城市污水处理厂二级出水是一种重要的再生水资源,但二级出水中含有大量的溶解性微生物代谢产物,上游饮用水水源中的天然有机物及微量污染物[1, 2],难以直接进行回用.而传统的“混凝+沉淀+过滤”处理流程难以适应复杂的水质要求[3],同时常规的氯消毒处理也会产生具有“三致”特性(致癌、致畸、致突变)的消毒副产物(DBPs)[4, 5],因此臭氧化及其联用技术逐渐成为水处理的重要途径[6~8].
目前常用的联用方式是将预臭氧化加入传统的混凝工艺中,可以通过提高原水的可混凝性,来达到提高后续工艺中污染物去除效率的目的[9, 10].虽然适量的臭氧可以起到改善废水中悬浮颗粒的絮凝性能,在一定程度上减少混凝剂投加量的作用[11, 12],但是预臭氧-混凝技术对有机物的去除有很大的局限性[13, 14]. Chang等[15]和Yan等[16]研究认为较低的预臭氧剂量是有益的,如果剂量过大会恶化后续的混凝效果. Liu等[17]甚至认为预臭氧化对混凝几乎没有促进作用,而且降低了后续混凝工艺对DOC的去除效率.通常臭氧通过两种途径与有机污染物发生作用;一是臭氧分子与有机污染物通过亲电反应或亲核反应直接氧化作用,该反应进程缓慢,选择性强[18, 19];二是臭氧在水中氢氧根(OH-)、有机污染物或某些无机物等引发剂的作用下生成羟基自由基(·OH),间接与水中有机污染物发生作用,该反应速度快,选择性低,其反应动力学常数在108~1010 L·(mol·s)-1之间[20~23].而臭氧氧化效率的提升可以通过采用与双氧水、紫外线和金属离子等联用的方式,以提高·OH的产率来实现[24].李华等[25]研究认为臭氧-紫外联合预处理的矿化作用主要是通过·OH实现的,·OH对溶解性腐殖酸的团聚结构产生破坏作用,从而促进对有机物的去除效率.吴国枝等[26]研究了臭氧与光催化和超声等高级氧化技术的不同组合方法对苯酚的降解效果,结果表明联用技术的协同作用生成了更多的强氧化剂·OH,从而更好地降解水中的有机物.鉴于此本研究建立臭氧-混凝耦合处理工艺,使混凝剂和臭氧化在一个体系中同时作用.金属盐混凝剂水解产生的金属离子和一些金属化合物,可以作为催化剂促进·OH的产生,从而提高溶解性有机物的去除效率.
本文的主要目的就是探究臭氧-混凝耦合工艺在污水深度处理中的去除特性,揭示该工艺去除溶解性有机物的机制.本文将在pH为5、7和混凝剂为AlCl3·6H2O的情况下研究耦合工艺的去除特性,并与预臭氧-混凝工艺和传统混凝工艺进行对比.同时采用·OH探针法研究耦合工艺中混凝剂对臭氧化过程的促进作用,从而更好地阐述该工艺的作用机制.
1 材料与方法 1.1 污水处理厂二级出水本实验以西安市某污水处理厂二级出水作为研究对象,该污水处理厂采用A2O工艺,处理规模为500 000 m3·d-1,实验前样品均需经过0.45 μm滤膜(上海新亚)过滤.过滤处理后的水质特征如表 1所示,碱度、NO3--N和NO2--N的含量都很低,不会影响后续实验的测定结果.实验所用的主要试剂包括氯化铝(AlCl3·6H2O)、靛蓝三磺酸钾、对氯苯甲酸(p-CBA)、硫代硫酸钠(Na2S2O3)、氢氧化钠(NaOH)、磷酸、磷酸二氢钠(NaH2PO4)和磷酸氢二钠(Na2HPO4)等,均为分析纯,并且使用超纯水配制.所有实验均在室温下进行.
![]() |
表 1 污水处理厂二级出水水质特征 Table 1 Water quality of WWTP effluent |
1.2 实验方法 1.2.1 臭氧原液制备方法
采用图 1所示装置制备臭氧原液,取样瓶有效体积为500 mL,用磷酸调pH至3.通过气体流量计控制氧气源臭氧发生器(SK-CFQ-3P, 三康)出口流量在16 L·h-1左右,持续曝气约2 h,未反应的剩余气体通入两级KI吸收瓶处理.整个制备装置利用水浴调节控制温度在0~4℃左右,在波长258 nm下测定吸光度值计算得到臭氧原液浓度[ε258=3 000 L·(mol·cm)-1],其浓度可达到80 mg·L-1左右.
