| 外源谷胱甘肽及前体物质喷施对龙葵修复重金属污染土壤的影响 |
| 摘要点击 403 全文点击 20 投稿时间:2024-12-23 修订日期:2025-03-18 |
| 查看HTML全文
查看全文 查看/发表评论 下载PDF阅读器 |
| 中文关键词 谷胱甘肽(GSH) 植物修复效率 强化植物修复技术 抗氧化酶 叶绿素荧光参数 |
| 英文关键词 glutathione (GSH) phytoremediation efficiency enhanced phytoremediation techniques antioxidant enzyme chlorophyll fluorescence parameters |
| DOI 10.13227/j.hjkx.20260251 |
| 作者 | 单位 | E-mail | | 杨昭 | 浙江工商大学环境科学与工程学院, 杭州 310018 浙江工商大学环境科学与工程学院, 全省固体废物污染防控与资源化重点实验室, 杭州 310018 | 1485157953@qq.com | | 张燚文 | 浙江工商大学环境科学与工程学院, 杭州 310018 浙江工商大学环境科学与工程学院, 全省固体废物污染防控与资源化重点实验室, 杭州 310018 | | | 朱洁 | 浙江工商大学环境科学与工程学院, 杭州 310018 浙江工商大学环境科学与工程学院, 全省固体废物污染防控与资源化重点实验室, 杭州 310018 | | | 沈文馨 | 浙江工商大学环境科学与工程学院, 杭州 310018 浙江工商大学环境科学与工程学院, 全省固体废物污染防控与资源化重点实验室, 杭州 310018 | | | 黄文雅 | 浙江工商大学环境科学与工程学院, 杭州 310018 浙江工商大学环境科学与工程学院, 全省固体废物污染防控与资源化重点实验室, 杭州 310018 | | | 郑粟可丰 | 浙江工商大学环境科学与工程学院, 杭州 310018 浙江工商大学环境科学与工程学院, 全省固体废物污染防控与资源化重点实验室, 杭州 310018 | | | 都韶婷 | 浙江树人大学交叉科学研究院, 杭州 310015 | | | 赵雯璐 | 浙江工商大学环境科学与工程学院, 杭州 310018 浙江工商大学环境科学与工程学院, 全省固体废物污染防控与资源化重点实验室, 杭州 310018 | | | 李志恒 | 浙江工商大学环境科学与工程学院, 杭州 310018 浙江工商大学环境科学与工程学院, 全省固体废物污染防控与资源化重点实验室, 杭州 310018 | | | 刘惠君 | 浙江工商大学环境科学与工程学院, 杭州 310018 浙江工商大学环境科学与工程学院, 全省固体废物污染防控与资源化重点实验室, 杭州 310018 | | | 方治国 | 浙江工商大学环境科学与工程学院, 杭州 310018 浙江工商大学环境科学与工程学院, 全省固体废物污染防控与资源化重点实验室, 杭州 310018 | zhgfang77@zjgsu.edu.cn |
|
| 中文摘要 |
| 以20%红光、70%蓝光和10%绿光(R20B70G10)为光照条件,系统探究了叶面喷施不同浓度的谷胱甘肽(GSH)、半胱氨酸 (Cys)和谷氨酸(Glu)对龙葵(Solanum nigrum L.)修复重金属污染土壤的影响. 结果表明,叶面喷施不同水平的GSH、Cys和Glu:① 促进龙葵的生长,植株的干重提高了15.0%~89.4%,其中喷施2 mmol·L-1 GSH使植株干重增加了82.0%,且促进植株地上部和地下部的生长与延伸,株高和根长分别增加了48.1%和36.8%;② 提高龙葵的光合效率,喷施2 mmol·L-1 GSH显著提高了光系统Ⅱ的实际光合效率Y(Ⅱ)和光合电子传递速率(ETR),比对照分别提高了76.8%和78.3%;③ 提高龙葵抗氧化能力,植株叶片抗坏血酸(AsA)和GSH含量分别增加了22.7%~140.2%和21.1%~80.6%,其中喷施2 mmol·L-1 GSH叶片AsA和GSH含量分别提高了126.4%和57.1%,超氧化物歧化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)分别提高了137.5%、312.3%和33.2%,植株脱氢抗坏血酸还原酶(DHAR)和抗坏血酸过氧化物酶(APX)活性分别提高了34.8%和81.9%,植株丙二醛(MDA)和过氧化氢(H2O2)含量分别下降39.0%和32.3%;④ 提高龙葵根际土壤的中性磷酸酶(NPH)和脲酶(URE)活性,NPH和URE活性分别增加了11.4%~91.6% 和25.6%~111.4%,其中喷施2 mmol·L-1 GSH土壤中NPH和URE活性分别增加了81.1%和67.6%;⑤ 强化龙葵修复重金属污染土壤的效果,叶面喷施GSH和Cys能显著提高龙葵对镉(Cd)的积累,其中喷施2 mmol·L-1 GSH龙葵对Cd的积累和转运能力显著提高,其转运因子(TF)、生物富集因子(BCF)和总提取量(TE)分别提高了97.2%、148.7%和209.4%. 因此,以R20B70G10为光照条件,叶面喷施2 mmol·L-1的GSH、Cys和Glu,能显著提高重金属胁迫下龙葵生物量、增强抗氧化能力并减少氧化损伤,促进植株吸收富集重金属,强化植物修复效果,其中以叶面喷施2 mmol·L-1 GSH处理效果最佳. |
| 英文摘要 |
| The effects of foliar spraying different concentrations of glutathione (GSH), cysteine (Cys), and glutamic acid (Glu) on the phytoremediation by Solanum nigrum L. in heavy metal-contaminated soil were systematically investigated under the light conditions of 20% red light, 70% blue light, and 10% green light (R20B70G10). The application of GSH, Cys, and Glu at various levels through foliar spraying yielded the