首页  |  本刊简介  |  编委会  |  投稿须知  |  订阅与联系  |  微信  |  出版道德声明  |  Ei收录本刊数据  |  封面
神经网络模型在O3浓度预测中的应用
摘要点击 3955  全文点击 2992  投稿时间:2010-09-30  修订日期:2010-12-06
查看HTML全文 查看全文  查看/发表评论  下载PDF阅读器
中文关键词  神经网络模型  多层感知器  O3污染预测  多元线性回归  预报模型
英文关键词  neural network  multilayer perceptron  prediction of O3 contamination  multiple linear regression  prediction model
作者单位
沈路路 清华大学环境科学与工程系北京100084 
王聿绚 清华大学环境科学与工程系北京100084 
段雷 清华大学环境科学与工程系北京100084 
中文摘要
      O3是近地面大气中一种重要的二次污染物.本研究采用神经网络多层感知器(Multi-Layer Perceptron)和多元线性回归2种模型,以广州万顷沙站2006年的气象观测数据为输入,对该站O3的1 h平均峰值浓度进行提前1 d的预测,并比较了2种模型的预测效果.模型的输入参数为前1d O3的最高1h平均浓度和第二天的气象参数(温度、湿度、风速、风向、气压和光照).为了降低神经网络的复杂度以提高模型的泛化能力,采用了OBS(Optimal brain surgeon)方法对神经网络模型进行了修剪.结果表明,经过修剪后的神经网络预测结果的准确指数(agreement index)为92.3%,RMSE为0.0428 mg/m3,R-square为0.737,重污染事件(1 d中O3峰值浓度超过0.20 mg/m3)的预报准确率为77.0%.为了进一步提高重污染事件发生概率大小的预报效果,采用了神经网络分类器对臭氧的污染级别进行预测,该处理后重污染事件预报准确率可以达到83.6%.综合比较神经网络模型和多元线性回归模型的拟合效果后发现,神经网络模型在O3峰值预报中具有明显优势,本研究建立的神经网络模型具有臭氧污染预测预警的实用价值.
英文摘要
      Ozone is an important secondary air pollutant in the lower atmosphere. In order to predict the hourly maximum ozone one day in advance based on the meteorological variables for the Wanqingsha site in Guangzhou, Guangdong province, a neural network model (Multi-Layer Perceptron) and a multiple linear regression model were used and compared. Model inputs are meteorological parameters (wind speed, wind direction, air temperature, relative humidity, barometric pressure and solar radiation) of the next day and hourly maximum ozone concentration of the previous day. The OBS (optimal brain surgeon) was adopted to prune the neutral work, to reduce its complexity and to improve its generalization ability. We find that the pruned neural network has the capacity to predict the peak ozone, with an agreement index of 92.3%, the root mean square error of 0.0428 mg/m3, the R-square of 0.737 and the success index of threshold exceedance 77.0% (the threshold O3 mixing ratio of 0.20 mg/m3). When the neural classifier was added to the neural network model, the success index of threshold exceedance increased to 83.6%. Through comparison of the performance indices between the multiple linear regression model and the neural network model, we conclud that that neural network is a better choice to predict peak ozone from meteorological forecast, which may be applied to practical prediction of ozone concentration.

您是第75721040位访客
主办单位:中国科学院生态环境研究中心 单位地址:北京市海淀区双清路18号
电话:010-62941102 邮编:100085 E-mail: hjkx@rcees.ac.cn
本系统由北京勤云科技发展有限公司设计  京ICP备05002858号-2