![]() |
1.氧气瓶;2.氧气源臭氧发生器;3.超低温冷却循环泵;4.阀门;5.流量计;6.曝气头;7.取样瓶;8.一级KI吸收瓶;9.二级KI吸收瓶 图 1 臭氧水制备装置示意 Fig. 1 Ozone stock solution preparation device |
混凝装置采用混凝搅拌器(3000-6N, 武汉梅宇),水样体积为500 mL,使用0.1mol·L-1 NaOH溶液和磷酸调节水样pH至5和7,加入2 mmol·L-1磷酸盐缓冲液分别控制pH在5±0.5和7±0.5附近,选择混凝剂AlCl3·6H2O进行实验.混凝条件为300 r·min-1快搅1 min,60 r·min-1慢搅30 min,结束后静置沉淀30 min,并于液面下2 cm处取上清液过滤后测DOC、UV254和色度等水质指标.
1.2.3 臭氧-混凝耦合实验该实验要求臭氧化过程与混凝过程同时发生,即在混凝实验快搅完成后迅速加入臭氧原液进行慢搅,实验结束后静置、取样测定相关水质指标.在反应过程中按照设定好的时间间隔取样,测定液态臭氧浓度.测定p-CBA浓度时还需提前向烧杯中加入0.5 μmol·L-1的p-CBA,并在取样瓶中加入0.025 mol·L-1硫代硫酸钠淬灭·OH,防止其进一步氧化.
1.3 分析测定方法本实验涉及的测定项目主要包括pH、色度、UV254、DOC、IOD、液态臭氧浓度、·OH浓度和p-CBA浓度等.其中pH采用上海大普PHS-3C型精密酸度计测定;色度用分光光度铂钴比色法[27]测定;UV254采用UV-2102C型紫外分光光度计在254 nm下测定吸光度值;DOC采用日本岛津生产的TOC-VCPH分析仪测定,测定前先用硫酸对水样进行酸化氮吹处理,除去水中无机碳保证测定值的准确性;·OH浓度通过探针法间接测定,选择p-CBA作为·OH的指示剂,主要因为p-CBA与臭氧的反应速率很慢[kO3 < 1 L·(mol·s)-1],可以忽略,而与·OH的反应速率很快[k·OH/p-CBA=5×109 L·(mol·s)-1][28];p-CBA浓度采用日本岛津公司生产的LC-2010AHF型高效液相色谱(HPLC)测定,流动相为乙腈:水=1:1(磷酸调pH为2),流速1.0 mL·min-1,进样量20 μL,紫外检测波长为234 nm,柱温40℃,最低检测限为0.1 μg·L-1 [29];液态臭氧浓度使用靛蓝比色法[30]测定;臭氧在水体中分解的最初15 s阶段称为瞬时臭氧需求量(instantaneous O3 demand, IOD),可以通过计算最初投加臭氧浓度与15 s后剩余臭氧浓度的差值所得[31, 32].碱度、NO3--N和NO2--N的测定参考文献[33].
2 结果与讨论 2.1 臭氧-混凝耦合工艺深度处理特性研究比较臭氧投加量(以O3/DOC计,下同)为1.0 mg·mg-1时臭氧-混凝耦合工艺与预臭氧-混凝工艺及传统混凝工艺的处理效果,结果如图 2所示.耦合工艺和预臭氧-混凝工艺相比于传统混凝工艺,其色度、DOC和UV254的去除率都有明显的提高.其中色度的去除效果最明显,而UV254的去除率差异较小,这可能是因为臭氧化过程中臭氧与有机物中的不饱和官能团和共轭结构反应,改变了原水中有机物的性质和分子结构[34~36],从而达到提高混凝效果的目的.
