首页  |  本刊简介  |  编委会  |  投稿须知  |  订阅与联系  |  微信  |  出版道德声明  |  Ei收录本刊数据  |  封面
基于MSPA和电路理论的京津冀城市群热环境空间网络
摘要点击 1838  全文点击 970  投稿时间:2022-06-27  修订日期:2022-08-22
查看HTML全文 查看全文  查看/发表评论  下载PDF阅读器
中文关键词  城市热环境  空间网络  形态学空间格局分析  电路理论  京津冀城市群
英文关键词  urban heat environment  spatial network  morphological spatial pattern  circuit theory  Beijing-Tianjin-Hebei urban agglomeration
作者单位E-mail
乔治 天津大学环境科学与工程学院, 天津 300072 qiaozhi@tju.edu.cn 
陈嘉悦 天津大学环境科学与工程学院, 天津 300072  
王楠 天津大学环境科学与工程学院, 天津 300072  
卢应爽 天津大学环境科学与工程学院, 天津 300072  
贺曈 天津大学环境科学与工程学院, 天津 300072  
孙宗耀 天津大学建筑学院, 天津 300072  
徐新良 中国科学院地理科学与资源研究所资源与环境信息系统国家重点实验室, 北京 100101  
杨浩 北京社会科学院, 北京 100101  
李莹 天津大学建筑设计规划研究总院有限公司, 天津 300070  
王方 天津市科学技术发展战略研究院, 天津 300011 wangfang02@tj.gov.cn 
中文摘要
      快速城市化加剧了城市热环境系统复杂性,严重影响城市生态环境和人居健康.综合地理信息系统、遥感、形态学空间格局分析和电路理论等理论与技术,应用MODIS地表温度遥感数据,定量识别京津冀城市群热岛斑块时空分布特征,划分城市热岛斑块景观类型并分析其时空转移路径.在此基础上,揭示城市群热环境空间网络和关键廊道时空演变过程.结果表明,2020年城市热岛斑块面积为16610 km2,占研究区面积比例为7.68%.2005~2020年京津冀城市群热岛面积和斑块数量显著增加.城市热岛斑块类型由2005年孤岛型为主导转变为2020年以核心型为主导.其中,2020年核心型城市热岛斑块主要来源于2005年的非城市热岛斑块、核心型和边缘型城市热岛斑块.2020年京津冀城市群热环境源地数量和廊道长度、密度及电流密度均高于2005年.通过城市热环境廊道等级分析发现,2020年京津冀城市群热环境敏感型廊道为主要类型.2005~2020年敏感型廊道增加数量最多.同时,城市热环境廊道系数增加,表征京津冀城市群热环境廊道趋向稳定型发展.最终提出城市热环境空间网络模式并讨论城市热环境主动适应和减缓措施.研究结果将为城市热环境空间网络识别提供范式,旨在实现主动有序适应和减缓城市热环境风险与促进城市可持续发展的目标.
英文摘要
      Rapid urbanization has increased the complexity of the urban heat environment system, which has negative impacts on the health of the urban ecological system and the human habitat. By combining theories and technologies such as geographic information systems, remote sensing, morphological spatial pattern analysis, and circuit theory with data from MODIS land surface temperature production, urban heat island patches in the Beijing-Tianjin-Hebei urban agglomeration were quantitatively identified in terms of their spatial and temporal distribution characteristics and their spatial and temporal transfer paths. This foundation revealed the geographical network structure of the urban heat environment as well as the spatial and temporal evolution process of critical corridors. According to the findings, urban heat island patches covered 16610 km2 in 2020, accounting for 7.68% of the study area. In the Beijing-Tianjin-Hebei urban agglomeration, both the area and the number of urban heat island patches considerably increased between 2005 and 2020, going from being dominated by isolated island types of urban heat island patches in 2005 to being dominated by core types in 2020. In particular, the non-urban heat island patches, core type, and edge type of urban heat island patches in 2005 were the major ancestors of the core type and edge type urban heat island patches in 2020. In the Beijing-Tianjin-Hebei urban agglomeration, there were more urban heat environment source sites, corridor length, densities, and present densities in 2020 than there were in 2005. The sensitive corridor was found to be the predominant type of urban heat island corridor in the Beijing-Tianjin-Hebei urban agglomeration in 2020. The number of sensitive corridors increased the highest in the period from 2005-2020. As the coefficient of urban heat environment corridors increased concurrently, it was apparent that the urban heat environment corridor had a propensity to grow continuously in the Beijing-Tianjin-Hebei urban agglomeration. The active adaptation and mitigation measures of the urban heat environment were proposed, and a spatial network model of the urban heat environment was finally provided. To adapt to, mitigate, and promote urban sustainable development risks, these research findings will serve as a paradigm for the identification of the urban heat environment spatial network actively and methodically.

您是第53113050位访客
主办单位:中国科学院生态环境研究中心 单位地址:北京市海淀区双清路18号
电话:010-62941102 邮编:100085 E-mail: hjkx@rcees.ac.cn
本系统由北京勤云科技发展有限公司设计  京ICP备05002858号-2