| 黄河流域河南段乡村生态系统健康诊断及调控路径 |
| 摘要点击 477 全文点击 13 投稿时间:2024-12-18 修订日期:2025-03-19 |
| 查看HTML全文
查看全文 查看/发表评论 下载PDF阅读器 |
| 中文关键词 乡村生态系统 健康诊断 关键影响因子 调控路径 黄河流域河南段 |
| 英文关键词 rural ecosystem health diagnosis key influencing factors regulatory pathway Henan section of the Yellow River Basin |
| DOI 10.13227/j.hjkx.20260223 |
| 作者 | 单位 | E-mail | | 郭珊珊 | 河南农业大学资源与环境学院, 郑州 450002 河南省土地整治与生态重建工程技术研究中心, 郑州 450002 河南农业大学作物学博士后科研流动站, 郑州 450046 | 391113@henau.edu.cn | | 许梦杰 | 中国地质大学(武汉)地理与信息工程学院, 武汉 430078 | | | 黄珺嫦 | 河南农业大学资源与环境学院, 郑州 450002 河南省土地整治与生态重建工程技术研究中心, 郑州 450002 | | | 李玲 | 河南农业大学资源与环境学院, 郑州 450002 河南省土地整治与生态重建工程技术研究中心, 郑州 450002 河南农业大学作物学博士后科研流动站, 郑州 450046 | ndliling@163.com | | 曲宝融 | 河南农业大学资源与环境学院, 郑州 450002 | | | 程明月 | 河南农业大学资源与环境学院, 郑州 450002 | | | 郭欣田 | 河南农业大学资源与环境学院, 郑州 450002 | |
|
| 中文摘要 |
| 选取黄河河南段24个县(市、区)多源数据,构建“资源-环境-社会-经济”复合乡村生态系统健康评估框架,采用空间基尼系数、主导要素法和地理探测器开展黄河河南段乡村生态系统要素识别、健康评价、因子诊断及调控路径研究. 结果表明:①黄河河南段乡村生态系统健康综合得分介于0.284 5~0.590 1,健康水平整体不高但提升态势明显,呈“左翼突出、中部平稳、右翼塌陷” 空间分布特征,其中乡村环境和社会子系统在研究期内明显提升,资源和经济子系统则出现下降趋势. ②研究区乡村生态系统健康类型划分为四大类七亚类. 其中,健康型占研究区县域总数的20.83%,主要分布在西部地区;亚健康型占37.50%,集中分布于中部地区;不健康型占33.33%,主要分布在中东部平原区;病态型集中在北部武陟和温县两地. ③地均生态系统服务价值是解释度最高的单因子影响因素,然而近年来,社会经济因素对乡村生态系统健康的影响强度明显提升,双因子交互解释度普遍高于单因子. 基于乡村生态系统健康类型划分及关键影响因子变化,遵循“因地制宜、功能协调”原则,提出差异化调控措施:健康型县域优先发展,持续推进“特色产业+生态保护”;亚健康型县域着力于耕地提质和农业旅游;不健康型县域突出“文化保护+整体提升”;病态型县域重点在于生态环境防治以及改善社会经济条件. |
| 英文摘要 |
| This study integrates multi-source datasets from 24 counties (cities, and districts) in the Henan section of the Yellow River Basin to construct a composite rural ecosystem health (REH) assessment framework encompassing “resource-environment-social-economy” dimensions. Leveraging spatial Gini coefficient analysis, dominant factor identification, and Geographic Detector modeling, the spatiotemporal evolution, spatial differentiation patterns, and driving mechanisms of REH were systematically investigated. The results showed that: ① The comprehensive REH index in the study area ranged from 0.284 5 to 0.590 1, indicating moderate overall health levels with progressive improvement trends. Spatially, a distinct west-high, central-stable, east-low gradient emerged, characterized by environmental and social subsystem advancements offset by declining resource and economic subsystem performance. ② REH classification identified four primary categories (healthy, sub-healthy, unhealthy, and pathological) and seven subcategories. Healthy-type areas (20.83%) clustered in the western region, sub-healthy zones (37.50%) dominated central areas, while unhealthy (33.33%) and pathological-type systems concentrated in northern/eastern regions, notably in Wuzhi and Wen County. ③ Ecosystem service value per unit area emerged as the strongest single explanatory factor. Notably, socioeconomic drivers exhibited increasing influence on REH dynamics in recent years, with interactive factor effects demonstrating significantly higher explanatory power than individual factors. In summary, differentiated regulatory measures are proposed based on the above results: The development of healthy counties should be prioritized and “characteristic industries+ecological protection” should be continuously promoted. Sub-healthy counties should focus on improving the quality of arable land and promoting agricultural tourism. Unhealthy counties must highlight “cultural protection+comprehensive improvement,” and pathological counties should aim to implement targeted ecological restoration projects and socioeconomic revitalization programs to address systemic vulnerabilities. |