![]() |
图 2 不同工艺去除效果对比 Fig. 2 Comparison of the removal efficiency in different processes |
预臭氧-混凝工艺对DOC的去除是有限的,在两种pH条件下DOC的去除率均小于20%. Singer等[37]研究表明,在臭氧投加量为1.0 mg·mg-1时,预臭氧化对混凝去除DOC的促进作用是很小的. Selcuk等[38]研究也表明,采用铝盐混凝剂时,预臭氧氧化对于TOC的去除率仅为22%左右.但是,在本研究中,不同pH条件下耦合工艺对DOC的去除率最大,分别为37.96%(pH=5)和39.66%(pH=7).这表明耦合工艺可以提高臭氧化对混凝工艺促进效果的提升.
2.2 臭氧-混凝耦合工艺中臭氧自分解反应的影响为探究混凝过程对臭氧衰减的促进作用,选择混凝剂AlCl3·6H2O和两种pH进行实验.由图 3可以看出,随着pH的增加臭氧衰减速度加快.加入的混凝剂与臭氧接触会显著加快臭氧的消耗,这可能是由于混凝剂中的金属离子在一定程度上对臭氧起到了催化氧化的作用,使其分解产生更多氧化性更强的·OH,加速了臭氧的衰减.臭氧在水中的分解是由于臭氧与水中的氢氧根(OH-)反应[39],导致超氧自由基(·O2-)的形成,随后引发链式反应产生·OH[40].因此,pH越大,臭氧衰减速度越快.
![]() |
图 3 不同pH条件的臭氧衰减曲线 Fig. 3 Ozone depletion curves at different pH values |
为了验证加入混凝剂促进了·OH的产生,又向反应体系中加入叔丁醇.叔丁醇作为·OH的抑制剂,可以阻断·OH链式反应的进行[41].结果显示加入叔丁醇后臭氧的衰减速度明显减慢,说明耦合工艺中臭氧是通过·OH的链式反应而分解的[42].
根据图 3数据,计算无叔丁醇条件下各反应的IOD如表 2所示.在相同的臭氧投加量下,高的pH值会导致高的IOD值. pH=7时IOD阶段消耗了大约61.93%的臭氧,而pH=5时仅消耗臭氧42.86%.在相同的pH条件下,加入混凝剂后IOD值增加,说明耦合工艺中混凝剂水解产生的金属离子或某些化合物不仅促进了IOD阶段臭氧的分解,而且也促进了臭氧分解第二阶段时臭氧的衰减速度,增强了·OH的产率.根据Buffle等[43, 44]的研究结果,在IOD阶段,臭氧具有高的分解速率,同时产生大量·OH.而臭氧与二级出水中溶解性有机物的某些特殊结构反应可能是引起臭氧在IOD阶段快速衰减的主要原因[45],这可以解释臭氧在二级出水中快速分解的现象.
![]() |
表 2 不同实验条件下的IOD和Rct Table 2 Summary of IOD and Rct under different testing conditions |
2.3 臭氧-混凝耦合工艺机制研究
p-CBA的去除效果可以间接反映·OH的产生情况. 图 4反映了加入叔丁醇和不加叔丁醇两种情况下p-CBA的去除情况.可以看出加入的叔丁醇明显降低了p-CBA的去除效率,说明产生的大部分·OH被叔丁醇抑制了[46].随着pH的升高,p-CBA的去除效率逐渐增大,说明产生了较多的·OH.已有研究[47, 48]也证明高的pH可以促进臭氧反应产生更多的·OH.加入混凝剂可以提高p-CBA的去除效率,这意味着混凝剂和臭氧发生催化氧化产生了更多的·OH.在IOD阶段(t<15s),p-CBA出现了明显的减少,去除率在26%~40%之间,说明大量的·OH产生在这一阶段,特别在较高的pH条件时.大量的研究[43, 44, 49]均证明IOD阶段·OH的暴露量较高,并且迅速与有机物反应而被消耗.
![]() |
图 4 不同pH条件对氯苯甲酸的去除曲线 Fig. 4 The p-CBA decomposition curves at different pH values |
上述研究表明耦合工艺中存在·OH,为了进一步探究反应特性,引入参数Rct表示·OH暴露量与臭氧暴露量的比值[28],即∫[·OH]dt/∫[O3]dt.臭氧在IOD (t<15 s)阶段的分解速率较快,不服从一级动力学方程,Rct值以指数形式增大;臭氧分解第二阶段服从一级动力学方程[43~45, 49],并且Rct值保持相对稳定,因此利用Rct表征臭氧分解第二阶段的反应特性[42].根据Elovitz等[28]提出的模型,以ln ([p-CBA]/[p-CBA]0)为纵坐标,以∫[O3]dt为横坐标进行线性拟合确定Rct如表 2所示.计算所得Rct的数量级为10-8~10-9,这与Rosenfeldt等[47]的研究结果一致,在pH=8的自然水体中Rct的数量级在10-8~10-9之间.较高的pH更有利于臭氧分解产生·OH[46],这也导致pH=7时的Rct值比pH=5时高.此外,加入混凝剂也引起Rct值的升高.
