首页  |  本刊简介  |  编委会  |  投稿须知  |  订阅与联系  |  微信  |  出版道德声明  |  Ei收录本刊数据  |  封面
铜陵某废弃硫铁矿区土壤重金属污染特征及来源解析
摘要点击 771  全文点击 230  投稿时间:2023-01-09  修订日期:2023-03-23
查看HTML全文 查看全文  查看/发表评论  下载PDF阅读器
中文关键词  硫铁矿区  土壤重金属污染  潜在生态风险评价  来源解析  铜陵市
英文关键词  pyrite mining area  heavy metal contamination in soils  potential ecological risk assessment  source apportionment  Tongling City
作者单位E-mail
李如忠 合肥工业大学资源与环境工程学院, 合肥 230009 lrz1970@163.com 
刘宇昊 合肥工业大学资源与环境工程学院, 合肥 230009  
黄言欢 安徽文川环保有限公司, 铜陵 244002  
吴鸿飞 安徽文川环保有限公司, 铜陵 244002  
中文摘要
      为弄清铜陵市某硫铁矿开采对周边土壤重金属污染影响,在露天采矿场、农田、山林、村庄和河道等,采集50个点位表层土壤和沉积物样,分析Zn、Cr、Cu、Pb、Ni、Cd和As含量,解析土壤重金属空间分布特征,评估重金属污染程度和潜在生态风险水平,并识别土壤重金属污染来源.结果表明,矿区土壤呈弱酸性(pH均值为6.32),除Ni元素外,其他重金属含量都超过铜陵市土壤背景值,且河流沉积物中Ni和Cd富集较为明显.根据内梅罗污染指数,判定Pb和As总体处于重度污染,Cu和Cd为中度污染,其他元素为轻污染或无污染;不同用地类型综合污染指数排序为:采矿场>河道>山林>农田>村庄,其中采矿场和河道属于重度污染,林地以中度污染为主,农田和村庄以轻度污染为主.Pb、As和Cd均属于中等生态风险,潜在生态风险指数贡献率分别为33.27%、27.39%和20.22%,远大于其他4种元素;不同用地类型潜在生态风险指数排序结果与综合污染指数相同,其中采矿场和河道属于高风险水平,林地为中等风险,其余为轻微风险.相关性分析、主成分分析(PCA)和正定矩阵因子分解模型(PMF)所得结果一致,初步判定Zn、Cu、Pb、Cd和As主要来自硫铁矿开采活动,Cr主要来自成土母质和农业生产,Ni主要受成土母质和硫铁矿开采活动的共同影响.
英文摘要
      To investigate the impact of pyrite mining on the heavy metal pollution in the surrounding soil in Tongling City, 50 surface soil and sediment samples were collected from mining fields, farmland, forests, villages, and the river. The contents of Zn, Cr, Cu, Pb, Ni, Cd, and As in soils and sediments were analyzed. Then, the spatial distribution characteristics of heavy metals in soil were analyzed, and the degree of heavy metal pollution and potential ecological risk level were assessed. Finally, the sources of soil heavy metal pollution were identified. In general, the soil in the study area was weakly acidic (average pH=6.32), and the contents of other heavy metals except Ni exceeded the background values of the soil in Tongling City. Moreover, Ni and Cd were enriched in the river sediments. According to the Nemerow pollution index, Pb and As reached heavy pollution levels, Cu and Cd reached moderate pollution levels, and other elements belonged to light or non-pollution levels. The comprehensive pollution index of different land types was ranked in the order of mining field > river > forest > farmland > village. Mining fields and the river were heavily polluted, forest land was moderately polluted, and farmland and villages were mainly mildly polluted. Pb, As, and Cd belonged to the medium ecological risk category. The contribution rates of the potential ecological risk index were 33.27%, 27.39%, and 20.22%, which were much higher than the other four elements. The ranking results of the potential ecological risk index of different land types was the same as that of the comprehensive pollution index. Mining fields and the river were at a high-risk level, forest land reached moderate risk, and the rest were at a slight risk level. The consistent results of correlation analysis, principal component analysis (PCA), and positive definite matrix factor analysis (PMF) indicated that Zn, Cu, Pb, Cd, and As were mainly derived from pyrite mining activities, Cr mainly came from the parent material and agricultural production, and Ni was mainly affected by soil-forming parent material and pyrite mining activities.

您是第53551105位访客
主办单位:中国科学院生态环境研究中心 单位地址:北京市海淀区双清路18号
电话:010-62941102 邮编:100085 E-mail: hjkx@rcees.ac.cn
本系统由北京勤云科技发展有限公司设计  京ICP备05002858号-2