温度对SBR生物脱氮效能及胞外聚合物的影响 |
摘要点击 3042 全文点击 1003 投稿时间:2017-04-26 修订日期:2017-05-27 |
查看HTML全文
查看全文 查看/发表评论 下载PDF阅读器 |
中文关键词 生物脱氮 温度 亚硝酸盐积累率 胞外聚合物 |
英文关键词 biological denitrification temperature nitrite accumulation rate extracellular polymeric substance |
|
中文摘要 |
本实验以人工模拟废水为研究对象,采用3组SBR反应器(R15℃、R25℃、R35℃),重点考察了温度对生物脱氮效能、胞外聚合物(EPS)含量及其组分[蛋白质(PN)、多糖(PS)和核酸(DNA)]的影响.结果表明,高温条件有利于促进亚硝酸型生物脱氮体系的建立,显著提高氨氮去除性能.温度对EPS及其组分具有显著影响.随着温度的升高,EPS和TB-EPS含量逐渐降低,而LB-EPS含量逐渐升高,EPS以TB-EPS为主(占69.0%~79.5%),但TB-EPS/LB-EPS比值随着温度升高逐渐降低[3.8(15℃)→3.6(25℃)→2.2(35℃)].在EPS,LB-EPS和TB-EPS中PN和DNA含量随着温度升高而降低,LB-EPS和EPS中PS含量随温度升高而增加.而TB-EPS中PS含量随温度升高而降低,且25℃是各组分浓度变化重要折点.在15℃和25℃时,PN为TB-EPS和LB-EPS的主要成分,PS次之,DNA最少,35℃时,PS成为主要成分,PN次之,DNA最少.此外,本研究也发现,在15℃和25℃时,EPS含量在硝化过程中逐渐增大,反硝化过程中逐渐降低. |
英文摘要 |
In this paper, the long-term effects of temperature on the nitrogen removal performance and the extracellular polymeric substance (EPS) in a sequencing batch reactor (SBR) treating synthetic wastewater was investigated under three temperature conditions (15℃, 25℃, 35℃). The results showed that high temperatures (35℃) could promote the establishment of short-cut nitrification processes and improve nitrogen removal performance greatly. Temperature had a significant impact on the EPS and its composition. With an increased temperature, the EPS and tightly bound EPS (TB-EPS) content decreased, while, loosely bound EPS (LB-EPS) increased slowly. TB-EPS became dominant in the EPS (the percentage of TB-EPS/EPS was 69.0%-79.5%), however, the ratio of TB-EPS/LB-EPS decreased from 3.8 (15℃) to 3.6 (25℃), and then to 2.2 (35℃) with a gradual increase in temperature. Moreover, protein (PN) and DNA in the EPS, TB-EPS, and LB-EPS decreased with an increasing temperature. Carbohydrates (PS) in the EPS and LB-EPS increased as temperature increased, nevertheless, PS in TB-EPS decreased. Furthermore, 25℃ was identified as the breaking-point temperature in the variation of PN, DNA and PS concentrations. At 15℃ and 25℃, PN was the main component in TB-EPS and LB-EPS. PS has the second highest concentration and DNA the least. However, PS were the dominant component at 35℃, with PN having the second highest concentration, and DNA having a subtle concentration. Moreover, at 15℃ and 25℃, the EPS content increased in the nitrification process and reduced in the denitrification process. |
|
|
|