根据Rct值(表 2)和臭氧衰减曲线(图 3)计算·OH的暴露量如图 5所示,其直观地表现出pH越高产生的·OH越多,这与之前的讨论结果一致.加入混凝剂会表现出更高的·OH暴露量,Qi等[50, 51]研究发现金属盐混凝剂表面的羧基官能团是一类活性基团,臭氧可以通过静电吸附和氢键结合作用力在水溶液中与羟基反应,引发臭氧分解,再通过链式反应形成·OH.本研究中,铝系混凝剂通过水合作用在表面形成大量羟基官能团[52],使得臭氧不仅可以直接与水中的OH-反应引发链式反应生成·OH,还可以与混凝剂表面的羟基反应,产生大量·OH.因此臭氧-混凝耦合工艺中混凝剂对臭氧的促进作用主要是通过促进臭氧分解产生·OH实现的.
![]() |
图 5 不同pH条件下·OH的暴露量 Fig. 5 The ·OH exposure at different pH values |
(1) 臭氧-混凝耦合工艺有别于传统意义上的预臭氧-混凝工艺,预臭氧化和混凝在一个单元内同时进行,在一个系统中具有互混性.
(2) 臭氧-混凝耦合工艺相比于传统的预臭氧-混凝工艺,对色度、UV254和DOC有较好的去除效果.在不同pH条件下,AlCl3·6H2O作为混凝剂时,耦合工艺对DOC的去除率均高于30%,说明耦合工艺能够有效提高溶解性有机物的去除效率.
(3) 臭氧-混凝耦合工艺中混凝剂对臭氧化的促进机制主要是通过金属盐混凝剂及其水解产物作为臭氧化的催化剂,引发链式反应,促进臭氧分解产生氧化性更强、选择性更低的·OH,形成高级氧化机制,从而进一步氧化有机污染物.
[1] | Zwiener C, Frimmel F H. Oxidative treatment of pharmaceuticals in water[J]. Water Research, 2000, 34(6) : 1881–1885. DOI: 10.1016/S0043-1354(99)00338-3 |
[2] | Audenaert W T M, Vandierendonck D, Van Hulle S W H, et al. Comparison of ozone and HO· induced conversion of effluent organic matter (EfOM) using ozonation and UV/H2O2 treatment[J]. Water Research, 2013, 47(7) : 2387–2398. DOI: 10.1016/j.watres.2013.02.003 |
[3] | 王东升, 刘海龙, 晏明全, 等. 强化混凝与优化混凝:必要性、研究进展和发展方向[J]. 环境科学学报, 2006, 26(4) : 544–551. Wang D S, Liu H L, Yan M Q, et al. Enhanced coagulation vs. optimized coagulation:a critical review[J]. Acta Scientiae Circumstantiae, 2006, 26(4) : 544–551. |
[4] | 李晓玲, 刘锐, 兰亚琼, 等. J市饮用水氯消毒副产物分析及其健康风险评价[J]. 环境科学, 2013, 34(9) : 3474–3479. Li X L, Liu R, Lan Y Q, et al. Study on chlorinated disinfection byproducts and the relevant health risk in tap water of J city[J]. Environmental Science, 2013, 34(9) : 3474–3479. |
[5] | Krasner S W, Westerhoff P, Chen B Y, et al. Occurrence of disinfection byproducts in United States wastewater treatment plant effluents[J]. Environmental Science & Technology, 2009, 43(21) : 8320–8325. |
[6] | 曹飞, 袁守军, 张梦涛, 等. 臭氧氧化水溶液中对乙酰氨基酚的机制研究[J]. 环境科学, 2014, 35(11) : 4185–4191. Cao F, Yuan S J, Zhang M T, et al. Impact factors and degradation mechanism for the ozonation of acetaminophen in aqueous solution[J]. Environmental Science, 2014, 35(11) : 4185–4191. |
[7] | 郑晓英, 王俭龙, 李鑫玮, 等. 臭氧氧化深度处理二级出水的研究[J]. 中国环境科学, 2014, 34(5) : 1159–1165. Zheng X Y, Wang J L, Li X W, et al. Advanced treatment of secondary effluent by ozonation[J]. China Environmental Science, 2014, 34(5) : 1159–1165. |
[8] | Lin C K, Tsai T Y, Liu J C, et al. Enhanced biodegradation of petrochemical wastewater using ozonation and bac advanced treatment system[J]. Water Research, 2001, 35(3) : 699–704. DOI: 10.1016/S0043-1354(00)00254-2 |
[9] | Sadrnourmohamadi M, Gorczyca B. Effects of ozone as a stand-alone and coagulation-aid treatment on the reduction of trihalomethanes precursors from high DOC and hardness water[J]. Water Research, 2015, 73 : 171–180. DOI: 10.1016/j.watres.2015.01.023 |
[10] | 刘海龙, 杨栋, 赵智勇, 等. 高藻原水预臭氧强化混凝除藻特性研究[J]. 环境科学, 2009, 30(7) : 1914–1919. Liu H L, Yang D, Zhao Z Y, et al. Algae removal of high algae raw water by coagulation enhanced by ozonation[J]. Environmental Science, 2009, 30(7) : 1914–1919. |
