首页  |  本刊简介  |  编委会  |  投稿须知  |  订阅与联系  |  微信  |  出版道德声明  |  Ei收录本刊数据  |  封面
基于化学反应动力学的饮用水铝形态分布模型研究
摘要点击 2727  全文点击 3064  投稿时间:2009-06-15  修订日期:2009-07-30
查看HTML全文 查看全文  查看/发表评论  下载PDF阅读器
中文关键词  反应动力学  饮用水  铝形态  人工神经网络  模型
英文关键词  reaction kinetics  drinking water  aluminum species  artificial neural network  model
DOI    10.13227/j.hjkx.20100421
作者单位
王文东 清华大学环境科学与工程系北京100084 
杨宏伟 清华大学环境科学与工程系北京100084 
王晓昌 西安建筑科技大学环境与市政工程学院西安710055 
蒋晶 北京科技大学土木与环境工程学院北京100083 
祝万鹏 清华大学环境科学与工程系北京100084 
蒋展鹏 清华大学环境科学与工程系北京100084 
中文摘要
      目前饮用水中的总铝超标现象十分严重,其危害与铝的存在形态密切相关.本研究利用三层前反馈式的人工神经网络技术,建立了基于化学反应动力学的铝形态预测模型.结果表明,无机单核铝和溶解铝的浓度变化速率与反应时间及水温、pH、总铝、氟离子、磷酸根和硅酸根等水质参数密切相关,二者的反应级数均为三级.通过人工神经网络可有效地进行饮用水中无机单核铝和溶解铝反应动力学参数的预测;反应速率常数K和初始浓度项1/c02的计算值和模型预测值的相关系数R均大于0.999.由M市管网水铝形态的预测结果可知:当总铝浓度<0.05 mg·L-1时,模型对无机单核铝浓度的预测误差较大;而当总铝浓度>0.05 mg·L-1时,模型有较好的预测能力,无机单核铝和溶解铝的相对预测误差分别为±15%和±10%.
英文摘要
      The effects of excess aluminum on water distribution system and human health were mainly attributable to the presences of some aluminum species in drinking water. A prediction model for the concentrations of aluminum species was developed using three-layer front feedback artificial neural network method. Results showed that the reaction rates of both inorganic monomeric aluminum and soluble aluminum varied with reaction time and water quality parameters, such as water temperature, pH, total aluminum, fluoride, phosphate and silicate. Their reaction orders were both three. The reaction kinetic parameters of inorganic monomeric aluminum and soluble aluminum could be predicted effectively applying artificial neural network; the correlation coefficients of K and 1/c02 between calculated value and predicted value were both greater than 0.999. Aluminum species prediction results in the drinking water of City M showed that when the concentration of total aluminum was less than 0.05 mg·L-1, the relative prediction error was large for inorganic monomeric aluminum. When the concentration of total aluminum was above 0.05 mg·L-1, the model could predict inorganic monomeric aluminum and soluble aluminum concentrations effectively, with relative prediction errors of ±15% and ±10% respectively.

您是第83108534位访客
主办单位:中国科学院生态环境研究中心 单位地址:北京市海淀区双清路18号
电话:010-62941102 邮编:100085 E-mail: hjkx@rcees.ac.cn
本系统由北京勤云科技发展有限公司设计  京ICP备05002858号-2