首页  |  本刊简介  |  编委会  |  投稿须知  |  订阅与联系  |  微信  |  出版道德声明  |  Ei收录本刊数据  |  封面
铁矿石和生物炭添加对潜流人工湿地污水处理效果和温室气体排放及微生物群落的影响
摘要点击 3418  全文点击 1106  投稿时间:2021-07-05  修订日期:2021-08-17
查看HTML全文 查看全文  查看/发表评论  下载PDF阅读器
中文关键词  人工湿地  铁矿石  生物炭  微生物群落  功能基因
英文关键词  subsurface constructed wetland  hematite  biochar  microbial community  functional gene
作者单位E-mail
陈鑫童 西南大学资源环境学院, 重庆 400715 1011325772@qq.com 
郝庆菊 西南大学资源环境学院, 重庆 400715
重庆市农业资源与环境研究重点实验室, 重庆 400716 
 
熊艳芳 西南大学资源环境学院, 重庆 400715  
胡剑 西南大学资源环境学院, 重庆 400715  
江长胜 西南大学资源环境学院, 重庆 400715
重庆市农业资源与环境研究重点实验室, 重庆 400716 
jiangcs@126.com 
中文摘要
      人工湿地中基质的种类和填充方式会影响人工湿地中微生物的多样性及丰度,进而影响污水处理效果.通过在温室内构建空白-人工湿地(CW0)、铁矿石-人工湿地(CW1)、生物炭-人工湿地(CW2)和铁矿石+生物炭-人工湿地(CW3)这4组湿地,研究不同填料人工湿地系统的污水处理效果和温室气体排放及微生物群落结构的差异.结果表明,添加铁矿石或者生物炭能够提高-0.12%~1.7%的COD去除率.添加生物炭能够分别提升22.48%的NH4+-N和6.82%的NO3--N去除率,并分别降低83.91%的CH4和30.81%的N2O排放通量.添加铁矿石能够降低1.12%的NH4+-N去除率,提高3.98%的NO3--N去除率,并分别降低33.29%的CH4和25.2%的N2O排放通量.添加生物炭或者铁矿石均能够增加放线菌门(Actinobacteria)与变形菌门(Proteobacteria)的相对丰度,有利于COD的去除.添加生物炭处理基质中微生物的Ace、Chao、Sobs和Shannon指数最大,Simpson指数最小,添加铁矿石的处理则相反,表明添加生物炭处理系统中微生物群落丰富度以及多样性最大,铁矿石的添加会降低人工湿地处理系统的微生物群落的丰富度以及多样性.添加生物炭或者铁矿石能增加Dechloromonas、ThaueraSaccharimonadales等反硝化菌属的相对丰度,有利于湿地脱氮.添加生物炭能够增加nosZ、nirSnirK功能基因的丰度,有利于反硝化过程的发生.添加生物炭能够增加pmoA功能基因的丰度,降低mcrA功能基因的丰度,抑制CH4的产生,也能增加甲烷氧化菌的丰度,促进CH4氧化过程的发生.添加铁矿石虽然增加mcrA功能基因的丰度,但Fe3+与产甲烷菌争夺电子供体,抑制CH4的产生.
英文摘要
      The type and structure of the substrate in constructed wetland affects the diversity and abundance of microorganisms, thereby influencing the effect of sewage treatment. In this study, four groups of wetlands were constructed in the greenhouse:blank-constructed wetland (CW0), hematite-constructed wetland (CW1), biochar-constructed wetland (CW2), and hematite+biochar-constructed wetland (CW3), to study the differences in sewage treatment effects, greenhouse gas emissions, and microbial community structures of constructed wetland systems under different filler substrates. The results showed that the addition of hematite or biochar increased the COD removal rate of -0.12% to 1.7%. The addition of biochar increased the removal rate of NH4+-N by 22.48% and NO3--N by 6.82% and reduced the emission flux of CH4 by 83.91% and N2O by 30.81%. The addition of hematite reduced the removal rate of NH4+-N by 1.12%, increased the removal rate of NO3--N by 3.98%, and reduced the emission flux of CH4 by 33.29% and N2O by 25.2%. Adding biochar or hematite increased the relative abundances of Actinobacteria and Proteobacteria, which was beneficial to the removal of COD. The Ace, Chao, Sobs, and Shannon indexes in the substrate treated with biochar were the largest, and the Simpson index was the smallest. The treatment with hematite was the opposite, indicating that the richness and diversity of microbial communities in the treatment system with biochar was the largest. Adding hematite reduced the richness and diversity of the microbial community in the constructed wetland system. Adding biochar or hematite increased the relative abundances of Dechloromonas, Thaurea, Saccharimonadales, and other denitrifying bacteria, which was beneficial to wetland denitrification. The addition of biochar increased the abundances of nosZ, nirS, and nirK functional genes, which were conducive to the occurrence of denitrification. The addition of biochar increased the abundances of pmoA functional genes, reduced the abundance of mcrA functional genes, and inhibited the production of CH4. It also increased the abundance of methanotrophic bacteria and promoted the occurrence of the CH4 oxidation process. Although the addition of hematite increased the abundance of mcrA functional genes, Fe3+ competed with methanogens for electron donors and inhibited the production of CH4.

您是第75721642位访客
主办单位:中国科学院生态环境研究中心 单位地址:北京市海淀区双清路18号
电话:010-62941102 邮编:100085 E-mail: hjkx@rcees.ac.cn
本系统由北京勤云科技发展有限公司设计  京ICP备05002858号-2