[11] | Farvardin M R, Collins A G. Preozonation as an aid in the coagulation of humic substances-optimum preozonation dose[J]. Water Research, 1989, 23(3) : 307–316. DOI: 10.1016/0043-1354(89)90096-1 |
[12] | 刘海龙, 王东升, 王敏, 等. 臭氧对有机物混凝的影响[J]. 环境科学, 2006, 27(3) : 456–460. Liu H L, Wang D S, Wang M, et al. Effects of pre-ozonation on organic matter coagulation[J]. Environmental Science, 2006, 27(3) : 456–460. |
[13] | Bose P, Reckhow D A. The effect of ozonation on natural organic matter removal by alum coagulation[J]. Water Research, 2007, 41(7) : 1516–1524. DOI: 10.1016/j.watres.2006.12.027 |
[14] | Liu H L, Cheng F Q, Wang D S. Interaction of ozone and organic matter in coagulation with inorganic polymer flocculant-PACl:role of organic components[J]. Desalination, 2009, 249(2) : 596–601. DOI: 10.1016/j.desal.2008.06.032 |
[15] | Chang S D, Singer P C. The impact of ozonation on particle stability and the removal of TOC and THM precursors[J]. Journal-American Water Works Association, 1991, 83(3) : 71–79. |
[16] | Yan M Q, Wang D S, Shi B Y, et al. Effect of pre-ozonation on optimized coagulation of a typical North-China source water[J]. Chemosphere, 2007, 69(11) : 1695–1702. DOI: 10.1016/j.chemosphere.2007.06.014 |
[17] | Liu H L, Wang D S, Wang M, et al. Effect of pre-ozonation on coagulation with IPF-PACIs:role of coagulant speciation[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2007, 294(1-3) : 111–116. |
[18] | Hoigné J, Bader H. Rate constants of reactions of ozone with organic and inorganic compounds in water-Ⅰ:non-dissociating organic compounds[J]. Water Research, 1983, 17(2) : 173–183. DOI: 10.1016/0043-1354(83)90098-2 |
[19] | Hoigné J, Bader H. Rate constants of reactions of ozone with organic and inorganic compounds in water-Ⅱ:dissociating organic compounds[J]. Water Research, 1983, 17(2) : 185–194. DOI: 10.1016/0043-1354(83)90099-4 |
[20] | Haag W R, Yao C C D. Rate constants for reaction of hydroxyl radicals with several drinking water contaminants[J]. Environmental Science & Technology, 1992, 26(5) : 1005–1013. |
[21] | Yong E L, Lin Y P. Kinetics of natural organic matter as the initiator, promoter, and inhibitor, and their influences on the removal of ibuprofen in ozonation[J]. Ozone:Science & Engineering, 2013, 35(6) : 472–481. |
[22] | Ghazi N M, Lastra A A, Watts M J. Hydroxyl radical (·OH) scavenging in young and mature landfill leachates[J]. Water Research, 2014, 56 : 148–155. DOI: 10.1016/j.watres.2014.03.001 |
[23] | Staehelin J, Hoigné J. Decomposition of ozone in water in the presence of organic solutes acting as promoters and inhibitors of radical chain reactions[J]. Environmental Science & Technology, 1985, 19(12) : 1206–1213. |
[24] | Kasprzyk-Hordern B, Ziółek M, Nawrocki J. Catalytic ozonation and methods of enhancing molecular ozone reactions in water treatment[J]. Applied Catalysis B:Environmental, 2003, 46(4) : 639–669. DOI: 10.1016/S0926-3373(03)00326-6 |
