长三角生态绿色一体化发展示范区纺织行业碳排放驱动因素及其脱钩效应分析 |
摘要点击 3067 全文点击 319 投稿时间:2023-12-22 修订日期:2024-03-18 |
查看HTML全文
查看全文 查看/发表评论 下载PDF阅读器 |
中文关键词 长三角生态绿色一体化发展示范区 纺织行业 碳排放 超效率SBM模型 驱动因素 |
英文关键词 demonstration zone of green and integrated ecological development of the Yangtze River Delta textile industry carbon emissions super efficiency SBM model driven factor |
DOI 10.13227/j.hjkx.20241202 |
作者 | 单位 | E-mail | 张思远 | 东华大学环境科学与工程学院, 上海 201620 | SiYuanZhang30@163.com | 甘京京 | 东华大学环境科学与工程学院, 上海 201620 | | 张任涛 | 山西大学经济与管理学院, 太原 030006 | | 徐晨烨 | 东华大学环境科学与工程学院, 上海 201620 | | 沈忱思 | 东华大学环境科学与工程学院, 上海 201620 上海市污染控制与生态安全研究院, 上海 200092 | | 郭茹 | 上海市污染控制与生态安全研究院, 上海 200092 同济大学环境科学与工程学院, 碳中和研究院, 上海 200092 | | 钱琴芳 | 盛虹集团有限公司, 苏州 215168 | | 唐俊松 | 盛虹集团有限公司, 苏州 215168 | | 李方 | 东华大学环境科学与工程学院, 上海 201620 上海市污染控制与生态安全研究院, 上海 200092 | lifang@dhu.edu.cn |
|
中文摘要 |
纺织行业是长三角区域的支柱型产业之一,其绿色低碳转型是长三角高质量发展的重要支撑. 以长三角生态绿色一体化发展示范区为例,开展了集成式的纺织行业碳排放清单、行业碳排放驱动因素及脱钩效应研究. 基于排放因子法估算了示范区纺织行业范围一、范围二的碳排放量,通过非期望产出的超效率SBM模型分析了行业碳排放效率. 结合LMDI因素分解方法和Tapio脱钩分析,识别了示范区纺织行业碳排放驱动因素及排放与经济发展的脱钩情况. 结果表明: ① 2014~2021年示范区纺织行业碳排放量呈波动态势,在2019年达到最高值,919.39万t(以CO2 eq计). 吴江区是最主要的排放地区,电力消耗排放、热力消耗排放以及煤炭消耗排放是最主要的3类排放源. ② 示范区纺织行业碳排放效率整体呈现上升趋势,但地区间碳排放效率存在明显差异,嘉善县纺织行业碳排放效率存在较大提升空间. ③ 2014~2021年间,示范区内各地区纺织行业碳排放驱动因素有着明显变化,其中经济发展水平是影响碳排放的正向驱动因素. ④ 从碳排放与经济发展的脱钩状态来看,2014~2016年间示范区纺织行业整体呈现出由负脱钩向脱钩状态的转变.研究结果可为示范区未来平衡纺织行业绿色低碳转型与经济高质量发展提供科学依据. |
英文摘要 |
The textile industry is one of the pillar industries in the Yangtze River Delta Region and its green and low-carbon transformation is important for supporting the high-quality development of the Yangtze River Delta. Considering the demonstration zone of green and integrated ecological development of the Yangtze River Delta as an example, this integrated study was conducted on the carbon emission inventory of the textile industry, the driving factors of carbon emissions in the industry, and decoupling effects. Based on the emission factor method, the carbon emissions of Scope 1 and 2 of the textile industry in the demonstration zone were estimated. The carbon emission efficiency of the industry was analyzed using the super efficiency slack-based measure (SBM) model with unexpected outputs. Combining the LMDI factor decomposition method and Tapio decoupling analysis, the driving factors of carbon emissions in the textile industry in the demonstration zone and the decoupling situation between emissions and economic development were identified. The results indicated: ① Between 2014 and 2021, the carbon emissions of the textile industry in the demonstration zone showed a fluctuating trend, reaching the highest value in 2019 at 9.19 million tons of CO2 equivalent. Wujiang District was the primary emission area, with electricity, heat, and coal consumption emissions being the top three emission sources. ② The overall carbon emission efficiency of the textile industry in the demonstration zone showed an upward trend; however, significant differences were present in carbon emission efficiency between regions, with Jiashan County having considerable room for improvement in carbon emission efficiency. ③ Between 2014 and 2021, the driving factors of carbon emissions in the textile industry in various regions of the demonstration zone showed significant changes, with the level of economic development being a positive driving factor affecting carbon emissions. ④ In terms of the decoupling status between carbon emissions and economic development, the overall textile industry in the demonstration zone showed a transition from negative decoupling to decoupling status between 2014 and 2016. The research results provide a scientific basis for the future balanced development of the green and low-carbon transformation of the textile industry and the high-quality development of the economy in the demonstration zone. |
|
|
|