhao G F, et al. Potential risk and distribution characteristics of PPCPs in surface water and sediment from rivers and lakes in Beijing, China[J]. Environmental Science, 2017, 38(5): 1852-1862. DOI:10.3969/j.issn.1000-6923.2017.05.031 |
[12] | Liu J C, Lu G H, Xie Z X, et al. Occurrence, bioaccumulation and risk assessment of lipophilic pharmaceutically active compounds in the downstream rivers of sewage treatment plants[J]. Science of the Total Environment, 2015, 511: 54-62. DOI:10.1016/j.scitotenv.2014.12.033 |
[13] |
聂明华, 晏彩霞, 杨毅, 等. 黄浦江流域典型污水中不同粒径胶体的三维荧光光谱特征[J]. 环境科学, 2017, 38(8): 3192-3199. Nie M H, Yan C X, Yang Y, et al. Fluorescence characterization of fractionated colloids in wastewaters received by Huangpu River[J]. Environmental Science, 2017, 38(8): 3192-3199. |
[14] | Yan C X, Nie M H, Lead J R, et al. Application of a multi-method approach in characterization of natural aquatic colloids from different sources along Huangpu River in Shanghai, China[J]. Science of the Total Environment, 2016, 554-555: 228-236. DOI:10.1016/j.scitotenv.2016.02.198 |
[15] | Yan C X, Nie M H, Yang Y, et al. Effect of colloids on the occurrence, distribution and photolysis of emerging organic contaminants in wastewaters[J]. Journal of Hazardous Materials, 2015, 299: 241-248. DOI:10.1016/j.jhazmat.2015.06.022 |
[16] | Yan L Y, Zhang S H, Lin D, et al. Nitrogen loading affects microbes, nitrifiers and denitrifiers attached to submerged macrophyte in constructed wetlands[J]. Science of the Total Environment, 2018, 622(623): 121-126. |
[17] | Duan Y P, Meng X Z, Wen Z H, et al. Multi-phase partitioning, ecological risk and fate of acidic pharmaceuticals in a wastewater receiving river:the role of colloids[J]. Science of the Total Environment, 2013, 447: 267-273. DOI:10.1016/j.scitotenv.2013.01.017 |
[18] | Yang Y, Fu J, Peng H, et al. Occurrence and phase distribution of selected pharmaceuticals in the Yangtze Estuary and its coastal zone[J]. Journal of Hazardous Materials, 2011, 190(1-3): 588-596. DOI:10.1016/j.jhazmat.2011.03.092 |
[19] | Cheng D M, Liu X H, Zhao S N, et al. Influence of the natural colloids on the multi-phase distributions of antibiotics in the surface water from the largest lake in North China[J]. Science of the Total Environment, 2017, 578: 649-659. DOI:10.1016/j.scitotenv.2016.11.012 |
[20] | Liu J C, Dan X X, Lu G H, et al. Investigation of pharmaceutically active compounds in an urban receiving water:occurrence, fate and environmental risk assessment[J]. Ecotoxicology and Environmental Safety, 2018, 154: 214-220. DOI:10.1016/j.ecoenv.2018.02.052 |
[21] | Yan Z H, Yang H H, Dong HK, et al. Occurrence and ecological risk assessment of organic micropollutants in the lower reaches of the Yangtze River, China:a case study of water diversion[J]. Environmental Pollution, 2018, 239: 223-232. DOI:10.1016/j.envpol.2018.04.023 |
[22] | Yan C X, Yang Y, Zhou J L, et al. Selected emerging organic contaminants in the Yangtze Estuary, China:a comprehensive treatment of their association with aquatic colloids[J]. Journal of Hazardous Materials, 2015, 283: 14-23. DOI:10.1016/j.jhazmat.2014.09.011 |
[23] | Hernando M D, Mezcua M, Fernández-Alba A R, et al. Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments[J]. Talanta, 2006, 69(2): 334-342. DOI:10.1016/j.talanta.2005.09.037 |
[24] | Ji Y, Wu P J, Zhang J, et al. Heavy metal accumulation, risk assessment and integrated biomarker responses of local vegetables:a case study along the Le'an river[J]. Chemosphere, 2018, 199: 361-371. DOI:10.1016/j.chemosphere.2018.02.045 |
[25] | Han S, Choi K, Kim J, et al. Endocrine disruption and consequences of chronic exposure to ibuprofen in Japanese medaka (Oryzias latipes) and freshwater cladocerans Daphnia magna and Moina macrocopa[J]. Aquatic Toxicology, 2010, 98(3): 256-264. DOI:10.1016/j.aquatox.2010.02.013 |
[26] | Zuccato E, Castiglioni S, Fanelli R. Identification of the pharmaceuticals for human use contaminating the Italian aquatic environment[J]. Journal of Hazardous Materials, 2005, 122(3): 205-209. DOI:10.1016/j.jhazmat.2005.03.001 |