[25] | 李华, 王文东, 王晓昌, 等. 臭氧-紫外预处理对高有机物原水混凝效果的影响[J]. 环境科学, 2010, 31(8) : 1807–1812. Li H, Wang W D, Wang X C, et al. Effect of ozone-UV pretreatment on coagulation of raw water with high organic matter[J]. Environmental Science, 2010, 31(8) : 1807–1812. |
[26] | 吴国枝, 吴纯德, 张捷鑫, 等. 超声、臭氧、光催化及其组合工艺处理苯酚废水[J]. 工业用水与废水, 2007, 38(5) : 38–41. Wu G Z, Wu C D, Zhang J X, et al. Treatment of phenol-containing wastewater by ultrasound, ozone, photocatalysis and combined process[J]. Industrial Water & Wastewater, 2007, 38(5) : 38–41. |
[27] | 曾凡亮, 罗先桃. 分光光度法测定水样的色度[J]. 工业水处理, 2006, 26(9) : 69–72. Zeng F L, Luo X T. Determination of the colority of water samples by spectrophotometry[J]. Industrial Water Treatment, 2006, 26(9) : 69–72. |
[28] | Elovitz M S, Von Gunten U. Hydroxyl radical/ozone ratios during ozonation processes. Ⅰ. The Rct concept[J]. Ozone:Science & Engineering, 1999, 21(3) : 239–260. |
[29] | Vanderford B J, Rosario-Ortiz F L, Snyder S A. Analysis of p-chlorobenzoic acid in water by liquid chromatography-tandem mass spectrometry[J]. Journal of Chromatography A, 2007, 1164(1-2) : 219–223. DOI: 10.1016/j.chroma.2007.07.035 |
[30] | Bader H, Hoigné J. Determination of ozone in water by the indigo method[J]. Water Research, 1981, 15(4) : 449–456. DOI: 10.1016/0043-1354(81)90054-3 |
[31] | Wert E C, Gonzales S, Dong M M, et al. Evaluation of enhanced coagulation pretreatment to improve ozone oxidation efficiency in wastewater[J]. Water Research, 2011, 45(16) : 5191–5199. DOI: 10.1016/j.watres.2011.07.021 |
[32] | Wert E C, Rosario-Ortiz F L, Snyder S A. Effect of ozone exposure on the oxidation of trace organic contaminants in wastewater[J]. Water Research, 2009, 43(4) : 1005–1014. DOI: 10.1016/j.watres.2008.11.050 |
[33] | 国家环境保护总局. 水和废水监测分析方法[M]. 第四版. 北京: 中国环境科学出版社, 2002. |
[34] | 熊平, 梁宏, 林海波. 污水处理技术的研究进展[J]. 四川理工学院学报(自然科学版), 2007, 20(5) : 84–87. Xiong P, Liang H, Lin H B. Progress in the wastewater treatment processes[J]. Journal of Sichuan University of Science & Engineering (Natural Sicence Edition), 2007, 20(5) : 84–87. |
[35] | Zhang T, Lu J F, Ma J, et al. Comparative study of ozonation and synthetic goethite-catalyzed ozonation of individual NOM fractions isolated and fractionated from a filtered river water[J]. Water Research, 2008, 42(6-7) : 1563–1570. DOI: 10.1016/j.watres.2007.11.005 |
[36] | Chiang P C, Chang E E, Chang P C, et al. Effects of pre-ozonation on the removal of THM precursors by coagulation[J]. Science of the Total Environment, 2009, 407(21) : 5735–5742. DOI: 10.1016/j.scitotenv.2009.07.024 |
[37] | Singer P C, Arlotta C, Snider-Sajdak N, et al. Effectiveness of pre-and intermediate ozonation on the enhanced coagulation of disinfection by-product precursors in drinking water[J]. Ozone:Science & Engineering, 2003, 25(6) : 453–471. |
[38] | Selcuk H, Rizzo L, Nikolaou A N, et al. DBPs formation and toxicity monitoring in different origin water treated by ozone and alum/PAC coagulation[J]. Desalination, 2007, 210(1-3) : 31–43. DOI: 10.1016/j.desal.2006.05.030 |
[39] | Alder M G, Hill G R. The kinetics and mechanism of hydroxide ion catalyzed ozone decomposition in aqueous solution[J]. Journal of the American Chemical Society, 1950, 72(5) : 1884–1886. DOI: 10.1021/ja01161a007 |
