不同海拔鬼箭锦鸡儿根际和非根际土壤细菌群落多样性及PICRUSt功能预测 |
摘要点击 2497 全文点击 937 投稿时间:2022-04-14 修订日期:2022-07-01 |
查看HTML全文
查看全文 查看/发表评论 下载PDF阅读器 |
中文关键词 鬼箭锦鸡儿 海拔 土壤细菌 群落结构 PICRUSt功能预测 |
英文关键词 Caragana jubata altitude soil bacteria community structure function prediction with PICRUSt |
|
中文摘要 |
鬼箭锦鸡儿作为我国北方高山和亚高山地区的主要建群植物,是区域生态系统的重要组成部分,但是很少有研究关注其对土壤生态系统的影响及其对环境变化的响应.因而,以鬼箭锦鸡儿为研究对象,采用高通量测序技术,分析了不同海拔鬼箭锦鸡儿根际和非根际土壤细菌群落多样性特征,并进行了功能预测分析.结果表明,所有样品共检测到43门、112纲、251目、324科和542属,变形菌门、酸杆菌门和放线菌门是根际和非根际土壤中的优势菌群.虽然不同海拔之间,鬼箭锦鸡儿根际和非根际土壤细菌多样性指数和群落结构不存在显著差异,但是在同一海拔水平上,根际和非根际土壤细菌多样性指数和群落结构组成存在显著差异.PICRUSt功能预测表明,细菌群落主要涉及氨基酸代谢、碳水化合物代谢、辅助因子和维生素代谢等29个子功能,表现出功能上的丰富性,且代谢为最主要的功能.土壤细菌二级代谢通路预测基因相对丰度的变化与变形菌门、酸杆菌门和绿弯菌门等菌群丰度显著相关,并且土壤细菌预测功能基因组成的差异与土壤细菌群落结构的差异呈显著正相关,说明细菌群落结构与功能基因可能存在密切联系.研究初步探讨了不同海拔梯度下鬼箭锦鸡儿根际和非根际土壤细菌群落特征及其功能预测分析,为高海拔地区建群植物的生态学效应及其对环境变化的响应提供了数据支撑. |
英文摘要 |
Caragana jubata, as the main dominant plant in the alpine and subalpine regions of northern China, is an important component of the local ecosystem. However, few studies have paid attention to its impact on the soil ecosystem and its response to environmental changes. Thus, in this study, we used high-throughput sequencing technology to investigate diversity and predictive function of rhizosphere and bulk soil bacteria communities of C.jubata from different altitudes. The results indicated that 43 phyla, 112 classes, 251 orders, 324 families, and 542 genera were obtained from the soil. The dominant phyla in all sample sites were Proteobacteria, Acidobacteria, and Actinobacteria. There were significant differences in bacterial diversity index and community structure between the rhizosphere and bulk soil at the same altitude, whereas the differences across altitudes were insignificant. PICRUSt analysis showed that the functional gene families were mainly related to 29 sub-functions, including amino acid metabolism, carbohydrate metabolism, and metabolism of cofactors and vitamins, and the abundance of metabolism was highest. There were significant correlations between the relative abundances of genes involved in the level Ⅱ metabolic pathway of bacteria and phylum-level taxa, such as Proteobacteria, Acidobacteria, and Chloroflexi. The predicted functional compositions of soil bacteria also showed a significantly positive correlation with the dissimilarity in bacterial community structure, indicating that there was a strong relationship between bacterial community structure and functional genes. This study preliminarily discussed the characteristics and functional prediction analysis of bacterial communities in the rhizosphere and bulk soil of C.jubata at different altitudinal gradients, which provided data support for the ecological effects of constructive plants and their responses to environmental changes in high altitude areas. |
|
|
|