中国农业温室气体排放时空异质性的影响机制解析 |
摘要点击 2448 全文点击 507 投稿时间:2023-12-08 修订日期:2024-02-11 |
查看HTML全文
查看全文 查看/发表评论 下载PDF阅读器 |
中文关键词 农业温室气体排放 时空异质性 影响机制 空间计量分析 地理探测器 驱动因素 |
英文关键词 agricultural greenhouse gas emissions spatial and temporal heterogeneity influencing mechanism spatial econometric analysis geographical detector driving factors |
DOI 10.13227/j.hjkx.20241154 |
|
中文摘要 |
农业温室气体减排在应对全球气候变暖有着重要的地位,研究并揭示农业温室气体排放的时空特征和影响机制对于实现农业绿色低碳发展目标具有重要意义. 通过核算中国2000~2020年31个省(市、自治区)农业温室气体排放,采用地理探测器和空间计量分析等方法探究了影响农业温室气体排放的时空演变特征和驱动因子. 结果表明:①2000~2020年中国农业温室气体排放呈现 “缓慢上升-大幅上升-大幅下降”的发展历程;②农业温室气体排放空间异质性显著,空间上形成了3 个高排放区:以河南为中心的中部高排放区域,以广东为中心的南部高排放区域和以四川为中心的西南部高排放区域,重心出现向北和向西转移的趋势;③乡村人口、地区生产总值和农业产值是引起农业温室气体排放空间异质性的主导驱动因子;④农业温室气体排放具有空间溢出效应,各地区在制定农业温室气体减排目标时,需要采取协同控制策略. |
英文摘要 |
Agricultural greenhouse gas emission reduction plays an important role in addressing global climate warming. Researching and revealing the spatial and temporal characteristics, as well as the influencing mechanisms of agricultural greenhouse gas emissions, is of great significance for achieving the goals of green and low-carbon development in agriculture. This study examines the agricultural greenhouse gas emissions from 31 provinces (municipalities, autonomous regions) in China from 2000 to 2020. Through the use of geographic detectors, spatial econometric analysis, and other methods, it explores the spatiotemporal evolution characteristics and driving factors of agricultural greenhouse gas emissions. The results indicated the following: ① From 2000 to 2020, agricultural greenhouse gas emissions in China showed a development process of “slow increase - sharp increase - sharp decrease.” ② The spatial heterogeneity of agricultural greenhouse gas emissions was significant, forming three high emission areas in space: the central high emission area centered on Henan, the southern high emission area centered on Guangdong, and the southwestern high emission area centered on Sichuan. The center of gravity showed a trend of shifting northward and westward. ③ Rural population, regional gross domestic product, and agricultural output value were the dominant driving factors causing spatial heterogeneity of agricultural greenhouse gas emissions. ④ Agricultural greenhouse gas emissions had spatial spillover effects. When formulating agricultural greenhouse gas reduction targets, it is necessary to adopt a coordinated control strategy among different regions. |
|
|
|