[40] | Buhler R, Staehelin J, Hoigné J. Ozone decomposition in water studied by pulse radiolysis 1. HO2/O2- and HO3/O3- as intermediates-Correction[J]. Journal of Physical Chemistry, 1984, 88(22) : 5450. |
[41] | Huang X F, Li X C, Pan B C, et al. Self-enhanced ozonation of benzoic acid at acidic pHs[J]. Water Research, 2015, 73 : 9–16. DOI: 10.1016/j.watres.2015.01.010 |
[42] | Yong E L, Lin Y P. Incorporation of initiation, promotion and inhibition in the Rctconcept and its application in determining the initiation and inhibition capacities of natural water in ozonation[J]. Water Research, 2012, 46(6) : 1990–1998. DOI: 10.1016/j.watres.2012.01.025 |
[43] | Buffle M O, Schumacher J, Salhi E, et al. Measurement of the initial phase of ozone decomposition in water and wastewater by means of a continuous quench-flow system:application to disinfection and pharmaceutical oxidation[J]. Water Research, 2006, 40(9) : 1884–1894. DOI: 10.1016/j.watres.2006.02.026 |
[44] | Buffle M O, Von Gunten U. Phenols and amine induced HO· generation during the initial phase of natural water ozonation[J]. Environmental Science & Technology, 2006, 40(9) : 3057–3063. |
[45] | Buffle M O, Schumacher J, Meylan S, et al. Ozonation and advanced oxidation of wastewater:effect of O3dose, pH, DOM and HO·-Scavengers on ozone decomposition and HO· generation[J]. Ozone:Science & Engineering, 2006, 28(4) : 247–259. |
[46] | Staehelin J, Hoigné J. Decomposition of ozone in water:rate of initiation by hydroxide ions and hydrogen peroxide[J]. Environmental Science & Technology, 1982, 16(10) : 676–681. |
[47] | Rosenfeldt E J, Linden K G, Canonica S, et al. Comparison of the efficiency of ·OH radical formation during ozonation and the advanced oxidation processes O3/H2O2 and UV/H2O2[J]. Water Research, 2006, 40(20) : 3695–3704. DOI: 10.1016/j.watres.2006.09.008 |
[48] | Park J S, Choi H, Cho J. Kinetic decomposition of ozone and para-chlorobenzoic acid (p-CBA) during catalytic ozonation[J]. Water Research, 2004, 38(9) : 2285–2292. DOI: 10.1016/j.watres.2004.01.040 |
[49] | Wert E C, Rosario-Ortiz F L, Drury D D, et al. Formation of oxidation byproducts from ozonation of wastewater[J]. Water Research, 2007, 41(7) : 1481–1490. DOI: 10.1016/j.watres.2007.01.020 |
[50] | Qi F, Chen Z L, Xu B B, et al. Influence of surface texture and acid-base properties on ozone decomposition catalyzed by aluminum (hydroxyl) oxides[J]. Applied Catalysis B:Environmental, 2008, 84(3-4) : 684–690. DOI: 10.1016/j.apcatb.2008.05.027 |
[51] | Qi F, Xu B B, Chen Z L, et al. Mechanism investigation of catalyzed ozonation of 2-methylisoborneol in drinking water over aluminum (hydroxyl) oxides:role of surface hydroxyl group[J]. Chemical Engineering Journal, 2010, 165(2) : 490–499. DOI: 10.1016/j.cej.2010.09.047 |
[52] | Duan J M, Gregory J. Coagulation by hydrolysing metal salts[J]. Advances in Colloid and Interface Science, 2003, 100-102 : 475–502. DOI: 10.1016/S0001-8686(02)00067-2 |