following results: ① It promoted the growth of S. nigrum L. by increasing the dry weight of the plants by 15.0%-89.4%. Among them, the application of 2 mmol·L-1 GSH increased the dry weight of the plants by 82.0%. Furthermore, it enhanced the growth and elongation of the aboveground and underground parts of the plants, with plant height and root length exhibiting increases of 48.1% and 36.8%, respectively. ② It enhanced the photosynthetic efficiency of plants. The application of 2 mmol·L-1 GSH was shown to significantly enhance the actual photosynthetic efficiency [Y(Ⅱ)] and the photosynthetic electron transport rate (ETR) of photosystem Ⅱ in plants, with respective increases of 76.8% and 78.3% compared to those in the control group. ③ It enhanced the antioxidant capacity of S. nigrum L. The content of ascorbic acid (AsA) and GSH in the plant leaves increased by 22.7%-140.2% and 21.1%-80.6%, respectively. Among them, foliar spraying 2 mmol·L-1 GSH increased the AsA and GSH contents in the leaves by 126.4% and 57.1%, respectively. The activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) in the plants increased by 137.5%, 312.3%, and 33.2%, respectively, and the activities of dehydroascorbate reductase (DHAR) and ascorbate peroxidase (APX) in the plants increased by 34.8% and 81.9%, respectively. The contents of malondialdehyde (MDA) and hydrogen peroxide (H2O2) in the plants decreased by 39.0% and 32.3%, respectively. ④ It also enhanced the activities of neutral phosphatase (NPH) and urease (URE) in the rhizosphere soil of S. nigrum L. The activities of NPH and URE in the soil increased by 11.4%-91.6% and 25.6%-111.4%, respectively. Among them, the activities of NPH and URE increased by 81.1% and 67.6%, respectively, when 2 mmol·L-1 GSH was applied through foliar spraying. ⑤ The effectiveness of S. nigrum L. in remediating heavy metal-contaminated soil was strengthened. Foliar spraying of GSH and Cys could significantly increase the accumulation of cadmium (Cd) in S. nigrum L. Among them, the application of 2 mmol·L-1 GSH significantly improved the accumulation and translocation capacity of S. nigrum L. for Cd. Specifically, its translocation factor (TF), bioconcentration factor (BCF), and total extraction (TE) increased by 97.2%, 148.7%, and 209.4%, respectively, and the maximum value of TE could reach 0.132 mg·plant-1. Thus, foliar spraying of 2 mmol·L-1 GSH, Cys, and Glu can significantly increase the biomass of S. nigrum L. under heavy metal stress. It enhances the antioxidant capacity and reduces oxidative damage, promotes the plant to absorb and accumulates heavy metals, and strengthens the phytoremediation effect. Overall, the treatment of foliar spraying 2 mmol·L-1 GSH had the best effect. |
|
|
|