首页  |  本刊简介  |  编委会  |  投稿须知  |  订阅与联系  |  微信  |  出版道德声明  |  Ei收录本刊数据  |  封面
亚高山湖群中真菌群落的分布格局和多样性维持机制
摘要点击 2247  全文点击 737  投稿时间:2018-09-26  修订日期:2018-11-19
查看HTML全文 查看全文  查看/发表评论  下载PDF阅读器
中文关键词  亚高山湖群  真菌群落  高通量测序  多样性格局  维持机制
英文关键词  subalpine lakes  fungal community  high throughput sequencing  diversity pattern  maintenance mechanism
作者单位E-mail
刘晋仙 山西大学黄土高原研究所, 黄土高原生态恢复山西省重点实验室, 太原 030006 ailjx1314@126.com 
李毳 山西财经大学环境经济学院, 太原 030006  
罗正明 山西大学黄土高原研究所, 黄土高原生态恢复山西省重点实验室, 太原 030006  
王雪 山西大学黄土高原研究所, 黄土高原生态恢复山西省重点实验室, 太原 030006  
暴家兵 山西大学黄土高原研究所, 黄土高原生态恢复山西省重点实验室, 太原 030006  
柴宝峰 山西大学黄土高原研究所, 黄土高原生态恢复山西省重点实验室, 太原 030006 bfchai@sxu.edu.cn 
中文摘要
      真菌群落的组成和多样性对维持亚高山湖泊生态系统平衡具有重要影响.本文以包括琵琶海(PPH,0、2和4 m)、马营海(MYH,0、2、4和6 m)和公海(GH,0、2、4、6和8 m)在内的亚高山湖群中不同深度的水生真菌群落为研究对象,通过高通量测序的方法探究真菌群落的分布格局和多样性维持机制(确定性过程VS随机过程).结果表明,不同湖泊水质差异明显,GH中pH、电导率、铵态氮、总碳和无机碳含量均显著高于其他两者.真菌群落主要由子囊菌门(Ascomycota,0.82%~21.05%)、担子菌门(Basidiomycota,1.26%~11.79%)、壶菌门(Chytridiomycota,0.42%~4.26%)和隐真菌门(Rozellomycota,0.11%~0.33%)等组成.囊担子菌纲(Cystobasidiomycetes)、座囊菌纲(Dothideomycetes)、壶菌纲(Chytridiomycetes)和粪壳菌纲(Sordariomycetes)为所有湖泊共有.不同湖泊真菌群落的α-多样性和优势类群差异显著(P<0.05),而在每个湖内不同深度之间没有显著的差异.相似性分析结果表明,不同湖之间真菌群落的β-多样性明显不同(r=0.99,P<0.01),同时MYH(r=0.98,P<0.01)和GH(r=0.25,P<0.05)不同深度真菌群落的β-多样性也差异明显,但是PPH(r=0.23,P>0.05)不同深度真菌群落的β-多样性没有显著的差异.冗余分析和方差分解分析结果表明,在小区域范围内(3个湖之间)以及局域范围内(MYH不同深度)真菌群落的β-多样性格局是环境选择和扩散限制共同影响的结果,但是环境选择的相对作用更强,其中水体pH、溶解氧、总碳和电导率是主要的影响因子.零模型分析结果表明,种间相互作用驱动了GH中真菌群落β-多样性格局的维持.总之,亚高山湖群中真菌群落的β-多样性格局主要是由确定性过程驱动的.
英文摘要
      The composition and diversity of fungal communities are essential to maintain the ecosystem balance of subalpine lakes. The aquatic fungal communities at different depths from the subalpine Pipahai (PPH, 0, 2, 4 m), Mayinghai (MYH, 0, 2, 4, 6 m), and Gonghai (GH, 0, 2, 4, 6, 8 m) lakes were studied. In addition to that, the distribution pattern and diversity maintenance mechanism (determination process vs. random process) of fungal communities were explored using high-throughput sequencing. The results showed that the physicochemical parameters of the water were significantly different among the three lakes. The pH, electrical conductivity (EC), ammonia nitrogen (NH4+-N), total carbon (TC), and inorganic carbon (IC) of GH were significantly higher than in the other two lakes. The fungal community was mainly composed of Ascomycota (0.82%-21.05%), Basidiomycota (1.26%-11.79%), Chytridiomycota (0.42%-4.26%), and Rozellomycota (0.11%-0.33%). Cystobasidiomycetes, Dothideomycetes, Chytridiomycetes, and Sordariomycetes were the dominant classes shared by the three lakes. The α-diversity index and the relative abundance of dominant classes were significantly different among the three lakes (P<0.05), but there were no significant differences between the various depths on each lake. The results of the ANOSIM analysis showed that the β-diversity of the fungal communities were significantly different (r=0.99, P<0.01) among the lakes. There was also expressive differences at various depths on MYH (r=0.98, P<0.01) and GH (r=0.25, P<0.05), but no significant difference in PPH (r=0.23, P>0.05). The analysis results of redundancy and variation partitioning showed that the β-diversity pattern of fungal communities in small region areas (among the three lakes) and local areas (different depths of MYH) were driven by environmental selection and dispersal limitation. However, the relative role of environmental selection was more significant, with water pH, dissolved oxygen (DO), TC, and EC being the main influencing factors. The results of the null model analysis showed that the interspecific interactions promoted the maintenance of the β-diversity pattern of the fungal community in GH. In summary, the β-diversity pattern of fungal communities in the subalpine lakes was mainly driven by a deterministic process.

您是第52344383位访客
主办单位:中国科学院生态环境研究中心 单位地址:北京市海淀区双清路18号
电话:010-62941102 邮编:100085 E-mail: hjkx@rcees.ac.cn
本系统由北京勤云科技发展有限公司设计  京ICP备05002858号-2